首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A calf tissue cage model was used to study the pharmacokinetics (PK) and pharmacodynamics (PD) of oxytetracycline in serum, inflamed (exudate) and noninflamed (transudate) tissue cage fluids. After intramuscular administration, the PK was characterized by a long mean residence time of 28.3 hr. Based on minimum inhibitory concentrations (MICs) for six isolates each of Mannheimia haemolytica and Pasteurella multocida, measured in serum, integration of in vivo PK and in vitro PD data established area under serum concentration–time curve (AUC0–∞)/MIC ratios of 30.0 and 24.3 hr for M. haemolytica and P. multocida, respectively. Corresponding AUC0–∞/MIC ratios based on MICs in broth were 656 and 745 hr, respectively. PK‐PD modelling of in vitro bacterial time–kill curves for oxytetracycline in serum established mean AUC0–24 hr/MIC ratios for 3log10 decrease in bacterial count of 27.5 hr (M. haemolytica) and 60.9 hr (P. multocida). Monte Carlo simulations predicted target attainment rate (TAR) dosages. Based on the potency of oxytetracycline in serum, the predicted 50% TAR single doses required to achieve a bacteriostatic action covering 48‐hr periods were 197 mg/kg (M. haemolytica) and 314 mg/kg (P. multocida), respectively, against susceptible populations. Dosages based on the potency of oxytetracycline in broth were 25‐ and 27‐fold lower (7.8 and 11.5 mg/kg) for M. haemolytica and P. multocida, respectively.  相似文献   

2.
The aims of this study were to establish optimal doses of doxycycline (dox) against Haemophilus parasuis on the basis of pharmacokinetic–pharmacodynamic (PK‐PD) integration modeling. The infected model was established by intranasal inoculation of organism in pigs and confirmed by clinical signs, blood biochemistry, and microscopic examinations. The recommended dose (20 mg/kg b.w.) was administered in pigs through intramuscular routes for PK studies. The area under the concentration 0‐ to 24‐hr curve (AUC0–24), elimination half‐life (T½ke), and mean residence time (MRT) of dox in healthy and H. parasuis‐infected pigs were 55.51 ± 5.72 versus 57.10 ± 4.89 μg·hr/ml, 8.28 ± 0.91 versus 9.80 ± 2.38 hr, and 8.43 ± 0.27 versus 8.79 ± 0.18 hr, respectively. The minimal inhibitory concentration (MIC) of dox against 40 H. parasuis isolates was conducted through broth microdilution method, the corresponding MIC50 and MIC90 were 0.25 and 1 μg/ml, respectively. The Ex vivo growth inhibition data suggested that dox exhibited a concentration‐dependent killing mechanism. Based on the observed AUC24 hr/MIC values by modeling PK‐PD data in H. parasuis‐infected pigs, the doses predicted to obtain bacteriostatic, bactericidal, and elimination effects for H. parasuis over 24 hr were 5.25, 8.55, and 10.37 mg/kg for the 50% target attainment rate (TAR), and 7.26, 13.82, and 18.17 mg/kg for 90% TAR, respectively. This study provided a more optimized alternative for clinical use and demonstrated that the dosage 20 mg/kg of dox by intramuscular administration could have an effective bactericidal activity against H. parasuis.  相似文献   

