首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Limited pharmacokinetic information to establish suitable therapeutic plans is available for green sea turtles. Therefore, the present study was conducted to evaluate the pharmacokinetic characteristics of marbofloxacin (MBF) in the green sea turtle, Chelonia mydas, following single intravenous (i.v.) or intramuscular (i.m.) administration at two dosages of 2 and 4 mg/kg body weight (b.w.). Blood samples were collected at assigned times up to 168 hr. MBF in plasma was extracted using liquid–liquid extraction and analyzed by a validated high-performance liquid chromatography (HPLC). MBF was quantifiable from 15 min to 96 hr after i.v. and i.m. administrations at two dose rates. A noncompartmental model was used to fit the plasma concentration of MBF versus time curve for each green sea turtle. The t1/2λz value, similar for both the dosages (22–28 hr), indicated that the overall rate of elimination of MBF in green sea turtles is relatively slow. The average i.m. F% ranged 88%–103%. MBF is a concentration-dependent drug and the AUC/MIC ratio is the best PK/PD predictor for its efficacy. The MBF dosage of 4 mg/kg appeared to produce an appropriate value of the PK-PD surrogate that predicts antibacterial success for disease caused by susceptible bacteria. In contrast, i.m. administration of MBF at a dosage of 2 mg/kg b.w. was not found to produce a suitable PK-PD surrogate index. However, further studies of multiple doses and plasma binding proteins are warranted to confirm an appropriate dosage regimen.  相似文献   

2.
The present study aimed to evaluate the pharmacokinetic features of tolfenamic acid (TA) in green sea turtles, Chelonia mydas. Green sea turtles were administered single either intravenous (i.v.) or intramuscular (i.m.) injection of TA, at a dose of 4 mg/kg body weight (b.w.). Blood samples were collected at preassigned times up to 168 hr. The plasma concentrations of TA were measured using a validated liquid chromatography tandem mass spectrometry method. Tolfenamic acid plasma concentrations were quantifiable for up to 168 hr after i.v. and i.m. administration. The concentration of TA in the experimental green sea turtles with respect to time was pharmacokinetically analyzed using a noncompartment model. The Cmax values of TA were 55.01 ± 8.34 µg/ml following i.m. administration. The elimination half-life values were 32.76 ± 4.68 hr and 53.69 ± 3.38 hr after i.v. and i.m. administration, respectively. The absolute i.m. bioavailability was 72.02 ± 10.23%, and the average binding percentage of TA to plasma protein was 19.43 ± 6.75%. Based on the pharmacokinetic data, the i.m. administration of TA at a dosage of 4 mg/kg b.w. might be sufficient to produce a long-lasting anti-inflammatory effect (7 days) for green sea turtles. However, further studies are needed to determine the clinical efficacy of TA for treatment of inflammatory disease after single and multiple dosages.  相似文献   

3.
One of the major obstacles to the successful treatment of infectious disease in freshwater crocodile species is incorrect dosing of antibiotics. There are few reports on pharmacokinetics and dosage regimens of antimicrobial drugs in crocodiles. The purpose of the present study was to clarify the pharmacokinetic characteristics of ceftriaxone (CEF) in Siamese freshwater crocodiles (Crocodylus siamensis). Freshwater crocodiles, Crocodylus siamensis, in breeding farms were treated with a single intramuscular administration of CEF at two dosages, 12.5 and 25 mg/kg body weight (b.w.). Blood samples were collected at preassigned times up to 168 hr. The plasma concentrations of CEF were measured by a validated method through liquid chromatography tandem-mass spectrometry. CEF plasma concentrations were quantified up to 72 and 96 hr after low- and high-dose administration, respectively. The Cmax values of CEF were 24.61 ± 5.15 µg/ml and 26.39 ± 2.81 µg/ml at dosages of 12.5 and 25 mg/kg b.w., respectively. The AUClast values increased in a dose-dependent fashion. The half-life values were not statistically different between the groups (around 20 hr). The average binding percentage of CEF to plasma protein was 53.78 ± 2.11%. Based on the pharmacokinetic data, susceptibility break-point and the surrogate PK-PD index (T > MIC, 0.2 μg/ml), i.m. administration of CEF at a dose of 12.5 mg/kg b.w. might be appropriate for initiating treatment of susceptible bacterial infections in freshwater crocodiles.  相似文献   

