首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The neurokinin‐1 (NK) receptor antagonist, maropitant citrate, mitigates nausea and vomiting in dogs and cats. Nausea is poorly understood and likely under‐recognized in horses. Use of NK‐1 receptor antagonists in horses has not been reported. The purpose of this study was to determine the pharmacokinetic profile of maropitant in seven adult horses after single intravenous (IV; 1 mg/kg) and intragastric (IG; 2 mg/kg) doses. A randomized, crossover design was performed. Serial blood samples were collected after dosing; maropitant concentrations were measured using LC‐MS/MS. Pharmacokinetic parameters were determined using noncompartmental analysis. The mean plasma maropitant concentration 3 min after IV administration was 800 ± 140 ng/ml, elimination half‐life was 10.37 ± 2.07 h, and volume of distribution was 6.54 ± 1.84 L/kg. The maximum concentration following IG administration was 80 ± 40 ng/ml, and elimination half‐life was 9.64 ± 1.27 hr. Oral bioavailability was variable at 13.3 ± 5.3%. Maropitant concentrations achieved after IG administration were comparable to those in small animals. Concentrations after IV administration were lower than in dogs and cats. Elimination half‐life was longer than in dogs and shorter than in cats. This study is the basis for further investigations into using maropitant in horses.  相似文献   

2.
The objective of this study was to compare the pharmacokinetics of minocycline in foals vs. adult horses. Minocycline was administered to six healthy 6‐ to 9‐week‐old foals and six adult horses at a dose of 4 mg/kg intragastrically (IG) and 2 mg/kg intravenously (i.v.) in a cross‐over design. Five additional oral doses were administered at 12‐h intervals in foals. A microbiologic assay was used to measure minocycline concentration in plasma, urine, synovial fluid, and cerebrospinal fluid (CSF). Liquid chromatography–tandem mass spectrometry was used to measure minocycline concentrations in pulmonary epithelial lining fluid (PELF) and bronchoalveolar (BAL) cells. After i.v. administration to foals, minocycline had a mean (±SD) elimination half‐life of 8.5 ± 2.1 h, a systemic clearance of 113.3 ± 26.1 mL/h/kg, and an apparent volume of distribution of 1.24 ± 0.19 L/kg. Pharmacokinetic variables determined after i.v. administration to adult horses were not significantly different from those determined in foals. Bioavailability was significantly higher in foals (57.8 ± 19.3%) than in adult horses (32.0 ± 18.0%). Minocycline concentrations in PELF were higher than in other body fluids. Oral minocycline dosed at 4 mg/kg every 12 h might be adequate for the treatment of susceptible bacterial infections in foals.  相似文献   

3.
Procaterol (PCR) is a beta‐2‐adrenergic bronchodilator widely used in Japanese racehorses for treating lower respiratory disease. The pharmacokinetics of PCR following single intravenous (0.5 μg/kg) and oral (2.0 μg/kg) administrations were investigated in six thoroughbred horses. Plasma and urine concentrations of PCR were measured using liquid chromatography–mass spectrometry. Plasma PCR concentration following intravenous administration showed a biphasic elimination pattern. The systemic clearance was 0.47 ± 0.16 L/h/kg, the steady‐state volume of the distribution was 1.21 ± 0.23 L/kg, and the elimination half‐life was 2.85 ± 1.35 h. Heart rate rapidly increased after intravenous administration and gradually decreased thereafter. A strong correlation between heart rate and plasma concentration of PCR was observed. Plasma concentrations of PCR after oral administration were not quantifiable in all horses. Urine concentrations of PCR following intravenous and oral administrations were quantified in all horses until 32 h after administration. Urine PCR concentrations were not significantly different on and after 24 h between intravenous and oral administrations. These results suggest that the bioavailability of orally administrated PCR in horses is very poor, and the drug was eliminated from the body slowly based on urinary concentrations. This report is the first study to demonstrate the pharmacokinetic character of PCR in thoroughbred horses.  相似文献   

