首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Twelve horses of various breeds and either sex were anesthetized with xylazine and ketamine injected into a median or lateral thoracic vein. During anesthesia, with the horse in sternal recumbency, a 14-gauge, 8.9 cm catheter was inserted into each jugular vein by using aseptic technique. Guaifenesin in water (100 mg/kg or a maximum dose of 50 grams) was infused into one jugular vein and an equal volume of 0.9% saline solution was infused into the other jugular vein. Seven horses received 10% guaifenesin, and five horses received 5% guaifenesin. The catheters were removed before the horses recovered from anesthesia. The horses were euthanatized approximately 48 hours later, and the jugular veins were removed for histologic examination. Adherent thrombus material was observed in all veins exposed to 10% guaifenesin and in one vein exposed to 5% guaifenesin. No evidence of thrombus was observed in four veins infused with 5% guaifenesin or in those infused with saline solution. These findings are of particular significance with horses at increased risk for thrombosis or thrombophlebitis.  相似文献   

2.
The effect of nitrous oxide (N2O) on arterial partial pressure of oxygen (PaO2) was evaluated in 20 adult horses anaesthetised with halothane. A fresh gas flow rate of 20ml/kg/min, comprising a 1:1 N2O/oxygen (O2) mixture, was supplied via the rotameter flowmeters of an anaesthetic machine to a large animal breathing system. The horses breathed spontaneously from the circuit immediately after endotracheal intubation. Ten horses were subsequently positioned in lateral recumbency and ten in dorsal recumbency. A further twenty adult horses were anaesthetised with halothane and acted as controls; halothane in 20mls/kg/min of O2 being supplied to the same breathing system. Fifty percent NO caused significant decreases in PaO2 for horses in lateral and dorsal recumbency. However when administered to horses in lateral recumbency it did not promote arterial hypoxaemia. There was a higher risk of intraopera- tive arterial hypoxaemia (PaO2 < 8.6kPa) associated with its use in spontaneously breathing horses in dorsal recumbency. Arterial hypoxaemia occurred in all horses during the first fifteen minutes of recovery but when N2O was discontinued, halothane in oxygen supplied to the breathing circuit for five minutes at a flow rate of 20ml/kg/minute was sufficient to ensure that diffusion hypoxia did not occur. The magnitude of the hypoxaemia was not signficantly different between the groups. The time taken to adopt sternal recumbency was significantly shorter in the horses that had received N2O.  相似文献   

3.
The purpose of the present investigation was to examine the effects of unilateral and bilateral jugular vein occlusion by temporary surgical ligature on the heart rate and arterial and venous blood pressure in sedentary horses during progressive treadmill exercise. Six horses performed three exercise tests (ET). ET1, considered the control, was performed in horses without jugular occlusions. ET2 and ET3 were performed with unilateral and bilateral occlusion by temporary surgical ligature of the jugular veins, respectively. Heart rate, arterial pressure, and pressure of the occluded jugular vein were evaluated. Clinically, the horses presented apathy, head edema, congested mucous membranes, increased capillary refill time, and dysphagia. These signs were observed with the unilateral jugular vein occlusion and became more evident with the bilateral occlusion. Comparing ETs, no differences were observed in heart rate. However, jugular occlusions promoted a decrease in the mean arterial pressure and a severe increase in jugular pressure. Head edema caused by the jugular vein occlusion in the horses could interfere with the autonomic cardiovascular regulation of arterial blood pressure during exercise, likely leading to an impairment of tissue perfusion. Jugular occlusion, even unilateral, also causes severe head venous congestion, leading to venous hypertension that was aggravated by exercise, which could risk development of cerebral edema and neurological damage. The present results obtained from sedentary horses are preliminary data that lead us to suggest that sport horses presenting jugular occlusive thrombophlebitis, even unilateral, may be prevented from performing athletic activities.  相似文献   