3.
Cryptosporidium spp. and Shiga toxin‐producing Escherichia coli strains (STEC) are important causes of human illness. Incidence rates of these illnesses are high in South Dakota compared to the USA as a whole. Direct animal contact has been identified as a possible route of exposure for these illnesses. Ruminant animals may carry STEC subclinically, while young ruminants are common sources of zoonotic strains of Cryptosporidium. South Dakota patients with either STEC or cryptosporidiosis during 2012 were interviewed regarding seven categories of animal exposure: (i) petting zoo/fair attendance, (ii) animal event/rodeo attendance, (iii) feed/pet store visits, (iv) farm visits, (v) employment or residence at a farm, (vi) residence with pets and (vii) visiting other households with pets. Of the 50 STEC cases, 78.0% reported animal exposure prior to illness onset, with 23.3% having lived or worked on a farm. Farm visitors in particular had high degrees of animal contact and infrequently practiced personal protective measures. Of the 115 cryptosporidiosis cases, 87.8% reported animal exposures, with 45.6% having lived or worked on a farm and 29.0% having visited a farm prior to illness. Cases with farm exposures reported a high degree of direct animal contact and inconsistent use of personal protective measures. Cryptosporidiosis patients were significantly more likely than STEC patients to have lived or worked on a farm prior to their illness and were older on average. Patients with these illnesses had high rates of animal contact prior to illness. Animal contact on farms emerged as an important exposure route. Educational messages about personal protective measures should be directed at these individuals.  相似文献   

4.
Florfenicol, a structural analog of thiamphenicol, has broad‐spectrum antibacterial activity against gram‐negative and gram‐positive bacteria. This study was conducted to investigate the epidemiological, pharmacokinetic–pharmacodynamic cutoff, and the optimal scheme of florfenicol against Escherichia coli (E. coli) with PK‐PD integrated model in the target infectious tissue. 220 E. coli strains were selected to detect the susceptibility to florfenicol, and a virulent strain P190, whose minimum inhibitory concentration (MIC) was similar to the MIC50 (8 μg/ml), was analyzed for PD study in LB and ileum fluid. The MIC of P190 in the ileum fluid was 0.25 times lower than LB. The ratios of MBC/MIC were four both in the ileum and LB. The characteristics of time‐killing curves also coincided with the MBC determination. The recommended dosages (30 mg/kg·body weight) were orally administrated in healthy pigs, and both plasma and ileum fluid were collected for PK study. The main pharmacokinetics (PK) parameters including AUC24 hr, AUC0–∞, Tmax, T1/2, Cmax, CLb, and Ke were 49.83, 52.33 μg*h/ml, 1.32, 10.58 hr, 9.12 μg/ml, 0.50 L/hr*kg, 0.24 hr?1 and 134.45, 138.71 μg*hr/ml, 2.05, 13.01 hr, 16.57 μg/ml, 0.18 L/hr*kg, 0.14 hr?1 in the serum and ileum fluid, respectively. The optimum doses for bacteriostatic, bactericidal, and elimination activities were 29.81, 34.88, and 36.52 mg/kg for 50% target and 33.95, 39.79, and 42.55 mg/kg for 90% target, respectively. The final sensitive breakpoint was defined as 16 μg/ml. The current data presented provide the optimal regimens (39.79 mg/kg) and susceptible breakpoint (16 μg/ml) for clinical use, but these predicted data should be validated in the clinical practice.  相似文献   

5.
Population pharmacokinetic of marbofloxacin was investigated with 52 plasma concentration–time profiles obtained after intramuscular administration of Forcyl® in cattle. Animal's status, pre‐ruminant, ruminant, or dairy cow, was retained as a relevant covariate for clearance. Monte Carlo simulations were performed using a stratification by status, and 1000 virtual disposition curves were generated in each bovine subpopulation for the recommended dosage regimen of 10 mg/kg as a single injection. The probability of target attainment (PTA) of pharmacokinetic/pharmacodynamic (PK/PD) ratios associated with clinical efficacy and prevention of resistance was determined in each simulated subpopulation. The cumulative fraction of response (CFR) of animals achieving a PK/PD ratio predictive of positive clinical outcome was then calculated for the simulated dosage regimen, taking into account the minimum inhibitory concentration (MIC) distribution of Pasteurella multocida, Mannheimia haemolytica, and Histophilus somni. When considering a ratio of AUC0‐24 hr/MIC (area under the curve/minimum inhibitory concentration) greater than 125 hr, CFRs ranging from 85% to 100% against the three Pasteurellaceae in each bovine subpopulation were achieved. The PTA of the PK/PD threshold reflecting the prevention of resistances was greater than 90% up to MPC (mutant prevention concentration) values of 1 μg/ml in pre‐ruminants and ruminants and 0.5 μg/ml in dairy cows.  相似文献   