4.
Searching for new therapeutic options against septic arthritis in horses, this research was focused on the study of the kinetics and local side effects after the intra‐articular treatment of horses with cefovecin sodium. A single dose (240 mg) of the drug (Convenia®) was administered into the radiocarpal joint of adult healthy horses (n = 6), and drug concentrations in plasma and synovial fluid were determined by high‐performance liquid chromatography (HPLC). Local tolerance was also studied based on the modification of different joint physiopathological parameters (pH, cellular, and protein concentration in synovial fluid). Although no clinically relevant joint damage was noticed, significant increases in the protein concentrations at 5 min and in the cellular concentration at 30 min after cefovecin administration were observed in the treated radiocarpal joints. The duration of the cefovecin above the minimal inhibitory concentration (MIC) ≤1 μg/mL was 28.80 ± 2.58 h in the radiocarpal joint and 16.00 ± 2.86 h in plasma. The results of this study showed that intra‐articular administration of cefovecin sodium in horses could be considered in the future to manage septic arthritis in horses, as it offers a good pharmacokinetic behavior and good local tolerance.  相似文献   

5.
Methylprednisolone acetate (MPA) is commonly administered to performance horses, and therefore, establishing appropriate withdrawal times prior to performance is critical. The objectives of this study were to describe the plasma pharmacokinetics of MPA and time‐related urine and synovial fluid concentrations following intra‐articular administration to sixteen racing fit adult Thoroughbred horses. Horses received a single intra‐articular administration of MPA (100 mg). Blood, urine, and synovial fluid samples were collected prior to and at various times up to 77 days postdrug administration and analyzed using tandem liquid chromatography‐mass spectrometry (LC‐MS/MS). Maximum measured plasma MPA concentrations were 6.06 ± 1.57 at 0.271 days (6.5 h; range: 5.0–7.92 h) and 6.27 ± 1.29 ng/mL at 0.276 days (6.6 h; range: 4.03–12.0 h) for horses that had synovial fluid collected (group 1) and those that did not (group 2), respectively. The plasma terminal half‐life was 1.33 ± 0.80 and 0.843 ± 0.414 days for groups 1 and 2, respectively. MPA was undetectable by day 6.25 ± 2.12 (group 1) and 4.81 ± 2.56 (group 2) in plasma and day 17 (group 1) and 14 (group 2) in urine. MPA concentrations in synovial fluid remained above the limit of detection (LOD) for up to 77 days following intra‐articular administration, suggesting that plasma and urine concentrations are not a good indicator of synovial fluid concentrations.  相似文献   

6.
This study was designed to investigate the pharmacokinetics of clindamycin, a lincosamide antibiotic, in Bennett's wallabies. The pharmacokinetic properties of a single intravenous (IV) dose of clindamycin were determined in six wallabies. A single 20‐min IV infusion of 20 mg/kg of clindamycin was administered, followed by blood collection prior to, and up to 12 hr after clindamycin administration. Plasma clindamycin concentrations were determined by high‐pressure liquid chromatography (HPLC) with ultraviolet (UV) detection. Pharmacokinetic variables were calculated using a two‐compartment model with first order elimination which best fit the data. The mean volume of distribution at steady‐state, distribution half‐life, and elimination half‐life were 898.25 ml/kg, 0.16 hr, 1.79 hr, respectively. No adverse effects were noted after IV administration.  相似文献   

7.
The objective of this study was to determine the pharmacokinetics of tolfenamic acid (TA) following intravenous (IV) administration at doses of 2 and 4 mg/kg in goats. In this study, six healthy goats were used. TA was administered intravenously to each goat at 2 and 4 mg/kg doses in a cross-over pharmacokinetic design with a 15-day washout period. Plasma concentrations of TA were analyzed using the high performance liquid chromatography with ultraviolet detector, and pharmacokinetic parameters were assigned by noncompartmental analysis. Following IV administration at dose of 2 mg/kg, area under the concentration–time curve (AUC0−∞), elimination half-life (t1/2ʎz), total clearance (ClT) and volume of distribution at steady state (Vdss) were 6.64 ± 0.81 hr*µg/ml, 1.57 ± 0.14 hr, 0.30 ± 0.04 L h-1 kg-1 and 0.40 ± 0.05 L/kg, respectively. After the administration of TA at a dose of 4 mg/kg showed prolonged t1/2ʎz, increased dose-normalized AUC0-∞, and decreased ClT. In goats, TA at 4 mg/kg dose can be administered wider dose intervals compared to the 2 mg/kg dose. However, further studies are needed to determine the effect of different doses on the clinical efficacy of TA in goats.  相似文献   