4.
5.
There are limited techniques available to assess the health of sea turtles as physical examination has little correlation to clinical findings, and blood reference intervals are broad and provide limited prognostic significance. Advances in the portability of ultrasound machines allow echocardiography to be increasingly used in the health assessments of wild animals. This study performed blood analysis and echocardiograms on 11 green sea turtles upon admission to a rehabilitation clinic and six animals before release. Significant differences were seen between groups, with admission animals having significantly smaller diameters of the cavum arteriosum at systole and diastole, smaller E‐waves and an increased fractional shortening. Pre‐release animals displayed significant increases in the maximum blood velocities of both the pulmonary artery and the left aorta. Significant negative correlations were seen between fractional shortening and uric acid and between the velocity time integral of the pulmonary artery and urea. The pulmonary artery velocity time integral was also significantly correlated to the E wave. Furthermore, there was asynchrony between the cavum arteriosum and the cavum pulmonale and the detection of a parasitic granuloma in the ventricular outflow tract of one animal. Overall, the results suggest that cardiac function in stranded green sea turtles is significantly impaired and that echocardiography has applications in the health assessments of green sea turtles.  相似文献   

6.
The aim of this research had been to determine the pharmacokinetics of tigecycline (TIG) in turkey after intravenous (i.v.), intramuscular (i.m.), subcutaneous (s.c.), and oral (p.o.) administration at a dose of 10 mg/kg. TIG concentrations in plasma were determined using high‐performance liquid chromatography with tandem mass spectrometry. Mean concentrations of TIG in turkey plasma in the i.v. group were significantly higher than concentrations of this drug obtained after using the other administration routes. No significant differences were demonstrated in respect to the concentrations achieved after i.m. and s.c. administration. The bioavailability of TIG after i.m., s.c., and p.o. administration was 32.59 ± 5.99%, 34.91 ± 9.62%, and 0.97 ± 0.57%, respectively. Values of half‐life in the elimination phase were 23.49 ± 6.51 hr, 25.42 ± 4.42 hr, and 26.62 ± 5.19 hr in i.v., i.m., and s.c. groups, respectively, values of mean residence time were 7.92 ± 1.41 hr, 19.62 ± 2.82 hr, and 17.55 ± 2.59 hr in i.v., i.m., and s.c. groups, respectively, whereas the volume of distribution was 14.85 ± 5.71 L/kg, 14.68 ± 2.56 L/kg, and 15.37 ± 3.00 L/kg in i.v., i.m., and s.c. groups, respectively. Because TIG is not absorbed from the gastrointestinal tract in turkeys to a clinically significant degree, this drug given p.o. could find application in commercial turkey farms only to treat gastrointestinal tract infections.  相似文献   

7.
OBJECTIVES: The aim of this work was to examine the pharmacokinetics of diclofenac (DCLF) in sheep after intravenous (IV) and intramuscular (IM) dosing. ANIMALS: Healthy male Najdi sheep. MATERIALS AND METHODS: Diclofenac (1 mg kg(-1)) was administered to ten clinically healthy-male Najdi sheep IV or IM (n = 5 each). Blood samples (5 mL) were collected and serum was separated for drug analysis by high-performance liquid chromatography with UV detection. Diclofenac pharmacokinetic parameters were determined by noncompartmental analysis. RESULTS: Diclofenac is quickly eliminated from sheep with a terminal T(1/2lambda) of 2-3 hours for both routes of administration. Total DCLF clearance after IV and IM administration was 87.86 +/- 24.10 and 85.69 +/- 40.76 mL kg(-1) hour(-1) respectively. The absolute bioavailability of IM DCLF appears to be approximately 100%. CONCLUSIONS AND CLINICAL RELEVANCE: The drug should be administered two to three times daily in sheep by IM or IV injection to maintain therapeutic concentrations. Additional studies are needed to evaluate the route of elimination of DCLF in sheep including metabolites formation and the significance of enterohepatic circulation.  相似文献   

