首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract. The purpose of the study was to determine the soil organic carbon (SOC) stock for Flanders, Belgium and to evaluate various methods for assessing SOC stock. The assessment methods first determined the SOC density (C mass per unit area) for pedons in a database of soil properties, and then spatially distributed the SOC density to soil and soil/land use categories on a map. The results showed that the pedon SOC density is influenced by drainage class, texture and land use/land cover. The SOC density estimation method significantly influences results and leads to differences of up to 6% in total estimated SOC stock for Flanders. Use of various spatial distributing methods creates differences of up to 2% in total estimated SOC stock. The largest difference in SOC stock estimate between any combination of assessment methods was 7% (125.6 Tg vs 134.9 Tg). These findings emphasize the importance of complete spatial soil databases of high quality that reduce uncertainty of estimates for use in research examining the role of soils in the C cycle. The results indicate that the need for these databases is greater than the need to standardize methods to determine the spatial distribution of SOC. A map of the distribution of SOC density shows that in Flanders a large proportion of SOC is stored in sandy soils in the north of the territory.  相似文献   

2.
重建生态系统有机碳贮量的时空变异   总被引:18,自引:0,他引:18  
In global change research, changes of soil organic carbon (SOC) reservoirs in tropical and subtropical regions are still unknown. The temporal-spatial variability of SOC stocks was determined in a basin of over 579 km2 in subtropical China from 1981 to 2002. ArcGIS8.l software was utilized for spatial analysis of semivariance, ordinary kriging (OK), and probability kriging (PK). Grid and hierarchical approaches were employed for the sampling scenario in 2002 with 106 Global Position System (GPS) established spots sampled. Bulk topsoil samples (0-30 cm) were collected at three random sites on each spot. The SOC content for 1981 came from the SOC map of the Second National Soil Survey. Geostatistical results of the nugget to sill ratio (0.215-0.640) in the rehabilitating ecosystem indicated a moderate spatial dependence for SOC on this large scale. The range of SOC changed from 2.04 km in 1981 to 7.15 km in 2002. The mean topsoil SOC increased by 4.6% from 10.63 g kg-1 (1981) to 11.12 g kg-1 (2002). However, during this 21-year period 25.2% of the total basin area experienced a decrease in SOC. Also, the probability kriging results showed that the geometric mean probabilities of SOC ≤ 6.0 g kg-1, ≤ 11.0 g kg-1 and > 15.0 g kg-1 were 0.188, 0.534 and 0.378, respectively in 2002, comparing to 0.234, 0.416 and 0.234 in that order in 1981, respectively. The SOC storage in the topsoil increased by 17.0% during this time with the main increase occurring in forests and cultivated land, which amounted to 82.5% and 17.0% of the total increase, respectively.  相似文献   

3.
This paper explores the influence of spatial scale on modelled projections of soil organic carbon (SOC) content. The effect of land use change (LUC) on future SOC stocks was estimated using the Rothamsted Carbon model for a small area of southern Belgium. The study assumed no management change and used a single climate change scenario. Three model experiments were used to identify how data scale affects predicted SOC stocks: (i) using European LUC datasets at a resolution of 10′ and assuming equal distribution of change within the study area, (ii) using more accurate regional data aggregated to the 10’ resolution, and (iii) using the regional data at a spatial resolution of 250 m. The results show that using coarse resolution (10′) data is inappropriate when modelling SOC changes in the study area as only the methods using precise data predict a change in SOC stocks similar to those reported in the literature. This is largely because of differences in model parameterisation. However, precisely locating LUC does not significantly affect the results. The model, using either pan‐European or region‐specific precise data predicts an average SOC increase of 1 t C ha?1 (1990–2050), mainly resulting from afforestation of 13% of agricultural land.  相似文献   