8.
Buprenorphine is absorbed following sublingual administration, which would be a low‐stress delivery route in foals. However, the pharmacokinetics/pharmacodynamics are not described in foals. Six healthy foals <21 days of age participated in a blinded, randomized, 3‐period, 5‐sequence, 3‐treatment crossover prospective study. Foals received 0.01–0.02 mg/kg buprenorphine administered SL or IV with an equivalent volume of saline administered by the opposite route. Blood was collected from the cephalic vein for pharmacokinetic analysis. Physiologic parameters (HR, RR, body temperature, GI sounds), locomotion (pedometer), and behavioral data (activity level, nursing time, response to humans) were recorded. Plasma concentration of buprenorphine exceeded a presumed analgesic level (0.6 ng/ml) in five foals in the IV group and one in the SL group but only for a very brief time. Pharmacokinetic analysis following IV administration demonstrated a short elimination half‐life (t1/2β 1.95 ± 0.7 hr), large volume of distribution (6.46 ± 1.54 L/kg), and a high total clearance (55.83 ± 23.75 ml/kg/min), which differs from adult horses. Following SL administration, maximum concentrations reached were 0.61 ± 0.11 ng/ml and bioavailability was 25.1% ± 10.9%. In both groups, there were minor statistical differences in HR, RR, body temperature, locomotion, and time spent nursing. However, these differences were clinically insignificant in this single dose study, and excitement, sedation, or colic did not occur.  相似文献   

9.
The aim of this study was to determine the pharmacokinetics/pharmacodynamics of enrofloxacin (ENR) and danofloxacin (DNX) following intravenous (IV) and intramuscular (IM) administrations in premature calves. The study was performed on twenty‐four calves that were determined to be premature by anamnesis and general clinical examination. Premature calves were randomly divided into four groups (six premature calves/group) according to a parallel pharmacokinetic (PK) design as follows: ENR‐IV (10 mg/kg, IV), ENR‐IM (10 mg/kg, IM), DNX‐IV (8 mg/kg, IV), and DNX‐IM (8 mg/kg, IM). Plasma samples were collected for the determination of tested drugs by high‐pressure liquid chromatography with UV detector and analyzed by noncompartmental methods. Mean PK parameters of ENR and DNX following IV administration were as follows: elimination half‐life (t1/2λz) 11.16 and 17.47 hr, area under the plasma concentration–time curve (AUC0‐48) 139.75 and 38.90 hr*µg/ml, and volume of distribution at steady‐state 1.06 and 4.45 L/kg, respectively. Total body clearance of ENR and DNX was 0.07 and 0.18 L hr?1 kg?1, respectively. The PK parameters of ENR and DNX following IM injection were t1/2λz 21.10 and 28.41 hr, AUC0‐48 164.34 and 48.32 hr*µg/ml, respectively. The bioavailability (F) of ENR and DNX was determined to be 118% and 124%, respectively. The mean AUC0‐48CPR/AUC0‐48ENR ratio was 0.20 and 0.16 after IV and IM administration, respectively, in premature calves. The results showed that ENR (10 mg/kg) and DNX (8 mg/kg) following IV and IM administration produced sufficient plasma concentration for AUC0‐24/minimum inhibitory concentration (MIC) and maximum concentration (Cmax)/MIC ratios for susceptible bacteria, with the MIC90 of 0.5 and 0.03 μg/ml, respectively. These findings may be helpful in planning the dosage regimen for ENR and DNX, but there is a need for further study in naturally infected premature calves.  相似文献   