6.
Giardia contamination in the Grand River Watershed (south‐western Ontario, Canada) was monitored from 2005 to 2013 as part of FoodNet Canada. Our study objectives were to describe the temporal pattern of Giardia occurrence and determine whether water quality parameters and bacterial indicators could act as effective markers for Giardia occurrence. Water samples were collected monthly from the Grand River near a drinking water intake point (2005–2013) and also collected intermittently from other areas in the watershed during the study period. Samples were tested for Giardia cysts using the US EPA method 1623. Samples were also tested for chemical and microbial water quality indicators. Univariable and multivariable linear regression models were built to examine whether temporal, water quality and bacterial indicators were associated with Giardia cyst concentration. Giardia cysts were identified in 89% of samples (n = 228), with highest measured concentrations downstream of a waste water treatment plant outfall. Year and season were found to be predictors for Giardia occurrence. Concentrations were significantly higher in the winter and fall compared to the summer, and significantly higher in 2007 compared to other study years. After controlling for season, year and sampling location, dissolved oxygen was the only variable significantly associated with Giardia cyst concentration. Seasonal peaks in Giardia cyst concentrations in samples collected near the intake for the drinking water plant did not align with the seasonal peak in human Giardiasis cases in this region that are reported annually by public health authorities. This suggests that the risk of contracting Giardiasis from treated drinking water in this community is possibly low when the treatment plant is functioning adequately. Instead, waterborne exposure is likely the result of seasonal behaviours surrounding recreational water use. Therefore, the collective findings of our study are important to help inform future risk management studies and guide public health protection policies.  相似文献   

7.
Antimicrobial agents are used extensively off‐label in mink, as almost no agents are registered for this animal species. Pharmacokinetic (PK) and pharmacodynamic (PD) data are required to determine antimicrobial dosages specifically targeting mink bacterial pathogens. The aims of this study were to assess, in a PKPD framework, the empirical dosage regimen for a combination of trimethoprim (TMP) and sulfadiazine (SDZ) in mink, and secondarily to produce data for future setting of clinical breakpoints. TMP and SDZ PK parameters were obtained experimentally in 22 minks following IV or oral administration of TMP/SDZ (30 mg/kg, i.e. 5 mg/kg TMP and 25 mg/kg SDZ). fAUC/MIC with a target value of 24 hr was selected as the PKPD index predictive of TMP/SDZ efficacy. Using a modeling approach, PKPD cutoffs for TMP and SDZ were determined as 0.062 and 16 mg/L, respectively. By incorporating an anticipated potentiation effect of SDZ on TMP against Escherichia coli and Staphylococcus delphini, the PKPD cutoff of TMP was revised to 0.312 mg/L, which is above the tentative epidemiological cutoffs (TECOFF) for these species. The current empirical TMP/SDZ dosage regimen (30 mg/kg, PO, once daily) therefore appears adequate for treatment of wild‐type E. coli and S. delphini infections in mink.  相似文献   