4.
Objective To compare and correlate right atrial pressure, which represents central venous pressure (CVP) to jugular vein pressure (JVP) in laterally recumbent horses under anesthesia. Study design Retrospective clinical trial. Animals Seven adult healthy horses (411 ± 8.7 kg). Methods Horses were sedated with IV xylazine and anesthesia was obtained with IV ketamine and diazepam. Anesthesia was maintained with sevoflurane in oxygen. All horses were positioned in left lateral recumbency. An 8F catheter introducer was inserted into the right jugular vein to measure JVP. An 8F catheter introducer was inserted into the left jugular vein to be used as the port for a 7F 110 cm catheter that reached the right atrium to measure CVP. Both, CVP and JVP were measured simultaneously with a water calibrated aneroid manometer using the sternum as the 0 cmH2O reference point. Measurements were compared using Spearman correlation and the Bland‐Altman plot. Results Twenty paired samples were obtained over a period of 2 hours. The CVP ranged from 7 to 31 cmH2O, while the JVP ranged from 5 to 30 cmH2O. The Spearman correlation coefficient indicated that CVP and JVP had a strong correlation with r = 0.88. The Bland‐Altman plot showed a bias of 0.7 cmH2O. Conclusion and clinical relevance Jugular vein pressure showed a strong correlation with CVP in healthy, euvolemic, laterally recumbent anesthetized adult horses. Thus, JVP cannot replace CVP but it may be used clinically to monitor CVP in laterally recumbent horses.  相似文献   

5.
Seven horses, which were part of an investigation of the effect of endotoxin administration on vascular reactivity, were anesthetized on two separate occasions for surgical excision of 4-cm sections of palmar digital artery and vein. On the first occasion, the horses were given an infusion of 1 L 0.9% NaCl solution intravenously (IV) just before induction of anesthesia (control); on the second occasion, the horses received an infusion of 1 L 0.9% NaCl containing Escherichia coli endotoxin, 0.1 μg/kg (endotoxin). On both occasions, anesthesia was induced with xylazine, guaifenesin, and ketamine, and maintained with halothane in oxygen. Hemodynamic measurements were made with the horses under anesthesia immediately before beginning surgery (period 1), during skin incision (period 2), during dissection and excision of the vessels (period 3), during skin suturing (period 4), and after completion of surgery during bandaging (period 5). Hemoglobin concentration and mixed venous oxygen content were greater at all periods in horses that received endotoxin. Otherwise, there were no significant differences in hemodynamic parameters between control horses and horses administered endotoxin before beginning surgery (period 1). During surgery and bandaging, horses administered endotoxin had significantly higher heart rate (periods 3, 4, and 5), cardiac index (periods 3, 4, and 5), and oxygen delivery (periods 2, 3, 4, and 5) than did control horses, and mean arterial blood pressure (period 2) and systemic vascular resistance (periods 2, 3, 4, and 5) were less than in control horses. Compared with period 1, surgical stimulation in control horses was associated with increased mean arterial blood pressure and systemic vascular resistance (periods 2, 3, 4, and 5), but cardiac index and oxygen delivery were decreased (periods 3, 4, and 5). In contrast, horses administered endotoxin responded to surgical stimulation with increased mean arterial blood pressure (periods 2, 3, 4, and 5) and vascular resistance (periods 4 and 5), as well as a heart rate-induced increase in cardiac index (periods 2, 3, 4, and 5) compared with period 1; oxygen delivery also increased (periods 2, 3, 4, and 5) during surgery in the endotoxin group. This study documents some of the differences in the response to anesthesia and surgery between normal horses and those that have received endotoxin.  相似文献   