10.
The pharmacokinetic properties of three formulations of vitacoxib were investigated in horses. To describe plasma concentrations and characterize the pharmacokinetics, 6 healthy adult Chinese Mongolian horses were administered a single dose of 0.1 mg/kg bodyweight intravenous (i.v.), oral paste, or oral tablet vitacoxib in a 3-way, randomized, parallel design. Blood samples were collected prior to and at various times up to 72 hr postadministration. Plasma vitacoxib concentrations were quantified using UPLC-MS/MS, and pharmacokinetic parameters were calculated using noncompartmental analysis. No complications resulting from the vitacoxib administration were noted on subsequent administrations, and all procedures were tolerated well by the horses throughout the study. The elimination half-life (T1/2λz) was 4.24 ± 1.98 hr (i.v.), 8.77 ± 0.91 hr (oral paste), and 8.12 ± 4.24 hr (oral tablet), respectively. Maximum plasma concentration (Cmax) was 28.61 ± 9.29 ng/ml (oral paste) and 19.64 ± 9.26 ng/ml (oral tablet), respectively. Area under the concentration-versus-time curve (AUClast) was 336 ± 229 ng hr/ml (i.v.), 221 ± 94 ng hr/ml (oral paste), and 203 ± 139 ng hr/ml, respectively. The results showed statistically significant differences between the 2 oral vitacoxib groups in Tmax value. T1/2λz (hr), AUClast (ng hr/ml), and MRT (hr) were significantly different between i.v. and oral groups. The longer half-life observed following oral administration was consistent with the flip-flop phenomenon.  相似文献   

11.
The pharmacokinetics of florfenicol (FF) and thiamphenicol (TP) after single intravenous (IV) and oral (PO) administration was investigated in Mulard ducks. Both antibiotics were administered at a dose of 30 mg/kg body weight, and their concentrations in plasma samples were assayed using high‐performance liquid chromatography with ultraviolet detection. Pharmacokinetic parameters were calculated using a noncompartmental method. After IV administration, significant differences were found for the mean residence time (2.25 ± 0.21 hr vs. 2.83 ± 0.50 hr for FF and TP, respectively) and the general half‐life (1.56 ± 0.15 hr vs. 1.96 ± 0.35 hr for FF and TP, respectively) indicating slightly slower elimination of TP as compared to FF. The clearance, however, was comparable (0.30 ± 0.07 L/hr/kg for FF and 0.26 ± 0.04 L/hr/kg for TP). The mean volume of distribution was below 0.7 L/kg for both drugs. Pharmacokinetics after PO administration was very similar for FF and TP suggesting minor clinical importance of the differences found in the IV study. Both antimicrobials showed rapid absorption and bioavailability of more than 70% indicating that PO route should be an efficient method of FF and TP administration to ducks under field conditions.  相似文献   

12.
The objectives of this study were to examine the pharmacokinetics of tobramycin in the horse following intravenous (IV), intramuscular (IM), and intra‐articular (IA) administration. Six mares received 4 mg/kg tobramycin IV, IM, and IV with concurrent IA administration (IV+IA) in a randomized 3‐way crossover design. A washout period of at least 7 days was allotted between experiments. After IV administration, the volume of distribution, clearance, and half‐life were 0.18 ± 0.04 L/kg, 1.18 ± 0.32 mL·kg/min, and 4.61 ± 1.10 h, respectively. Concurrent IA administration could not be demonstrated to influence IV pharmacokinetics. The mean maximum plasma concentration (Cmax) after IM administration was 18.24 ± 9.23 μg/mL at 1.0 h (range 1.0–2.0 h), with a mean bioavailability of 81.22 ± 44.05%. Intramuscular administration was well tolerated, despite the high volume of drug administered (50 mL per 500 kg horse). Trough concentrations at 24 h were below 2 μg/mL in all horses after all routes of administration. Specifically, trough concentrations at 24 h were 0.04 ± 0.01 μg/mL for the IV route, 0.04 ± 0.02 μg/mL for the IV/IA route, and 0.02 ± 0.02 for the IM route. An additional six mares received IA administration of 240 mg tobramycin. Synovial fluid concentrations were 3056.47 ± 1310.89 μg/mL at 30 min after administration, and they persisted for up to 48 h with concentrations of 14.80 ± 7.47 μg/mL. Tobramycin IA resulted in a mild chemical synovitis as evidenced by an increase in synovial fluid cell count and total protein, but appeared to be safe for administration. Monte Carlo simulations suggest that tobramycin would be effective against bacteria with a minimum inhibitory concentration (MIC) of 2 μg/mL for IV administration and 1 μg/mL for IM administration based on Cmax:MIC of 10.  相似文献   