8.
Increase in the number of small‐scale backyard poultry flocks in the USA has substantially increased human‐to‐live poultry contact, leading to increased public health risks of the transmission of multi‐drug resistant (MDR) zoonotic and food‐borne bacteria. The objective of this study was to detect the occurrence of Salmonella and MDR Gram‐negative bacteria (GNB) in the backyard poultry flock environment. A total of 34 backyard poultry flocks in Washington State (WA) were sampled. From each flock, one composite coop sample and three drag swabs from nest floor, waterer‐feeder, and a random site with visible faecal smearing, respectively, were collected. The samples were processed for isolation of Salmonella and other fermenting and non‐fermenting GNB under ceftiofur selection. Each isolate was identified to species level using MALDI‐TOFF and tested for resistance against 16 antibiotics belonging to eight antibiotic classes. Salmonella serovar 1,4,[5],12:i:‐ was isolated from one (3%) out of 34 flocks. Additionally, a total of 133 ceftiofur resistant (CefR) GNB including Escherichia coli (53), Acinetobacter spp. (45), Pseudomonas spp. (22), Achromobacter spp. (8), Bordetella trematum (1), Hafnia alvei (1), Ochrobactrum intermedium (1), Raoultella ornithinolytica (1), and Stenotrophomonas maltophilia (1) were isolated. Of these, 110 (82%) isolates displayed MDR. Each flock was found positive for the presence of one or more CefR GNB. Several MDR E. coli (n = 15) were identified as extended‐spectrum β‐lactamase (ESBL) positive. Carbapenem resistance was detected in non‐fermenting GNB including Acinetobacter spp. (n = 20), Pseudomonas spp. (n = 11) and Stenotrophomonas maltophila (n = 1). ESBL positive E. coli and carbapenem resistant non‐fermenting GNB are widespread in the backyard poultry flock environment in WA State. These GNB are known to cause opportunistic infections, especially in immunocompromised hosts. Better understanding of the ecology and epidemiology of these GNB in the backyard poultry flock settings is needed to identify potential risks of transmission to people in proximity.  相似文献   

9.
Shiga toxin‐producing Escherichia coli (STEC) is a zoonotic pathogen of public health concern whose sources and transmission routes are difficult to trace. Using a combined source attribution and case–control analysis, we determined the relative contributions of four putative livestock sources (cattle, small ruminants, pigs, poultry) to human STEC infections and their associated dietary, animal contact, temporal and socio‐econo‐demographic risk factors in the Netherlands in 2010/2011–2014. Dutch source data were supplemented with those from other European countries with similar STEC epidemiology. Human STEC infections were attributed to sources using both the modified Dutch model (mDM) and the modified Hald model (mHM) supplied with the same O‐serotyping data. Cattle accounted for 48.6% (mDM) and 53.1% (mHM) of the 1,183 human cases attributed, followed by small ruminants (mDM: 23.5%; mHM: 25.4%), pigs (mDM: 12.5%; mHM: 5.7%) and poultry (mDM: 2.7%; mHM: 3.1%), whereas the sources of the remaining 12.8% of cases could not be attributed. Of the top five O‐serotypes infecting humans, O157, O26, O91 and O103 were mainly attributed to cattle (61%–75%) and O146 to small ruminants (71%–77%). Significant risk factors for human STEC infection as a whole were the consumption of beef, raw/undercooked meat or cured meat/cold cuts. For cattle‐attributed STEC infections, specific risk factors were consuming raw meat spreads and beef. Consuming raw/undercooked or minced meat were risk factors for STEC infections attributed to small ruminants. For STEC infections attributed to pigs, only consuming raw/undercooked meat was significant. Consuming minced meat, raw/undercooked meat or cured meat/cold cuts were associated with poultry‐attributed STEC infections. Consuming raw vegetables was protective for all STEC infections. We concluded that domestic ruminants account for approximately three‐quarters of reported human STEC infections, whereas pigs and poultry play a minor role and that risk factors for human STEC infection vary according to the attributed source.  相似文献   