4.
区域土壤有机碳空间分布特征与尺度效应   总被引:1,自引:1,他引:1  
结合当前土壤属性空间分布特征及其尺度效应研究进展和不足,综合采用变异函数理论、空间自相关理论、多重分形理论等方法从土壤有机碳(soil organic carbon,SOC)空间变异性、相关性和结构性等不同层面深入揭示不同尺度下SOC空间分布特征及其尺度效应。研究结果表明:除了15 km尺度外,基于变异函数分析的其他尺度块基比均小于50%,结构性因素占主导,结构性因素主要包括土壤亚类、土地质地、土地类型等,随机部分带来的空间变异性随着尺度的增加呈现减少趋势;不同尺度下的莫兰指数随着分离距离的增加由完全正值逐渐变小,过渡到正负交替出现的格局,最后完全变为负值,标准化统计量均大于1.96,每个尺度均具有良好的空间结构;不论是瑞利谱图,还是多重分形谱,随着尺度的增加,图谱越来越接近,研究区不同尺度下的SOC在空间上的分布是典型的分维数体;无论何种尺度,基于多重分形克里格法的实测值与预测值特异值空间吻合程度较高,特异值覆盖比率均在85%以上。联合了变异函数、空间自相关、多重分形和多重分形克里格等方法能够从空间变异性、空间相关性、空间结构性等更加深入全面地揭示研究区SOC空间分布特征。研究成果可为相对平坦农业区域土壤有机碳空间分布特征研究提供方法支撑。  相似文献   

5.
通过田间长期定位试验,分层采集冬小麦-休闲种植体系0—40 cm土层的土样,研究了常规、地表覆膜和覆草栽培对土壤有机碳、无机碳和轻质有机碳的影响。结果表明,覆膜或覆草可以显著增加地上部小麦生物量和子粒产量。不同地表覆盖对0—40 cm土层的无机碳含量和分布无显著影响,但与常规栽培相比,地表覆膜使0—5 cm土层的有机碳含量显著降低,0—40 cm各土层轻质有机碳表现出明显降低趋势,平均降低 C 6.1~74.5 mg/kg;地表覆草却表现出明显增加土壤轻质有机碳的趋势,0—5,5—10,10—20 cm土层的轻质有机碳含量分别增加C 235.2、190.0和144.9 mg/kg,相当于常规的38.7%,32.9%和34.5%。同时,覆草栽培还表现出降低0—10 cm土层轻质有机质含碳量的趋势,并使0—20 cm土层轻质有机碳占有机碳的比例显著高于常规栽培和地表覆膜处理。可见,地表长期覆膜不利于旱地土壤有机碳累积,覆草不仅可以增加表层土壤的轻质有机碳累积,还可改善土壤碳氮组成。  相似文献   

6.
7.
Building up stocks of agricultural soil organic carbon (SOC) can improve soil conditions as well as contribute to climate change mitigation. As a metric, the ratio of SOC to clay offers a better predictor of soil condition than SOC alone, potentially providing a benchmark for ecosystem service payments. We determined SOC:clay ratios for 50 fields in the North Devon UNESCO World Biosphere Reserve using 30 cm soil cores (divided into 0–10 cm and 10–30 cm depth samples), with soil bulk density, soil moisture and land-use history recorded for each field. All the arable soils exceeded the minimum desirable SOC:clay ratio threshold, and the ley grassland soils generally exceeded it but were inconsistent at 10–30 cm. Land use was the primary factor driving SOC:clay ratios at 0–10 cm, with permanent pasture fields having the highest ratios followed by ley grass and then arable fields. Approximately half of the fields sampled had potential for building up SOC stock at 10–30 cm. However, at this depth, the effect of land use is significantly reduced. Within-field variability in SOC and clay was low (coefficient of variation was ~10%) at both 0–10 cm and 10–30 cm, suggesting that SOC:clay ratios precisely characterized the fields. Due to the high SOC:clay ratios found, we conclude that there is limited opportunity to market additional carbon sequestration as an asset class in the North Devon Biosphere or similar areas. Instead, preserving existing SOC stocks would be a more suitable ecosystem service payment basis.  相似文献   