6.
OBJECTIVE: To evaluate the use of xylazine and ketamine for total i.v. anesthesia in horses. ANIMALS: 8 horses. PROCEDURE: Anesthetic induction was performed on 4 occasions in each horse with xylazine (0.75 mg/kg, i.v.), guaifenesin (75 mg/kg, i.v.), and ketamine (2 mg/kg, i.v.). Intravenous infusions of xylazine and ketamine were then started by use of 1 of 6 treatments as follows for which 35, 90, 120, and 150 represent infusion dosages (microg/kg/min) and X and K represent xylazine and ketamine, respectively: X35 + K90 with 100% inspired oxygen (O2), X35 + K120-(O2), X35 + K150-(O2), X70 + K90-(O2), K150-(O2), and X35 + K120 with a 21% fraction of inspired oxygen (ie, air). Cardiopulmonary measurements were performed. Response to a noxious electrical stimulus was observed at 20, 40, and 60 minutes after induction. Times to achieve sternal recumbency and standing were recorded. Quality of sedation, induction, and recovery to sternal recumbency and standing were subjectively evaluated. RESULTS: Heart rate and cardiac index were higher and total peripheral resistance lower in K150-(O2) and X35 + K120-air groups. The mean arterial pressure was highest in the X35 + K120-air group and lowest in the K150-(O2) group (125 +/- 6 vs 85 +/- 8 at 20 minutes, respectively). Mean Pa(O2) was lowest in the X35 + K120-air group. Times to sternal recumbency and standing were shortest for horses receiving K150-(O2) (23 +/- 6 minutes and 33 +/- 8 minutes, respectively) and longest for those receiving X70 + K90-(O2) (58 +/- 28 minutes and 69 +/- 27 minutes, respectively). CONCLUSIONS AND CLINICAL RELEVANCE: Infusions of xylazine and ketamine may be used with oxygen supplementation to maintain 60 minutes of anesthesia in healthy adult horses.  相似文献   

7.

Objective

To compare the effects of two concentrations of oxygen delivered to the anaesthetic breathing circuit on oxygenation in mechanically ventilated horses anaesthetised with isoflurane and positioned in dorsal or lateral recumbency.

Methods

Selected respiratory parameters and blood lactate were measured and oxygenation indices calculated, before and during general anaesthesia, in 24 laterally or dorsally recumbent horses. Horses were randomly assigned to receive 100% or 60% oxygen during anaesthesia. All horses were anaesthetised using the same protocol and intermittent positive pressure ventilation (IPPV) was commenced immediately following anaesthetic induction and endotracheal intubation. Arterial blood gas analysis was performed and oxygenation indices calculated before premedication, immediately after induction, at 10 and 45 min after the commencement of mechanical ventilation, and in recovery.

Results

During anaesthesia, the arterial partial pressure of oxygen was adequate in all horses, regardless of position of recumbency or the concentration of oxygen provided. At 10 and 45 min after commencing IPPV, the arterial partial pressure of oxygen was lower in horses in dorsal recumbency compared with those in lateral recumbency, irrespective of the concentration of oxygen supplied. Based on oxygenation indices, pulmonary function during general anaesthesia in horses placed in dorsal recumbency was more compromised than in horses in lateral recumbency, irrespective of the concentration of oxygen provided.

Conclusion

During general anaesthesia, using oxygen at a concentration of 60% instead of 100% maintains adequate arterial oxygenation in horses in dorsal or lateral recumbency. However, it will not reduce pulmonary function abnormalities induced by anaesthesia and recumbency.  相似文献   

8.
Circulatory and respiratory effects of five h of constant 1.06 per cent alveolar halothane in oxygen were identified in eight healthy horses, which breathed spontaneously, were otherwise unmedicated and positioned in sternal recumbency. Only a few important significant (P less than 0.05) changes occurred with time. Total peripheral resistance was about 15 per cent lower after two hours of constant dose halothane than after 30 mins of constant dose (P less than 0.05) and accounted for the significant 10 per cent reduction in mean carotid arterial blood pressure. By 5 h, the reduction in resistance and arterial blood pressure was 20 and 25 per cent respectively. Heart rate increased progressively with time and the increase became significant at 5 h (15 per cent increase). However, the heart rate change was not large enough to alter cardiac output. There were no major time-related changes in PaO2 or PaCO2. Three of four horses recovered from anaesthesia had markedly elevated serum creatine kinase levels and clinical signs of severe post anaesthetic myopathy.  相似文献   