10.
The O157:H7 (EcO157) epidemiology of Shiga‐toxin‐producing Escherichia coli (STEC) in cattle is complex, and myths about pre‐harvest control are perpetuated. The objectives of this project were to identify perpetuated misinformation and inform four audiences about evidence‐based risks and pre‐harvest control of EcO157 by addressing: (i) EcO157 epidemiology and pre‐harvest control; (ii) how food safety policy is created; and (iii) how to present accurate information about EcO157. An environmental scan using a daily Internet search helped identify themes for education. A literature review of pre‐harvest control measures contributed to the development of educational materials (fact sheets, website, web presentations and conferences). Conference 1 was a webinar with 315 registrants, 10 countries including 41 US states and four Canadian provinces. Most participants felt confident in using their new knowledge, more than half felt confident enough to answer EcO157 questions from the public and many would recommend the recorded version of the webinar to colleagues. Conference 2 was live in the Washington, DC, area with most participants employed by the US government. All agreed that they better understood pre‐harvest control, how food safety policy was made, and were confident they could create an effective message about STEC pre‐harvest control. Videos were posted and received 348 Internet visitors within 2 months. Conference 3 was a webinar with a live audience and Twitter feeds, targeting people who give nutrition advice. Almost all ranked the programme good to excellent and relevant to their work. About 25% indicated that they would share: ‘grass‐fed beef is not safer than grain‐fed’, 25% would share information on effectiveness of cattle vaccines, and 14% would share information on message mapping. Across all conferences, major changes in knowledge included the following: there is no additional risk of EcO157 shedding from grain‐fed versus grass‐fed cattle, pre‐harvest vaccination is efficacious, and production systems (pasture versus confinement) do not affect EcO157 shedding rates.  相似文献   

11.
The emergence of new antibiotic‐resistant Escherichia coli pathotypes associated with human disease has led to an investigation in terms of the origins of these pathogens. According to the Centers for Disease Control and Prevention, unspecified agents are responsible for 38.4 million of the 48 million (80%) cases of foodborne illnesses each year in the United States. It is hypothesized that environmental E. coli not typically associated with the ability to cause disease in humans could potentially be responsible for some of these cases. In order for an environmental E. coli isolate to have the ability to cause foodborne illness, it must be able to utilize the same attachment and virulence mechanisms utilized by other human pathogenic E. coli. Recent research has shown that many avian pathogenic E. coli (APEC) isolated from poultry harbour attachment and virulence genes also currently found in human pathogenic E. coli isolates. Research also suggests that, in addition to the ability to cause gastrointestinal illnesses, APEC may also be an etiological agent of foodborne urinary tract infections (FUTIs). The purpose of this article was to evaluate the evidence pertaining to the ability of APEC to cause disease in humans, their potential for zoonotic transfer along with discussion on the types of illnesses that may be associated with these pathogens.  相似文献   

12.
The emergence of NDM‐producing Escherichia coli has considerably threatened human and animal health worldwide. This study describes for the first time in Egypt, the draft genome sequences of emerging NDM‐5‐producing E. coli from humans and dogs, and investigates genetic relatedness between isolates from both sources. Two E. coli from human urine and seven from environmental clinical samples of dogs exhibited resistance to carbapenems and harbouring blaNDM were subjected to Illumina Miseq whole‐genome sequencing (WGS). Assembly and analysis of the reads were performed to identify resistance genes, multilocus sequence types (MLST), plasmid replicon types (Inc) and insertion sequences (IS) of the blaNDM region; core genome MLST (cgMLST) analysis was also performed. Two different NDM alleles were identified; blaNDM‐5 in E. coli HR119 from the urine of a healthy person and environmental samples of dogs, and blaNDM‐1 in E. coli HR135 from a human patient's urine. Multiple mobilizable resistance genes to different antimicrobial classes were identified except the colistin resistance gene, mcr. E. coli isolates from humans and dogs were assigned to different sequence types (STs). Using cgMLST, dog isolates clustered together with only 1–2 allellic differences; however, human E. coli showed 1,978 different allelles compared with dog isolates. Plasmidfinder results indicated the presence of an IncX3 replicon in blaNDM‐5‐producing E. coli; however, blaNDM‐1 was linked to IncCoIKP3. Notably, the NDM region (3 Kb) in all isolates from humans and dogs was highly similar with variable flanking sequences that represented different IS elements. This study reports the first emergence of NDM‐5‐producing E. coli from dogs in Egypt that shared some genetic features with human isolates and could be considered potential public health threats.  相似文献   