8.
县域尺度红壤丘陵区水稻土有机碳模拟   总被引:6,自引:0,他引:6  
刘清  孙波  解宪丽  李忠佩 《土壤学报》2009,46(6):1059-1067
区域尺度土壤有机碳储量的时空变化及其管理是全球气候变化和农业可持续发展研究的重要内容。本文以中亚热带红壤丘陵区的江西省余江县为例,基于12a的长期试验和1998年、2001年的野外定位采样对比研究,利用反硝化分解模型?DNDC(Denitrification-Decomposition)在田块和县域尺度研究了县域尺度表层(0~20 cm)水稻土有机碳储量的时空变化规律。结果表明,以长期试验数据验证,DNDC模型可以较好地模拟水稻土表层有机碳的长期动态变化。2001年农田水稻土(面积为3.6×108m2)表层(0~20 cm)有机碳总储量为2.9×109kg,平均土壤有机碳密度为6.0 kg m-2。1998年至2001年余江县水稻土表层土壤有机碳库逐年增加,年际平均变化量为3.0×107kg。通过对余江县水稻田模拟不同碳投入的情景,分析预测1998年至2017年土壤有机碳储量,种植绿肥提高秸秆还田比率同时减少化肥的投入,可有效地增加红壤区域有机碳蓄积。  相似文献   

9.
Intensive field surveys were undertaken in two upland catchments in the UK, Plynlimon in mid-Wales and Glensaugh in North East Scotland. The survey was to examine the spatial variation across the area and to assess the accuracy of the database underpinning the soil carbon map for the UK. In each area three 1-km2 squares were sampled on a 200-m grid, with samples taken from both the organic and mineral horizons. Carbon stock was estimated, from the sample data, for each 1-km2 square and compared with values from the UK database for that square. The results showed large differences between some squares, particularly for Plynlimon. In this area, the overall discrepancy between field and database values was 45%, compared with 8% for Glensaugh. Various sources of uncertainty were examined, including bulk density, organic horizon depth, and the proportion of different soil types within a square. The value for bulk density, assumed to determine carbon stock, had a significant effect on the estimates. In both catchments the organic layer showed a gradual decrease in bulk density with depth, resulting in a large proportion of the carbon being stored in the top part of the profile. The soil types, mapped during the survey, also showed large differences from those previously identified for each 1-km2 square. This would have a considerable effect on the estimates of carbon stock within the UK database. It highlights that caution needs to be used when interpreting the UK soil map at this spatial scale.  相似文献   

10.
Land use change (LUC) is known to have a large impact on soil organic carbon (SOC) stocks. However, at a regional scale, our ability to explain SOC dynamics is limited due to the variability generated by inconsistent initial conditions between sample points, poor spatial information on previous land use/land management history and scarce SOC inventories. This study combines the resampling in 2003–2006 of an extensive soil survey in 1950–1960 with exhaustive historical data on LUC (1868–2006) to explain observed changes in the SOC stocks of temperate forest soils in the Belgian Ardennes. Results from resampling showed a significant loss of SOC between the two surveys, associated with a decrease in variability. The mean carbon content decreased from 40.4 to 34.5 g C kg?1 (10.6 to 9.6 kg C m?2), with a mean rate of C change (ΔSOC) of ?0.15 g C kg?1 year?1 (?0.023 kg C m?2 year?1). Soils with high SOC content tended to loose carbon while conversely soils with low SOC tended to gain carbon. Land use change history explained a significant part of past and current SOC stocks as well as ΔSOC during the last 50 years. We show that the use of spatially explicit historical data can help to quantitatively explain changes in SOC content at the regional scale.  相似文献   

11.
To obtain information on regional soil carbon (C) stocks, we prepared a soil C inventory for the central German State Saxony‐Anhalt. We used the State Soil Database SABO_P ( S achsen‐ A nhalt Bo den_ P rofildatenbank), which contains data from 3,600 soil profiles with 16,300 individual soil horizons and combined it with a geographic information system (GIS ArcView). Soil C stocks down to a depth of 100 cm were compiled for the three major soil regions of Saxony‐Anhalt (soil region 2: river valleys and floodplains; soil region 4: pre‐Weichselian moraines, and soil region 6: loess‐covered areas), which represent 83 % of the total state territory. The three major soil regions in Saxony‐Anhalt comprise on average 12.7 (soil region 2), 8.9 (soil region 4), and 12.8 kg C m–2 (soil region 6). Total C content of the area investigated was 191 tg. The typical soils of the region, Haplic Chernozems, contain on average 13.9 kg C m–2. With few exceptions, soil C did not vary significantly within identical taxonomic groups among different soil subregions. However, Chernozems of soil subregion 3 (Wanzlebener Löß‐Plateau; 19.8 kg C m–2) contain significantly more C than the Chernozems of soil subregions 9 (Pollebener, Gerbstedter and Lettewitzer Löß‐Plateau; 12.1 kg C m–2) and 15 (Barnstädter Löß‐Plateau 12.2 kg C m–2). The spatial distribution of C stocks in Saxony‐Anhalt was represented in a map which suggests the existence of a strong link between the geomorphologic position of a given soil and its capacity to store organic C. Within the same taxonomic unit, finer textured soils stored more carbon than coarse‐textured ones.  相似文献   