9.
Pharmacokinetics and cardiopulmonary effects of guaifenesin in donkeys   总被引:2,自引:0,他引:2  
Five donkeys and three horses were given guaifenesin, intravenously, by gravity administration, until recumbency was produced. The time and dose required to produce recumbency, recovery time to sternal and standing were recorded. Blood samples were collected for guaifenesin assay at 10, 20, 30, 40, 50, 60 min, and 2, 3, 4 and 6 h after guaifenesin administration. Serum was analysed for guaifenesin using HPLC and pharmacokinetic values were calculated using a computer software package (RSTRIP). In donkeys, heart and respiratory rates and blood pressures were recorded before and at 5-min intervals during recumbency. Arterial blood samples were collected before and at 5 and 15 min intervals during recumbency for analysis of pH, CO2, and O2. anova was used to evaluate dynamic data, while t -tests were used for kinetic values.
Respiratory rate was decreased significantly during recumbency, but no other significant changes from baseline occurred. The mean (±SD) recumbency dose of guaifenesin was 131 mg/kg (27) for donkeys and 211 mg/kg (8) for horses. Recovery time to sternal (min) was 15 (SD, 11) for donkeys and 34 (SD, 1.4) for horses. Time to standing was 32 min for donkeys and 36 min for horses. Calculation of AUC (area under the concentration–time curve) (μg.h/mL) (dose-dependent variable) was 231 (SD, 33) for donkeys and 688 (SD, 110) for horses. The clearance ( CL ) (mL/h.kg) was 546 (SD, 73) for donkeys, which was significantly different from 313 (SD, 62) for horses. Mean residence time ( MRT ) (h) was 1.2 (SD, 0.1) for donkeys and 2.6 (SD, 0.5) for horses. Volume of distribution V d(area) (mL/kg) was 678 (SD, 92) for donkeys and 794 (SD, 25) for horses. At the rate of administration used in this study, donkeys required less guaifenesin than horses to produce recumbency, but cleared it more rapidly.  相似文献   

10.
Objective – To investigate a technique of central venous pressure (CVP) measurement using a newly developed catheter in healthy adult horses. Design – Prospective experimental study. Setting – University research facility. Animals – Twenty healthy adult horses. Interventions – An equine central venous catheter was inserted into the jugular vein to a length of approximately 80 cm from the mid‐cervical region in an attempt to catheterize the pulmonary artery. Pulmonary arterial catheterization was confirmed by echocardiography. Insertion distance and pressure were measured at this location with a disposable manometer. The catheter was then withdrawn until presence in the right atrium was confirmed by echocardiography. Insertion distance and pressure were also measured at this location. The catheter was then withdrawn in 5 cm increments until exiting the jugular insertion site with pressure measured at each location. All pressure measurements were taken with the manometer zero position at the point of the shoulder. Measurements and Main Results – Pulmonary artery catheterization was successful in 16 of 20 horses. Mean pulmonary arterial pressure was 23.8 cm H2O (17.5 mm Hg) (95% confidence interval [CI] 20.9–26.7 cm H2O [15.4–19.6 mm Hg]). Mean right atrial pressure was 8.3 cm H2O (6.1 mm Hg) (95% CI 7.1–9.4 cm H2O [5.2–6.9 mm Hg]). Right atrial pressure was compared with pressures recorded at sequential insertion distances and resulted in a recommendation for catheter insertion of at least 40 cm for CVP measurement in adult horses. Jugular venous pressure measurement was statistically different from CVP measurement. Conclusions – This catheter measurement technique is well tolerated in normal horses. Routine clinical use of this equine central venous catheter may improve our ability to monitor patients and improve patient care and outcomes of ill horses in hospital.  相似文献   

11.
The objective of this study was to compare recovery from desflurane anesthesia in horses with or without post-anesthetic xylazine. Six adult horses were anesthetized on 2 occasions, 14 d apart using a prospective, randomized crossover design. Horses were sedated with xylazine, induced to lateral recumbency with ketamine and diazepam, and anesthesia was maintained with desflurane. One of 2 treatments was administered intravenously at the end of anesthesia: xylazine [0.2 mg/kg body weight (BW)] or an equivalent volume of saline. Recovery parameters were recorded and assessed by 2 blinded observers. A Wilcoxon signed-rank test was used to analyze recovery data. Heart rate, arterial blood pressures, and arterial blood gas data were analyzed using 2-way analysis of variance (ANOVA) for repeated measures. Values of P < 0.05 were considered significant. Duration of anesthesia was not different between groups. Administration of xylazine at the end of desflurane anesthesia was associated with significantly longer times to first movement, endotracheal tube removal, first attempt to achieve sternal recumbency, sternal recumbency, first attempt to stand, and standing. Number of attempts to stand and quality of recovery scores were not different between groups. Administering xylazine after desflurane anesthesia resulted in longer recovery times. Recovery scores were not significantly different between groups.  相似文献   