13.
This study aimed at gaining information on the presence of Salmonella in UK turkey hatcheries and possible epidemiological links between breeding farms, hatcheries and finishing farms. The presence of ciprofloxacin‐resistant E. coli in hatchery samples, as well as in faecal samples from farms, and trends in occurrence of resistance were also investigated. Over a 2 year‐period, four British turkey hatcheries were visited and intensively sampled for the presence of Salmonella and ciprofloxacin‐resistant E. coli. In two hatcheries, a link could be demonstrated between the presence of certain Salmonella serovars in the hatcheries and on breeding and finishing farms. Within the hatcheries, serovars linked to breeding farms were found more frequently in the poult processing and dispatch areas, whereas serovars identified as ‘resident hatchery contaminants’ were predominantly found inside the hatcher cabinets. Ciprofloxacin‐resistant isolates of S. Senftenberg were identified in one hatchery, which coincided with enrofloxacin treatment of some of the breeding flocks. Ciprofloxacin‐resistant E. coli was found in two hatcheries, and the majority of these isolates showed multidrug resistance.  相似文献   

14.
The objective of the present study was to evaluate the effectiveness of enrofloxacin (ERFX) as a second‐line antibiotic for treatment of acute Escherichia coli (E. coli) mastitis. Forty‐two cows with naturally occurring acute E. coli mastitis were enrolled. On the first day of treatment (day 0), empirically selected antibiotics (oxytetracycline: n = 32, kanamycin: n = 10) were administered. Although systemic signs improved in 10 cows (first‐line group), the signs remained unchanged or worsened in 32 cows on day 1, including two cows that were found dead. The 30 surviving cows were randomly assigned to second‐line groups constituting an ERFX group (n = 19) or a control group (n = 11) that was treated with other antibiotics. Response to each treatment was evaluated by measuring clinical signs from day 0 to day 3, subsequent quarter milk recovery, and the 60‐day survival rate. Appetite on day 3 was significantly better in the ERFX group compared to the control group. No significant differences were observed in the 60‐day survival rate or the subsequent milk recovery between the ERFX group and the control group. Thus, the use of ERFX as a second‐line antibiotic for the treatment of acute E. coli mastitis could induce a rapid appetite recovery.  相似文献   

15.
The presence and transfer of antimicrobial resistance genes from commensal bacteria in companion animals to more pathogenic bacteria may contribute to dissemination of antimicrobial resistance. The purpose of this study was to determine antimicrobial resistance gene content and the presence of genetic elements in antimicrobial resistant Escherichia coli from healthy companion animals. In our previous study, from May to August, 2007, healthy companion animals (155 dogs and 121 cats) from three veterinary clinics in the Athens, GA, USA area were sampled and multidrug‐resistant E. coli (n = 36; MDR, resistance to ≥2 antimicrobial classes) were obtained. Of the 25 different plasmid replicon types tested by PCR, at least one plasmid replicon type was detected in 94% (34/36) of the MDR E. coli; four isolates contained as many as five different plasmid replicons. Nine replicon types (FIA, FIB, FII, I2, A/C, U, P, I1 and HI2) were identified with FIB, FII, I2 as the most common pattern. The presence of class I integrons (intI) was detected in 61% (22/36) of the isolates with eight isolates containing aminoglycoside‐ and/or trimethoprim‐resistance genes in the variable cassette region of intI. Microarray analysis of a subset of the MDR E. coli (n = 9) identified the presence of genes conferring resistance to aminoglycosides (aac, aad, aph and strA/B), β‐lactams (ampC, cmy, tem and vim), chloramphenicol (cat), sulfonamides (sulI and sulII), tetracycline [tet(A), tet(B), tet(C), tet(D) and regulator, tetR] and trimethoprim (dfrA). Antimicrobial resistance to eight antimicrobials (ampicillin, cefoxitin, ceftiofur, amoxicillin/clavulanic acid, streptomycin, gentamicin, sulfisoxazole and trimethoprim‐sulfamethoxazole) and five plasmid replicons (FIA, FIB, FII, I1 and I2) were transferred via conjugation. The presence of antimicrobial resistance genes, intI and transferable plasmid replicons indicate that E. coli from companion animals may play an important role in the dissemination of antimicrobial resistance, particularly to human hosts during contact.  相似文献   