12.
This paper reports spatial and temporal changes at the regional level in soil organic carbon (SOC) using a soil-test database. A total of 23 329 SOC test values recorded between 1990 and 2004 by certified commercial laboratories and collected in a mountainous French region (Franche-Comté) were integrated in a database. Results show a strong trend in organic carbon content, mainly related to elevation. A large loss in SOC was observed over the survey period. This loss correlated with baseline SOC content with greater loss from soils with higher carbon content. This loss is likely to be due to both changes in land use from permanent grassland to cultivation and to an increase in temperature during the survey period. Our study demonstrates that past soil-test results which were not originally intended for monitoring can provide an alternative method for detecting changes in SOC.  相似文献   

13.
14.
有机物料碳和土壤有机碳对水稻土甲烷排放的影响   总被引:2,自引:0,他引:2       下载免费PDF全文
基于30年水稻土长期施肥定位试验,在保证原有定位试验正常开展的前提下,将部分化肥处理变更为有机肥处理(或反之),通过观测一年水稻轮作周期内不同处理甲烷(CH_4)排放通量季节性变化,探讨不同肥力水稻土中外源有机碳及土壤有机碳含量对田间CH_4排放的影响。结果表明:施化肥处理和有机肥处理,水稻土全年CH_4累积排放量范围分别为1.73~4.72和35.09~86.60 g·m~(-2)。有机肥处理改施化肥后,田间土壤CH_4的排放量显著降低;化肥处理改施有机肥或有机肥处理增施有机肥后,田间土壤CH_4的排放量显著提高。外源有机碳的输入量是田间土壤CH_4年排放量的决定性因素,外源有机碳输入量(x)与水稻土CH_4年累积排放量(y)之间满足直线方程:y=0.087 7 x+3.265 7(R~2=0.965 9,n=21)。土壤有机碳同样也是影响稻田CH_4排放的因素,在不同有机碳水平的水稻土上施用等量相同化肥或有机肥,土壤有机碳含量高的水稻土都更有利于CH_4的产生。单施化肥稻田土壤CH_4排放的最主要碳源是土壤有机碳,有机碳含量(x)和水稻土CH_4年累积排放量(y)之间的指数方程:y=0.162 4 e~(0.162 2 x)(R~2=0.940 6,n=9)。有机肥可促进土壤有机碳分解释放CH_4,土壤有机碳含量相同的条件下,高量有机肥比常量有机肥的土壤有机碳分解比率高0.65%,等量相同有机肥但土壤有机碳含量不同的条件下,土壤有机碳分解比率无显著差异;同样,土壤有机碳也可促进有机物料碳分解释放CH_4,在常量有机肥或高量有机肥处理中,土壤有机碳含量高者比低者的有机物料碳分解比率分别多出3.57%和2.34%。  相似文献   

15.
皖北平原蒙城县农田土壤有机碳空间变异及影响因素   总被引:8,自引:0,他引:8  
以皖北平原典型农业生产大县亳州市蒙城县为代表,运用统计学、地统计学方法和GIS技术研究了其农田耕作层(0~20 cm)土壤有机碳(SOC)含量的空间分布及其影响因子。结果表明:研究区SOC含量为10.41±2.52 g kg-1,近30年来提高了55.61%,SOC变异系数为24%,属于中等变异程度。SOC含量在空间分布上表现为东北部、中部和西南部含量高,由西北向东南先逐渐增加后逐渐降低,变异程度较高。整个县域范围内SOC空间变异的主要影响因素为土壤机械组成(粉粒和砂粒含量),其次为秸秆还田。  相似文献   