8.
To the best of the authors’ knowledge, pharmacokinetic information to establish suitable therapeutic plans for freshwater crocodiles is limited. Therefore, the purpose of this study was to clarify the pharmacokinetic characteristics of enrofloxacin (ENR) in freshwater crocodiles, Crocodylus siamensis, following single intravenous and intramuscular administration at a dosage of 5 mg/kg body weight (b.w.). Blood samples were collected at assigned times up to 168 hr. The plasma concentrations of ENR and its metabolite ciprofloxacin (CIP) were measured by liquid chromatography tandem–mass spectrometry. The concentrations of ENR and CIP in the plasma were quantified up to 144 hr after both the administrations. The half-life was long (43–44 hr) and similar after both administrations. The absolute i.m. bioavailability was 82.65% and the binding percentage of ENR to plasma protein ranged from 9% to 18% with an average of 10.6%. Percentage of CIP (plasma concentrations) was 15.9% and 19.9% after i.v. and i.m. administration, respectively. Based on the pharmacokinetic data, susceptibility break point and PK-PD indexes, i.m. single administration of ENR at a dosage of 5 mg/kg b.w. might be appropriate for treatment of susceptible bacteria (MIC > 1 μg/mL) in freshwater crocodiles, C. siamensis.  相似文献   

9.
To the best of our knowledge, limited pharmacokinetic information to establish suitable therapeutic plans is available for Hawksbill turtles. Therefore, the present study aimed to assess the pharmacokinetic features of tolfenamic acid (TA) in Hawksbill turtles, Eretmochelys imbricata, after single intravenous (i.v.) and intramuscular (i.m.) administration at dosage 4 mg/kg body weight (b.w.). The study (parallel design) used 10 Hawksbill turtles randomly divided into equal groups. Blood samples were collected at assigned times up to 144 hr. The concentrations of TA in plasma were quantified by a validated liquid chromatography tandem mass spectrometry (LC-ESI-MS/MS). The concentration of TA in the experimental turtles with respect to time was pharmacokinetically analyzed using a noncompartment model. The Cmax values of TA were 89.33 ± 6.99 µg/ml following i.m. administration. The elimination half-life values were 38.92 ± 6.31 hr and 41.09 ± 9.32 hr after i.v. and i.m. administration, respectively. The absolute i.m. bioavailability was 94.46%, and the average binding percentage of TA to plasma protein was 31.39%. TA demonstrated a long half-life and high bioavailability following i.m. administration. Therefore, the i.m. administration is recommended for use in clinical practice because it is both easier to perform and provides similar plasma concentrations to the i.v. administration. However, further studies are needed to determine the clinical efficacy of TA for treatment of inflammatory disease after single and multiple dosages.  相似文献   

10.
11.
Reasons for performing study: Detomidine is commonly used i.v. for sedation and analgesia in horses, but the pharmacokinetics and metabolism of this drug have not been well described. Objectives: To describe the pharmacokinetics of detomidine and its metabolites, 3‐hydroxy‐detomidine (OH‐detomidine) and detomidine 3‐carboxylic acid (COOH‐detomidine), after i.v. and i.m. administration of a single dose to horses. Methods: Eight horses were used in a balanced crossover design study. In Phase 1, 4 horses received a single dose of i.v. detomidine, administered 30 μg/kg bwt and 4 a single dose i.m. 30 üg/kg bwt. In Phase 2, treatments were reversed. Plasma detomidine, OH‐detomidine and COOH‐detomidine were measured at predetermined time points using liquid chromatography‐mass spectrometry. Results: Following i.v. administration, detomidine was distributed rapidly and eliminated with a half‐life (t1/2(el)) of approximately 30 min. Following i.m. administration, detomidine was distributed and eliminated with t1/2(el) of approximately one hour. Following, i.v. administration, detomidine clearance had a mean, median and range of 12.41, 11.66 and 10.10–18.37 ml/min/kg bwt, respectively. Detomidine had a volume of distribution with the mean, median and range for i.v. administration of 470, 478 and 215–687 ml/kg bwt, respectively. OH‐detomidine was detected sooner than COOH‐detomidine; however, COOH‐detomidine had a much greater area under the curve. Conclusions and potential relevance: These pharmacokinetic parameters provide information necessary for determination of peak plasma concentrations and clearance of detomidine in mature horses. The results suggest that, when a longer duration of plasma concentration is warranted, the i.m. route should be considered.  相似文献   