12.
SUMMARY Fifteen cats had anaesthesia induced by intramuscular injection of medetomidine combined with ketamine. By five minutes after drug administration, heart rate had decreased by 31 per cent, respiratory rate had decreased by 70 per cent and systolic blood pressure had increased by 69 per cent. Atipamezole administration was associated with a decrease in systolic blood pressure and an increase in heart and respiratory rates. Time to first head lift was eight minutes and to sternal recumbency 12 minutes after atipamezole administration. Postoperative analgesia was provided by methadone, administered when the cats adopted sternal recumbency.  相似文献   

13.
The aim of this study was to evaluate the effect of body positioning immediately after delivery on respiratory and metabolic adaptation to extra-uterine life in newborn calves. One hundred and one Belgian White and Blue calves were delivered at term by an elective caesarean section and were assigned into three categories according to the body position imposed immediately after umbilical cord rupture: 71 calves were placed in lateral recumbency; 16 calves were placed in sternal recumbency and 14 calves were suspended by the hind legs for less than 90 seconds (75 +/- 5 s). Following this initial body position, the calves were allowed to move without restraint. They were examined at birth, 5, 15, 30, 45 and 60 minutes, and 2, 3, 6, 12 and 24 hours after birth by the following measurements: physical examination, heart rate, arterial blood gas analysis, pulmonary function tests using the esophageal balloon catheter technique, arterial and venous blood acid-base balance analysis, rectal temperature, jugular venous blood sampling for the determination of blood glucose, plasma lactate and serum cortisol concentrations, haematologic variables and passive immune transfer variables. Body positioning immediately after delivery clearly influenced respiratory and metabolic adaptation to extra-uterine life in term calves delivered by an elective caesarean section. Systematic sternal recumbency and suspension by the hind legs for less than 90 seconds immediately after umbilical cord rupture had a positive functional impact on postnatal pulmonary mechanics and gas exchange and on postnatal correction of mixed acidosis present at birth, contributing in turn to an enhanced passive immune transfer. These two body positions should be encouraged to improve adaptation at birth in healthy term calves delivered by an elective caesarean section. Evaluation of possible side-effects is required before application in severely asphyxiated calves.  相似文献   

14.
A new inhalant anaesthetic, sevoflurane, was used to maintain anaesthesia in 40 animals (2 mules and 38 horses of 9 breeds) presented for various surgical procedures. Eighteen mares, 11 stallions and 11 geldings underwent 6 orthopaedic and 34 soft tissue operations. Induction of anaesthesia was achieved with combinations of xylazine (0.5–1.1 mg/kg), diazepam (0.03–0.1 mg/kg), butorphanol (0.02 mg/kg), guaifenesin (50–84 mg/kg) and ketamine (1.1 mg/kg). Following tracheal intubation, a surgical plane of anaesthesia was maintained with sevoflurane in oxygen delivered from a precision vaporiser. Temperature, ECG, arterial blood pressure and expired gas composition were monitored. Mechanical ventilation was used in most animals (n=37) because of hypoventilation (PaCO2 > 7.31 kPa [55 mmHg]). Following surgery, horses were moved to a recovery room and allowed to recover alone (n=36) or with assistance (n=4). Time to sternal recumbency, standing, the time when satisfactory coordination was present (after standing) and the number of attempts to stand were recorded. The quality of recovery was scored on a 1 (best) to 6 (worst) scale. Mean blood pressures at 30, 60, 90, 120 and 150 min of anaesthesia were 72, 73, 74, 75 and 72 mmHg, respectively. Systolic and diastolic pressures at 30, 60, 90, 120 and 150 min of anaesthesia were 97, 97, 94, 96, 93 and 59, 63, 64, 68, 67 mmHg, respectively. Dobutamine was used in 23 horses to maintain mean arterial blood pressure > 60 mmHg. Mean heart and respiratory rates at 30, 60, 90, 120 and 150 min of anaesthesia were 36, 38, 39, 38 and 38 beats/min, and 9, 8, 8, 8 and 8 breaths/min. Mean duration of anaesthesia was 121 rnin (sd: 56 min), mean time to sternal recumbency was 27 min (sd: 13 min), average time to standing (all horses) was 33 min (sd: 12 min) and time to satisfactory coordination was 44 min (sd: 13 min). Most horses (n=37) received xylazine during recovery (mean dose 0.18 mg/kg iv). The median number of attempts to sternal recumbency and standing were 1.0 (range; 1–7) and 2.0 (range; 1–20), respectively, while the median recovery score was 1.5 (range; 14). The ‘depth’ of anaesthesia was easy to control and recoveries were generally very satisfactory.  相似文献   