16.
17.
Antimicrobial resistance (AMR) in the aquatic environment represents an important means of introduction and dissemination of resistance genes, and presence of resistant pathogens in surface waters may pose a public health concern to recreational and drinking water users. The purpose of this study was to explore antimicrobial resistance patterns in water samples collected from the Grand River watershed (southwestern Ontario, Canada) to describe the composition, trends and potential risks of AMR in the aquatic environment. As part of FoodNet Canada and the Canadian Integrated Program for Antimicrobial Resistance Surveillance (CIPARS), stream water samples were collected bi‐weekly from sampling sites within the Grand River watershed in the Waterloo, Ontario sentinel site and tested for the presence and antimicrobial susceptibility of Salmonella spp. (2005–2013) and generic Escherichia coli (2012–2013). Of all samples tested, 16% of Salmonella and 22% of E. coli isolates were resistant to at least one antimicrobial, including three Salmonella isolates and two E. coli isolates that were resistant to Category I antimicrobials, which are classified as very high importance for the treatment of serious bacterial infections in humans. The greatest proportion of resistant E. coli isolates were observed from the river site upstream of the drinking water intake, while the greatest proportion of resistant Salmonella isolates were from sites upstream in the watershed, and at one recreational water site. Salmonella resistance trends remained fairly stable between 2007 and 2013, with the exception of streptomycin and tetracycline which increased in 2010 and 2013. Continued surveillance of antimicrobial resistance patterns and exploration of risk factor data will allow for a better understanding of resistance transmission in the aquatic environment.  相似文献   

18.
ESBL/AmpC‐producing Escherichia coli is increasingly isolated from humans and animals worldwide. The occurrence of ESBL/AmpC‐producing E. coli was studied in food‐producing animals in Finland, a country with a low and controlled use of antimicrobials in meat production chain. A total of 648 cattle, 531 pig, 495 broiler and 35 turkey faecal samples were collected from four Finnish slaughterhouses to determine the presence of extended‐spectrum β‐lactamase (ESBL/AmpC)‐producing E. coli. In addition, 260 broiler and 15 turkey samples were screened for carbapenemase‐producing E. coli. Susceptibility to different class of cephalosporins and meropenem was determined with disc diffusion tests according to the European Committee on Antimicrobial Susceptibility Testing (EUCAST). Determination of ESBL/AmpC production was performed with a combination disc diffusion test according to the recommendations of the European Food Safety Authority (EFSA). Plasmidic blaESBL/AmpC genes were characterized by polymerase chain reaction and sequencing. A collection of isolates producing AmpC enzyme but not carrying plasmidic blaAmpC was analysed by PCR and sequencing for possible chromosomal ampC promoter area mutations. Altogether ESBL/AmpC‐producing E. coli was recovered from five cattle (0.8%), eight pig (1.5%) and 40 broiler samples (8.1%). No ESBL/AmpC‐producing E. coli was found in turkey samples. Carbapenem resistance was not detected. Altogether ESBL/AmpC‐producing E. coli was found on 4 (2.0%), 3 (4.5%) and 14 (25%) cattle, pig and broiler farms, respectively. From cattle samples 3 (27%) blaCTX‐M‐1 and from broiler samples 13 (33%) blaCTX‐M‐1 and 22 (55%) blaCMY‐2 gene‐carrying isolates were detected. In pigs, no plasmidic blaESBL/AmpC gene‐carrying isolates were found. In all analysed isolates, the same mutations in the promoter region of chromosomal ampC were detected. The results showed low occurrence of ESBL/AmpC‐producing E. coli in Finnish food‐producing animals. In pigs, plasmidic blaESBL/AmpC‐carrying E. coli was not detected at all.  相似文献   