12.
The purpose of this study was to determine the pharmacokinetics of baicalin after intravenous and intramuscular administration of sodium baicalin at 50 mg/kg to piglets. Plasma baicalin levels were determined by high‐performance liquid chromatography. The plasma concentration–time data of baicalin for both administration routes were best described by two‐compartmental open model. The area under the plasma concentration–time curve and the elimination half‐lives were 77.47 ± 6.14 µg/ml × h and 1.73 ± 0.16 hr for intravenous and 64.85 ± 5.67 µg/ml × h and 2.42 ± 0.15 hr for intramuscular administration, respectively. The apparent volume of distribution and body clearance were 1.63 ± 0.23 L/kg and 2.74 ± 0.30 L h?1 kg?1 for intravenous and 0.51 ± 0.10 L/kg and 0.78 ± 0.08 L h?1 kg?1 for intramuscular routes, respectively. An intramuscular injection of sodium baicalin in piglets resulted in rapid and complete absorption, with a mean maximal plasma concentration of 77.28 ± 7.40 µg/ml at 0.17 hr and a high absolute bioavailability of 83.73 ± 5.53%.  相似文献   

13.
Objective To determine the prevalence and manifestations of fibropapillomatosis in green turtles in Indonesia, to identify any relationship between fibropapillomatosis and concurrent parasitic infection, to ascertain the effect of fibropapil-lomatosis on health, and to examine whether environment might have an effect on the prevalence of fibropapillomatosis.
Procedure 4407 green turtles ( Chelonia mydas ) and 401 hawksbill turtles ( Eretmochelys imbricata ) were examined. The occurrence of fibropapillomatosis was correlated with sex, maturity, curved carapace length, body weight/curved carapace length ratio, the number and distribution of tumours on the skin, parasite burdens, some haematological variables and the region of capture.
Results Fibropapillomatosis was seen only in green turtles, and the overall prevalence in these was 21.5%. This prevalence increased with the curved carapace length up to 85 cm. The average number of tumours per affected turtle was 5 SD 4.1 (range, 1 to 29), and was negatively correlated with the body weight/curved carapace length ratio (rs = -0.8; P = 0.001). The red blood cell count in turtles with fibropapilloma was lower than in non-fibropapilloma turtles captured and examined at the same time (P = 0.001). The prevalence of fibropapilloma in turtles captured near densely populated, industrial regions (26.3%) was greater than in turtles from sparsely populated areas (17.7%).
Conclusion Fibropapillomatosis in green sea turtles in Indonesia is of moderate occurrence; young mature turtles (curved carapace length = 85 cm) are most frequently affected. Fibropapilloma adversely affects health of turtles. Fluke infestation seems not to be a causal factor, but viral infection, perhaps with concurrent stress of environmental origin, seems likely.  相似文献   

14.
The coccidian protozoan, Caryospora cheloniae, has been associated with severe enteritis and encephalitis in immature farm-raised green turtles (Chelonia mydas) in the Cayman Islands, immature green turtles off the coast of Florida, and immature stranded sea turtles in Australia. An effective anti-coccidial drug that is both orally absorbed and well-distributed throughout the body is needed for treatment of turtles diagnosed with coccidiosis in rehabilitation facilities. Ponazuril is a triazine antiprotozoal drug that is approved in the USA for the treatment of another Apicomplexan, Sarcocystis neurona, and has also been successfully used in the therapy of other coccidian parasites. The objective of this study was to perform an oral dose-ranging pilot study (10–100 mg/kg of body weight ponazuril) in green turtles (N = 9), followed by oral administration of ponazuril at 100 mg/kg body weight (N = 8) to assess its disposition. Another goal of this study was to optimize the method of oral drug administration to green turtles. Plasma ponazuril concentrations were quantified using high performance liquid chromatography (HPLC). Standard compartmental models were fit to the data. Ponazuril was absorbed after oral administration at 100 mg/kg BW, with a maximum plasma concentration of 3.3 µg/ml. Dose-dependent pharmacokinetic parameters only weakly correlated with the dose rate, apparently due to considerable pharmacokinetic variability observed between turtles. Administration of ponazuril in gelatin capsules using a balling gun was deemed the least variable and most successful method of drug administration. Further studies are needed to evaluate the safety and efficacy of ponazuril in sea turtles with coccidiosis.  相似文献   