15.
Observations were made on horses spontaneously breathing oxygen, with halothane at a constant end tidal concentration. The horses were positioned in dorsal recumbency for the first 45 minutes of each anaesthetic episode during which the arterial oxygen tension (PaO2) was found to peak and then decline. The remaining 60 minutes of each anaesthesia was used to test the effect of various manoeuvres on PaO2. The PaO2 of horses decreased further both when remaining in dorsal recumbency and when repositioned in right or left recumbency. In contrast, placing the horses in sternal recumbency for these remaining 60 minutes caused the PaO2 to rise rapidly providing evidence for redistribution of ventilation. Replacing some inspired oxygen with less absorbable nitrogen did not improve PaO2 in dorsal recumbency. Thus there was no evidence that the low PaO2 of dorsal recumbency was associated with alveoli that had collapsed because of gas absorption.  相似文献   

16.
Cardiopulmonary effects of position in conscious cattle   总被引:1,自引:0,他引:1  
The cardiopulmonary effects of 4 positions (standing, right lateral, left lateral, and dorsal recumbency) were evaluated in conscious cattle in which no sedatives or anesthetic drugs were given. Each position was maintained for 30 minutes, during which time there were no significant changes in heart rate, respiratory rate, mean arterial blood pressure, arterial pH, PaCO2, arterial base excess, or venous blood gas values. Significant decreases in PaO2 developed when cattle were in lateral positions and dorsal recumbency. Cardiac index was unchanged in all positions, except in dorsal recumbency at 30 minutes, when it was significantly decreased.  相似文献   

17.
A Comparison of Injectable Anesthetic Combinations in Horses   总被引:4,自引:0,他引:4  
Six combinations of injectable anesthetic agents were administered to six adult horses in a Latin square design. The drug combinations were xylazine-ketamine, xylazine-butorphanol-ketamine, xylazine-tiletamine-zolazepam, xylazine-butorphanol-tiletamine-zolazepam, detomidine-ketamine, and detomidine-butorphanol-ketamine. Measured variables were heart rate, respiratory rate, systolic blood pressure, arterial pH (pHa), PaCO2, PaO2, recumbency time, and number of attempts necessary to stand. Quality of induction and recovery, muscle relaxation, and response to stimulus were evaluated subjectively. The horses required significantly more attempts to stand after administration of xylazine-tiletamine-zolazepam, xylazine-butorphanol-tiletamine-zolazepam, and detomidine-ketamine than after xylazine-ketamine, xylazine-butorphanol-ketamine, or detomidine-butorphanol-ketamine. Mean recumbency times varied from 23.0 minutes with xylazine-ketamine to 41.3 minutes with xylazine-butorphanol-tiletamine-zolazepam. There were significant differences in mean heart rates at minute 15, mean respiratory rates at minutes 5, 10 and 15, and mean systolic blood pressures at minute 10 of anesthesia. There were no significant differences in pHa, PaCO2 or PaO2.  相似文献   