13.
The purpose of this study was to determine the pharmacokinetics of baicalin after intravenous and intramuscular administration of sodium baicalin at 50 mg/kg to piglets. Plasma baicalin levels were determined by high‐performance liquid chromatography. The plasma concentration–time data of baicalin for both administration routes were best described by two‐compartmental open model. The area under the plasma concentration–time curve and the elimination half‐lives were 77.47 ± 6.14 µg/ml × h and 1.73 ± 0.16 hr for intravenous and 64.85 ± 5.67 µg/ml × h and 2.42 ± 0.15 hr for intramuscular administration, respectively. The apparent volume of distribution and body clearance were 1.63 ± 0.23 L/kg and 2.74 ± 0.30 L h?1 kg?1 for intravenous and 0.51 ± 0.10 L/kg and 0.78 ± 0.08 L h?1 kg?1 for intramuscular routes, respectively. An intramuscular injection of sodium baicalin in piglets resulted in rapid and complete absorption, with a mean maximal plasma concentration of 77.28 ± 7.40 µg/ml at 0.17 hr and a high absolute bioavailability of 83.73 ± 5.53%.  相似文献   

14.
Midazolam is a benzodiazepine with sedative, muscle relaxant, anxiolytic, and anticonvulsant effects. Twelve ball pythons (Python regius) were used in a parallel study evaluating the pharmacokinetics of 1 mg/kg midazolam following a single intracardiac (IC) or intramuscular (IM) administration. Blood was collected from a central venous catheter placed 7 days prior, or by cardiocentesis, at 15 time points starting just prior to and up to 72 hr after drug administration. Plasma concentrations of midazolam and 1‐hydroxymidazolam were determined by the use of high‐performance liquid chromatography tandem‐mass spectrometry and pharmacokinetic parameters were estimated using noncompartmental analysis. The mean ± SD terminal half‐lives of IC and IM midazolam were 12.04 ± 3.25 hr and 16.54 ± 7.10 hr, respectively. The area under the concentration‐time curve extrapolated to infinity, clearance, and apparent volume of distribution in steady‐state of IC midazolam were 19,112.3 ± 3,095.9 ng*hr/ml, 0.053 ± 0.008 L hr?1 kg?1, and 0.865 ± 0.289 L/kg, respectively. The bioavailability of IM midazolam was estimated at 89%. Maximum plasma concentrations following an IM administration were reached 2.33 ± 0.98 hr and 24.00 ± 14.12 hr postinjection for midazolam and 1‐hydroxymidazolam, respectively, and 22.33 ± 20.26 hr postinjection for 1‐hydroxymidazolam following IC administration.  相似文献   

15.
Reasons for performing study: No studies have determined the pharmacokinetics of low‐dose amikacin in the mature horse. Objectives: To determine if a single i.v. dose of amikacin (10 mg/kg bwt) will reach therapeutic concentrations in plasma, synovial, peritoneal and interstitial fluid of mature horses (n = 6). Methods: Drug concentrations of amikacin were measured across time in mature horses (n = 6); plasma, synovial, peritoneal and interstitial fluid were collected after a single i.v. dose of amikacin (10 mg/kg bwt). Results: The mean ± s.d. of selected parameters were: extrapolated plasma concentration of amikacin at time zero 144 ± 21.8 µg/ml; extrapolated plasma concentration for the elimination phase 67.8 ± 7.44 µg/ml, area under the curve 139 ± 34.0 µg*h/ml, elimination half‐life 1.34 ± 0.408 h, total body clearance 1.25 ± 0.281 ml/min/kg bwt; and mean residence time (MRT) 1.81 ± 0.561 h. At 24 h, the plasma concentration of amikacin for all horses was below the minimum detectable concentration for the assay. Selected parameters in synovial and peritoneal fluid were maximum concentration (Cmax) 19.7 ± 7.14 µg/ml and 21.4 ± 4.39 µg/ml and time to maximum concentration 65 ± 12.2 min and 115 ± 12.2 min, respectively. Amikacin in the interstitial fluid reached a mean peak concentration of 12.7 ± 5.34 µg/ml and after 24 h the mean concentration was 3.31 ± 1.69 µg/ml. Based on a minimal inhibitory concentration (MIC) of 4 µg/ml, the mean Cmax : MIC ratio was 16.9 ± 1.80 in plasma, 4.95 ± 1.78 in synovial fluid, 5.36 ± 1.10 in peritoneal fluid and 3.18 ± 1.33 in interstitial fluid. Conclusions: Amikacin dosed at 10 mg/kg bwt i.v. once a day in mature horses is anticipated to be effective for treatment of infection caused by most Gram‐negative bacteria. Potential relevance: Low dose amikacin (10 mg/kg bwt) administered once a day in mature horses may be efficacious against susceptible microorganisms.  相似文献   