15.
Five lactating cows were given benzydamine hydrochloride by rapid intravenous (0.45 mg/kg) and by intramuscular (0.45 and 1.2 mg/kg) injection in a crossover design. The bioavailability, pharmacokinetic parameters and excretion in milk of benzydamine were evaluated. After intravenous administration, the disposition kinetics of benzydamine was best described using a two-compartment open model. Drug disposition and elimination were fast (t 1/2: 11.13±3.76 min;t 1/2: 71.98±24.75 min; MRT 70.69±11.97 min). Benzydamine was widely distributed in the body fluids and tissues (V d(area): 3.549±1.301 L/kg) and characterized by a high value for body clearance (33.00±5.54 ml/kg per min). After intramuscular administration the serum concentration-time curves fitted a one-compartment open model. Following a dose of 0.45 mg/kg, theC max value was 38.13±4.2 ng/ml at at max of 67.13±4.00 min; MAT and MRT were 207.33±22.64 min and 278.01±12.22 min, respectively. Benzydamine bioavailability was very high (92.07%±7.08%). An increased intramuscular dose (1.2 mg/kg) resulted in longer serum persistence (MRT 420.34±86.39 min) of the drug, which was also detectable in milk samples collected from both the first and second milking after treatment.Abbreviations HPLC high-pressure liquid chromatography - IC50 concentration to inhibit the activity of an organism by 50% - IM intramuscular(ly) - IV intravenous(ly) - NSAID non-steroidal antiinflammatory drugs - pK a negative logarithm of the ionization constant (K a) of a drug; other abbreviations are listed in footnotes to tables  相似文献   

16.
Objective To investigate causes of ill health and mortality in juvenile wild green sea turtles ( Chelonia mydas ) found along the mid-north west coast of Western Australia between June and October of 1997.
Procedure Department of Conservation and Land Management rangers submitted four dead or dying green sea turtles from separate incidents for veterinary examination, necropsy, and bacteriological, parasitological and histopatho-logical examination.
Results Numerous different species of trematodes belonging to the families Pronocephalidae, Microscaphidiidae and Paramphistomidae were detected in the intestines of two turtles examined, and in all turtles there was severe spirorchid fluke infection including Haemoxenicon sp, Amphiorchis sp and Hapalotrema sp. Histopathological examination demonstrated severe multifocal to diffuse granulomatous vasculitis, aggregations of spirorchid fluke eggs and microabscesses throughout various tissues including intestines, kidney, liver, lung and brain. Cultures and or histopathological examination demonstrated disseminated Gram-negative bacterial infections including salmonella, E coli , Citrobacter freundii and Moraxella sp.
Conclusion Infections caused by salmonellae, E coli and other Gram-negative bacteria should be considered as causes of systemic illness and death in wild green sea turtles infected with spirorchid cardiovascular flukes and other internal parasites.  相似文献   

17.
The aim of the present study was to elucidate the pharmacokinetic profiles of amoxicillin trihydrate (AMX) in Siamese freshwater crocodiles (Crocodylus siamensis). Crocodiles were administered a single intramuscular injection of AMX, at a dose of either 5 or 10 mg/kg body weight (b.w.). Blood samples were collected at preassigned times up to 120 hr. The plasma concentrations of AMX were measured using a validated liquid chromatography tandem-mass spectrometry method. AMX plasma concentrations were quantifiable for up to 72 hr (5 mg/kg b.w.) and 96 hr (10 mg/kg b.w.). The elimination half-life (t1/2λz) of AMX following dosing at 5 mg/kg b.w. (8.72 ± 0.61 hr) was almost identical to that following administration at 10 mg/kg b.w (8.98 ± 1.13 hr). The maximum concentration and area under the curve from zero to the last values of AMX increased in a dose-dependent fashion. The average binding percentage of AMX to plasma protein was 21.24%. Based on the pharmacokinetic data, susceptibility break point, and the surrogate PK-PD index (T > MIC, 0.25 μg/ml), intramuscular administration of AMX at dose of 5 mg/kg b.w. every 4 days might be appropriate for the treatment of susceptible bacterial infections in freshwater crocodiles.  相似文献   