16.
17.
为了研究山东省不同植被类型森林土壤有机碳及其组分分布特征,选取山东省黑松林、柏木林、针阔混交林3种植被类型下的森林土壤为研究对象,比较分析不同土层(0-20cm、20-40cm)的土壤有机碳(SOC)、可溶性有机碳(DOC)、易氧化有机碳(EOC)和颗粒有机碳(POC)的含量变化。结果表明:(1)0-40cm土层黑松林、柏木林和针阔混交林的SOC含量变化依次为4.35-15.04 g·kg-1、5.72-34.87 g·kg-1和3.71-10.72 g·kg-1,各土层中柏木林的SOC含量最高;(2)土壤有机碳及其组分在不同植被类型下存在一定差异,SOC和POC含量表现为柏木林>针阔混交林、黑松林,DOC含量在上、下土层间表现为柏木林>针阔混交林>黑松林,EOC含量表现为针阔混交林>柏木林、黑松林;(3)除黑松林的DOC和EOC外,其余各植被类型的SOC、EOC、EOC、POC含量均表现为随着土层深度的增加而减少;(4)SOC与POC存在极显著正相关关系(P<0.01),其余各碳组分之间关系不显著,冗余分析表明土壤碳组分受土壤理化因子影响较大,全氮对土壤碳组分的影响极显著(P<0.01),速效钾、全钾和pH对土壤碳组分的影响显著(P<0.05)。黑松林、柏木林、针阔混交林土壤的有机碳及其活性组分之间存在差异性,总体上柏木林的有机碳含量最高,说明SOC及其组分受到植被类型和土层深度的影响。  相似文献   

18.
19.
ABSTRACT

Studying changes in soil organic carbon (SOC) pools and soil microbial C substrate utilization under plastic mulching in different seasons is of great significance for improving soil fertility and sustainable agricultural development. Based on a 2-year plastic film mulching experiment in northeastern China, we investigated the SOC, labile SOC fractions under three treatments: non-mulching (NM), autumn mulching (AM) and spring mulching (SM). The results showed that SOC decreased with soil depth under the AM and SM treatments compared with the NM treatment. The microbial biomass carbon (MBC) and dissolved organic carbon (DOC) under the AM treatment increased significantly in the 0–10 cm soil layer, by 31.2% and 27.2% (p < 0.05), respectively. The AM treatment significantly increased the utilization of amino acids and carbohydrate C sources. Redundancy analysis (RDA) indicated that MBC was the main factor influencing microbial metabolic functional diversity and accounted for the largest variation in the 0–10 cm layer. Pearson’s correlation analysis illustrated that MBC was strongly correlated with the utilization of the microbial C substrate. We suggest that AM may be an effective and sustainable management practice for improving soil quality and maintaining microbial functional diversity in semi-arid agroecosystems in this area.  相似文献   

20.
滩涂土壤有机碳空间分布与围垦年限相关性分析   总被引:3,自引:3,他引:3  
中国具有治理和修复潜力的滨海滩涂盐土面积约为2000hm2。滨海滩涂盐土作为新成土壤,土体发育不明显、理化性状差、肥力水平低下。该文通过对东台境内表层土壤有机碳的采样分析,在ArcGIS地理信息系统及SPSS16.0系统平台上,利用地统计分析模块中的克里格法分析东台市表层土壤有机碳的空间变异规律,并分析不同滩涂围垦年限下表层土壤有机碳、总氮、pH值、EC1:5的变化特征及其相关关系,结果显示滨海表层土壤有机碳含量与总氮、围垦年限呈极显著正相关,相关系数r分别为0.959和0.749,与pH值、电导率EC1:5呈极显著负相关,相关系数r分别为-0.478和-0.649。围垦3a以上表层土壤有机碳可增加0.24%左右,总氮质量分数增加0.02%左右;围垦时间大于52a,有机碳质量分数自0.1%增加到1.6%,全氮质量分数自0.03%增加到0.12%,养分等级也相应从6级增加到3级。该文研究表明,滨海盐土随着围垦年限的增长,土壤碳储量与总氮含量随之增加、pH值与EC1:5随之降低,耕地质量也相应提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号