19.
We investigated the prevalence of Hepatitis E Virus (HEV), Leptospira and Ascaris suum (A. suum) seropositivity, and of nasal methicillin‐resistant Staphylococcus aureus (MRSA) colonization among Austrian practising veterinarians, and assessed the association with occupational swine livestock exposure. The 261 participants completed a questionnaire on demographics, intensity of occupational swine livestock contact and glove use during handling animals and their secretions. Participants' blood samples were tested for HEV, Leptospira and A. suum seropositivity and nasal swabs cultured for MRSA. We compared swine veterinarians (defined as >3 swine livestock visits/week) to non‐swine veterinarians (≤3 swine livestock visits/week) with regard to the outcomes through calculating prevalence ratio (PR) and 95% confidence interval (CI). Furthermore, the relationship between occupational swine livestock contact and the study outcomes was examined by age (</≥55 years) and glove usage. The prevalence of nasal MRSA colonization was 13.4% (95% CI: 9.3–17.6), of HEV seropositivity 20.8% (95% CI: 15.8–25.7) and A. suum seropositivity 44% (95% CI: 37.7–50.2). The highest anti‐leptospiral antibodies titres were 1:200 (L. hebdomadis) and 1:100 (L. autumnalis, L. caicola) found in three non‐swine veterinarians. Compared to non‐swine veterinarians, swine veterinarians were 1.9 (95% CI: 1.0–3.4) and 1.5 (95%CI: 1.0–2.3) times more likely HEV seropositive and A. suum seropositive, respectively, and 4.8 (95%CI: 2.5; 9.3) times more likely nasally colonized with MRSA. Among glove‐using veterinarians, occupational swine contact was no longer a determinant for HEV seropositivity (PR 1.6; 95% CI: 0.8–2.9). Similar was found for A. suum seropositivity, which was no longer associated with occupational swine livestock contact in the subgroup of glove using, ≥55‐year‐old veterinarians (PR: 1.07; 95% CI: 0.4–3.3). Our findings indicate that >3 occupational swine livestock visits per week is associated with HEV and A. suum seropositivity and nasal MRSA colonization and that glove use may play a putative preventive role in acquiring HEV and A. suum. Further analytical epidemiological studies have to prove the causality of these associations.  相似文献   

20.
Shiga toxigenic Escherichia coli (STEC) are an important group of pathogens and can be transmitted to humans from direct or indirect contact with cattle faeces. This study investigated the shedding of E. coli O157 and O26 in cattle at the time of slaughter and factors associated with super‐shedding (SS) animals. Rectoanal mucosal swab (RAMS) samples were collected from cattle (n = 1,317) at three large Irish commercial beef abattoirs over an 18 month period, and metadata were collected at the time of sampling regarding farm of origin, animal age, breed and gender. RAMS swabs were examined for the presence and numbers of E. coli O157 and O26 using a previously developed quantitative real‐time PCR protocol. Samples positive by PCR were culturally examined and isolates analysed for the presence of stx subtypes, eae and phylogroup. Any samples with counts >104 CFU/swab of STEC O157 or O26 were deemed to be super‐shedders. Overall, 4.18% (55/1,317) of RAMS samples were positive for STEC O157, and 2.13% (28/1,317) were classified as STEC O157 SS. For STEC O26, 0.76% (10/1,317) of cattle were positive for STEC O26, and 0.23% (3/1,317) were classified as super‐shedders. Fewer STEC shedders and SS were noted among older animals (>37 months). There was a seasonal trend observed for STEC O157, with the highest prevalence of shedding and SS events in the autumn (August to October). The majority of E. coli O157 (50/55) isolates had stx2 and were eae positive, with no significant difference between SS and low shedders (LS). Interestingly, all STEC O26 (n = 10) were eae negative and had varied stx profiles. This study demonstrates that, while the overall shedding rates are relatively low in cattle at slaughter, among positive animals there is a high level of SS, which may pose a higher risk of cross‐contamination during slaughter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号