18.
The pharmacokinetics and bioavailability of levamisole were determined in red‐eared slider turtles after single intravenous (IV), intramuscular (IM), and subcutaneous (SC) administration. Nine turtles received levamisole (10 mg/kg) by each route in a three‐way crossover design with a washout period of 30 days. Blood samples were collected at time 0 (pretreatment), and at 0.25, 0.5, 1, 1.5, 3, 6, 9, 12, 18, 24, 36, and 48 hr after drug administration. Plasma levamisole concentrations were determined by a high‐performance liquid chromatography assay. Data were analyzed by noncompartmental methods. The mean elimination half‐life was 5.00, 7.88, and 9.43 hr for IV, IM, and SC routes, respectively. The total clearance and volume of distribution at steady state for the IV route were 0.14 L hr?1 kg?1 and 0.81 L/kg, respectively. For the IM and SC routes, the peak plasma concentration was 9.63 and 10.51 μg/ml, respectively, with 0.5 hr of Tmax. The bioavailability was 93.03 and 115.25% for the IM and SC routes, respectively. The IM and SC route of levamisole, which showed the high bioavailability and long t1/2?z, can be recommended as an effective way for treating nematodes in turtles.  相似文献   

19.
The purpose of this study was to evaluate the pharmacokinetics of cefquinome (CFQ ) following single intravenous (IV ) or intramuscular (IM ) injections of 2 mg/kg body weight in red‐eared slider turtles. Plasma concentrations of CFQ were determined by high‐performance liquid chromatography and analyzed using noncompartmental methods. The pharmacokinetic parameters following IV injection were as follows: elimination half‐life (t 1/2λz) 21.73 ± 4.95 hr, volume of distribution at steady‐state (V dss) 0.37 ± 0.11 L/kg, area under the plasma concentration–time curve (AUC 0–∞) 163 ± 32 μg hr?1 ml?1, and total body clearance (ClT) 12.66 ± 2.51 ml hr?1 kg?1. The pharmacokinetic parameters after IM injection were as follows: peak plasma concentration (C max) 3.94 ± 0.84 μg/ml, time to peak concentration (T max) 3 hr, t 1/2λz 26.90 ± 4.33 hr, and AUC 0–∞ 145 ± 48 μg hr?1 ml?1. The bioavailability after IM injection was 88%. Data suggest that CFQ has a favorable pharmacokinetic profile with a long half‐life and a high bioavailability in red‐eared slider turtles. Further studies are needed to establish a multiple dosage regimen and evaluate clinical efficacy.  相似文献   

20.
The objective of this study was to determine the pharmacokinetics of tildipirosin in rabbits after a single intravenous (i.v.) and intramuscular (i.m.) injection at a dose of 4 mg/kg. Twelve white New Zealand rabbits were assigned to a randomized, parallel trial design. Blood samples were collected prior to administration and up to 14 days postadministration. Plasma concentrations of tildipirosin were quantified using a validated ultra-high-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method. The pharmacokinetic parameters were calculated using a noncompartmental model in WinNonlin 5.2 software. Following i.v. and i.m. administration, the elimination half-life (T1/2λ) was 81.17 ± 9.28 and 96.68 ± 15.37 hr, respectively, and the mean residence time (MRTlast) was 65.44 ± 10.89 and 67.06 ± 10.49 hr, respectively. After i.v. injection, the plasma clearance rate (Cl) and volume of distribution at steady state (Vdss) were 0.28 ± 0.10 L kg-1 h−1 and 17.78 ± 5.15 L/kg, respectively. The maximum plasma concentration (Cmax) and time to reach maximum plasma concentration (Tmax) after i.m. administration were 836.2 ± 117.9 ng/ml and 0.33 ± 0.17 hr, respectively. The absolute bioavailability of i.m. administration was 105.4%. Tildipirosin shows favorable pharmacokinetic characteristics in rabbits, with fast absorption, extensive distribution, and high bioavailability. These findings suggest that tildipirosin might be a potential drug for the prevention and treatment of respiratory diseases in rabbits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号