16.
The aim of this study was to evaluate the pharmacokinetics and bioavailability of cefquinome (CFQ) and ceftriaxone (CTX) following intravenous (IV) and intramuscular (IM) administrations in premature calves. Using a parallel design, 24 premature calves were randomly divided into the two antibiotic groups. Each of the six animals in the first group received CFQ (2 mg/kg) through IV or IM administration. The second group received CTX (20 mg/kg) via the same administration route. Plasma concentrations of the drugs were analyzed by high‐performance liquid chromatography and noncompartmental methods. Mean pharmacokinetic parameters of CFQ and CTX following IV administration were as follows: elimination half‐life (t1/2λz) 1.85 and 3.31 hr, area under the plasma concentration–time curve (AUC0–∞) 15.74 and 174 hr * μg/ml, volume of distribution at steady‐state 0.37 and 0.45 L/kg, and total body clearance 0.13 and 0.12 L hr?1 kg?1, respectively. Mean pharmacokinetic parameters of CFQ and CTX after IM injection were as follows: peak concentration 4.56 and 25.04 μg/ml, time to reach peak concentration 1 and 1.5 hr, t1/2λz 4.74 and 3.62 hr, and AUC0–∞ 22.75 and 147 hr * μg/ml, respectively. The bioavailability of CFQ and CTX after IM injection was 141% and 79%, respectively. IM administration of CFQ (2 mg/kg) and CTX (20 mg/kg) can be recommended at 12‐hr interval for treating infections caused by susceptible bacteria, with minimum inhibitory concentration values of ≤0.5 and ≤4 μg/ml, respectively, in premature calves. However, further research is indicated to assess the pharmacokinetic parameters following multiple doses of the drug in premature calves.  相似文献   

17.
The pharmacokinetics of tylosin were investigated in 3 groups of ducks (n = 6). They received a single dose of tylosin (50 mg/kg) by intravenous (IV), intramuscular (IM), and oral administrations, respectively. Plasma samples were collected at various time points to 24 hr post-administration to evaluate tylosin concentration over time. Additionally, tylosin residues in tissues and its withdrawal time were assessed using 30 ducks which received tylosin orally (50 mg/kg) once daily for 5 consecutive days. After IV administration, the volume of distribution, elimination half-life, area under the plasma concentration–time curve, and the total body clearance were 7.07 ± 1.98 L/kg, 2.04 hr, 19.47 µg hr/ml, and 2.82 L hr−1 kg−1, respectively. After IM and oral administrations, the maximum plasma concentrations were 3.70 and 2.75 µg/ml achieved at 1 and 2 hr, and the bioavailability was 93.95% and 75.77%, respectively. The calculated withdrawal periods of tylosin were 13, 8, and 5 days for kidney, liver, and muscle, respectively. For the pharmacodynamic profile, the minimum inhibitory concentration for tylosin against M. anatis strain 1,340 was 1 µg/ml. The calculated optimal oral dose of tylosin against M. anatis in ducks based on the ex vivo pharmacokinetic/pharmacodynamic modeling was 61 mg kg−1 day−1.  相似文献   