18.
The influence of pharmacologic enhancement of cardiac output on the alveolar-to-arterial oxygen tension (difference (P[A-a]O2), physiologic right-to-left shunt fraction (Qs/Qt), and physiologic dead space-to-tidal volume ratio (VD/VT) ws studied in halothane-anesthetized horses in left lateral, right lateral, and dorsal recumbencies. Adult horses were anesthetized, using xylazine (2.2 mg/kg, IM), guaifenesin (50 mg/kg, IV), thiamylal (4.4 mg/kg, IV), and halothane (1.5% to 2% inspired) in 100% O2. Mechanical ventilation was controlled to maintain arterial eucapnia (PaCO2) 35 to 45 mm of Hg) for a period lasting at least 1 hour. Dobutamine was administered at dosages of 1, 3, and 5 micrograms/kg/min, IV, on a randomized basis. The P(A-a)O2, Qs/Qt, and VD/VT were calculated during equilibration and after each dobutamine infusion was given. The P(A-a)O2 and Qs/Qt were significantly (P less than 0.05) greater and VD/VT tended to be greater in horses in dorsal recumbency, compared with those values in horses in left lateral or right lateral recumbency. Cardiac output was similar in all horses, regardless of body position (recumbency). The qualitative relationship between horses in the 3 recumbent positions were not altered by dobutamine. Cardiac output was significantly (P less than 0.05) increased by 3 or 5 micrograms of dobutamine/kg/min in all horses, whereas P(A-a)O2, Qs/Qt, and VD/VT were not significantly altered by dobutamine. The results of the present study failed to substantiate our clinical observations of decreased P(A-a)O2 and Qs/Qt in anesthetized compromised horses given dobutamine.  相似文献   

19.
OBJECTIVE: To compare recoveries from anesthesia of horses placed on a conventional padded stall floor or on a specially designed air pillow. DESIGN: Prospective study. ANIMALS: 409 horses (> 1 year old) that were anesthetized for surgical procedures during a 37-month period. PROCEDURES: By random allocation, horses were allowed to recover from anesthesia in either a foammat-padded recovery stall or an identical recovery stall equipped with a rapidly inflating-deflating air pillow. All recoveries were videotaped for subsequent analysis by an independent evaluator. Times to first movement, first attempt to attain sternal recumbency, attainment of sternal recumbency, first attempt to stand, and successful standing were recorded. The numbers of attempts before achieving sternal recumbency and standing were counted, and scores for quality of standing and overall recovery were assigned. Recovery-related variables were compared between groups. RESULTS: Compared with horses allowed to recover in a conventional manner, horses that recovered from anesthesia on the air pillow had a significantly longer rest period before attempting to attain sternal recumbency and rise to standing. Once the pillow was deflated, horses were able to stand after significantly fewer attempts and the quality of their standing was significantly better. Between the 2 groups of horses, there was no significant difference in overall recovery quality scores. The air pillow and padded floor systems were equally safe. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggested that use of a rapidly inflating-deflating air pillow promotes a longer period of recumbency and a better quality of standing after anesthesia in horses.  相似文献   

20.
The quality and duration of anaesthesia, cardiorespiratory effects and recovery characteristics of a morphine, medetomidine, ketamine (MMK) drug combination were determined in cats. Six healthy, adult female cats were administered 0.2 mg/kg morphine sulphate, 60 microg/kg medetomidine hydrochloride, and 5 mg/kg ketamine hydrochloride intramuscularly. Atipamezole was administered intramuscularly at 120 min after MMK administration. Time to lateral recumbency, intubation, extubation and sternal recumbency were recorded. Cardiorespiratory variables and response to a noxious stimulus were recorded before and at 3 min and 10 min increments after drug administration until sternal recumbency. The time to lateral recumbency and intubation were 1.9+/-1.2 and 4.3+/-1.2 min, respectively. Body temperature and haemoglobin saturation with oxygen remained unchanged compared to baseline values throughout anaesthesia. Respiratory rate, tidal volume, minute volume, heart rate, and blood pressure were significantly decreased during anaesthesia compared to baseline values. One cat met criteria for hypotension (systolic blood pressure <90 mmHg). End tidal carbon dioxide increased during anaesthesia compared to baseline values. All but one cat remained non-responsive to noxious stimuli from 3 to 120 min. Time to extubation and sternal recumbency following atipamezole were 2.9+/-1.1 and 4.7+/-1.0 min, respectively. MMK drug combination produced excellent short-term anaesthesia and analgesia with minimal cardiopulmonary depression. Anaesthesia lasted for at least 120 min in all but one cat and was effectively reversed by atipamezole.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号