18.
Minocycline is commonly used to treat bacterial and rickettsial infections in adult horses but limited information exists regarding the impact of feeding on its oral bioavailability. This study's objective was to compare the pharmacokinetics of minocycline after administration of a single oral dose in horses with feed withheld and with feed provided at the time of drug administration. Six healthy adult horses were administered intravenous (2.2 mg/kg) and oral minocycline (4 mg/kg) with access to hay at the time of oral drug administration (fed) and with access to hay delayed for 2 hr after oral drug administration (fasted), with a 7‐day washout between treatments. Plasma concentration versus time data was analyzed based on noncompartmental pharmacokinetics. Mean ± SD bioavailability (fasted: 38.6% ± 4.6; fed: 15.7% ± 2.3) and Cmax (fasted: 1.343 ± 0.418 μg/ml; fed: 0.281 ± 0.157 μg/ml) were greater in fasted horses compared to fed horses (p < .05 both). Median (range) Tmax (hr) in fasted horses was 2.0 (1.5–3.5) and in fed horses was 5.0 (1.0–8.0) and was not significantly different between groups. Overnight fasting and delaying feeding hay 2 hr after oral minocycline administration improve drug bioavailability and thus plasma concentrations.  相似文献   

19.
In this study, the pharmacokinetics of moxifloxacin (5 mg/kg) was determined following a single intravenous administration of moxifloxacin alone and co-administration with diclofenac (2.5 mg/kg) or flunixin meglumine (2.2 mg/kg) in sheep. Six healthy Akkaraman sheep (2 ± 0.3 years and 53.5 ± 5 kg of body weight) were used. A longitudinal design with a 15-day washout period was used in three periods. In the first period, moxifloxacin was administered by an intravenous (IV) injection. In the second and third periods, moxifloxacin was co-administered with IV administration of diclofenac and flunixin meglumine, respectively. The plasma concentration of moxifloxacin was assayed by high-performance liquid chromatography. The pharmacokinetic parameters were calculated using a two-compartment open pharmacokinetic model. Following IV administration of moxifloxacin alone, the mean elimination half-life (t1/2β), total body clearance (ClT), volume of distribution at steady state (Vdss) and area under the curve (AUC) of moxifloxacin were 2.27 hr, 0.56 L h−1 kg−1, 1.66 L/kg and 8.91 hr*µg/ml, respectively. While diclofenac and flunixin meglumine significantly increased the t1/2β and AUC of moxifloxacin, they significantly reduced the ClT and Vdss. These results suggest that anti-inflammatory drugs could increase the therapeutic efficacy of moxifloxacin by altering its pharmacokinetics.  相似文献   

20.
The pharmacokinetic properties of the fluoroquinolone levofloxacin (LFX) were investigated in six dogs after single intravenous, oral and subcutaneous administration at a dose of 2.5, 5 and 5 mg/kg, respectively. After intravenous administration, distribution was rapid (T½dist 0.127 ± 0.055 hr) and wide as reflected by the volume of distribution of 1.20 ± 0.13 L/kg. Drug elimination was relatively slow with a total body clearance of 0.11 ± 0.03 L kg?1 hr?1 and a T½ for this process of 7.85 ± 2.30 hr. After oral and subcutaneous administration, absorption half‐life and Tmax were 0.35 and 0.80 hr and 1.82 and 2.82 hr, respectively. The bioavailability was significantly higher (p ? 0.05) after subcutaneous than oral administration (79.90 vs. 60.94%). No statistically significant differences were observed between other pharmacokinetic parameters. Considering the AUC24 hr/MIC and Cmax/MIC ratios obtained, it can be concluded that LFX administered intravenously (2.5 mg/kg), subcutaneously (5 mg/kg) or orally (5 mg/kg) is efficacious against Gram‐negative bacteria with MIC values of 0.1 μg/ml. For Gram‐positive bacteria with MIC values of 0.5 μg/kg, only SC and PO administration at a dosage of 5 mg/kg showed to be efficacious. MIC‐based PK/PD analysis by Monte Carlo simulation indicates that the proposed dose regimens of LFX, 5 and 7.5 mg/kg/24 hr by SC route and 10 mg/kg/24 hr by oral route, in dogs may be adequate to recommend as an empirical therapy against S. aureus strains with MIC ≤ 0.5 μg/ml and E. coli strains with MIC values ≤0.125 μg/ml.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号