共查询到20条相似文献,搜索用时 15 毫秒
1.
The impacts of crop rotations and N fertilization on microbial biomass C (Cmic) and N (Nmic) were studied in soils of two long-term field experiments initiated in 1978 at the Northeast Research Center (NERC) and in
1954 at the Clarion-Webster Research Center (CWRC), both in Iowa. Surface soil samples were taken in 1996 and 1997 from plots
of corn (Zea mays L.), soybeans (Glycine max (L.) Merr.), oats (Avena sativa L.), or meadow (alfalfa) (Medicago sativa L.) that had received 0 or 180 kg N ha–1 before corn and an annual application of 20 kg P and 56 kg K ha–1. The Cmic and Nmic values were determined by the chloroform-fumigation-extraction method and the chloroform-fumigation-incubation method, respectively.
The Cmic and Nmic values were significantly affected (P<0.05) by crop rotation and plant cover at time of sampling, but not by N fertilization. In general, the highest Cmic and Nmic contents were found in the multicropping systems (4-year rotations) taken in oats or meadow plots, and the lowest values
were found in continuous corn and soybean systems. On average, Cmic made up about 1.0% of the organic C (Corg), and Nmic contributed about 2.4% of the total N (Ntot) in soils at both sites and years of sampling. The Cmic values were significantly correlated with Corg contents (r≥0.41**), whereas the relationship between Cmic and Ntot was significant (r≤0.53***) only for the samples taken in 1996 at the NERC site. The Cmic : Nmic ratios were, on average, 4.3 and 6.4 in 1996, and 7.6 and 11.4 in 1997 at the NERC and CWRC sites, respectively. Crop rotation
significantly (P<0.05) affected this ratio only at the NERC site, and N fertilization showed no effect at either site. In general, multicropping
systems resulted in greater Cmic : Corg (1.1%) and Nmic : Ntot (2.6%) ratios than monocropping systems (0.8% and 2.1%, respectively).
Received: 9 February 1999 相似文献
2.
Mineralization of N from organic materials added to soil depends on the quality of the substrate as a carbon, energy and
nutrient source for the saprophytic microflora. Quality reflects a combination of biochemical and physical attributes. We
investigated how biochemical composition interacts with particle size to affect the soil microflora and N dynamics following
incorporation of crop residues into soil. Four fresh shoot and root crop residues were cut into coarse and fine particle sizes,
and incorporated into sandy-loam soil which was incubated under controlled environment conditions for 6 months. In the case
of the highest biochemical quality material, potato shoot (C/N ratio of 10 : 1), particle size had no effect on microbial
respiration or net N mineralization. For lower biochemical quality Brussels sprout shoot (C/N ratio of 15 : 1), reducing particle
size caused microbial respiration to peak earlier and increased net mineralization of N during the early stages of decomposition,
but reduced net N mineralization at later stages. However, for the lowest biochemical quality residues, rye grass roots (C/N
ratio of 38 : 1) and straw (C/N ratio of 91 : 1) reducing particle size caused microbial respiration to peak later and increased
net immobilization of N. For Brussels sprout shoot, reducing particle size decreased the C content and the C/N ratio of residue-derived
light fraction organic matter (LFOM) 2 months following incorporation. However C and N content of LFOM derived from the other
materials was not affected by particle size. For materials of all qualities, particle size had little effect on biomass N.
We conclude that the impact of particle size on soil microbial activities, and the protection of senescent microbial tissues
from microbial attack, is dependant on the biochemical quality of the substrate.
Received: 3 July 1998 相似文献
3.
Soil microbial biomass and nitrogen supply in an irrigated lowland rice soil as affected by crop rotation and residue management 总被引:5,自引:0,他引:5
C. Witt Kenneth G. Cassman Johannes C. G. Ottow Ulrich Biker 《Biology and Fertility of Soils》1998,28(1):71-80
Processes that govern the soil nitrogen (N) supply in irrigated lowland rice systems are poorly understood. The objectives
of this paper were to investigate the effects of crop rotation and management on soil N dynamics, microbial biomass C (CBIO) and microbial biomass N (NBIO) in relation to rice N uptake and yield. A maize-rice (M-R) rotation was compared with a rice-rice (R-R) double-cropping
system over a 2-year period with four cropping seasons. In the M-R system, maize (Zea mays L.) was grown in aerated soil during the dry season (DS) followed by rice (Oryza sativa L.) grown in flooded soil during the wet season (WS). In the R-R system, rice was grown in flooded soil in both the DS and
WS. Three fertilizer N rates (0, 50 or 100 kg urea-N ha–1 in WS) were assigned to subplots within the cropping system main plots. Early versus late crop residue incorporation following
DS maize or rice were established as additional treatments in sub-subplots in the second year. In the R-R system, the time
of residue incorporation had a large effect on NO3
–-N accumulation during the fallow period and also on extractable NH4
+-N, rice N uptake and yield in the subsequent cropping period. In contrast, time of residue incorporation had little influence
on extractable N in both the fallow and rice-cropping periods of the M-R system, and no detectable effects on rice N uptake
or yield. In both cropping systems, CBIO and NBIO were not sensitive to residue incorporation despite differences of 2- to 3-fold increase in the amount of incorporated residue
C and N, and were relatively insensitive to N fertilizer application. Extractable organic N was consistently greater after
mid-tillering in M-R compared to the R-R system across N rate and residue incorporation treatments, and much of this organic
N was α-amino N. We conclude that N mineralization-immobilization dynamics in lowland rice systems are sensitive to soil aeration
as influenced by residue management in the fallow period and crop rotation, and that these factors have agronomically significant
effects on rice N uptake and yield. Microbial biomass measurements, however, were a poor indicator of these dynamics.
Received: 31 October 1997 相似文献
4.
Daniel Geisseler William R. Horwath Timothy A. Doane 《Soil biology & biochemistry》2009,41(6):1281-12
Soil microorganisms can use a wide range of nitrogen (N) compounds. When organic N sources are degraded, microorganisms can either take up simple organic molecules directly (direct route), or organic N may be mineralized first and taken up in the form of mineral N (mineralization-immobilization-turnover [MIT] route). To determine the importance of the direct route, a microcosm experiment was carried out. Two types of wheat residue were added to soil samples, including younger residue with a carbon (C) to N ratio of 12 and older residue with a C to N ratio of 29. Between days 1 and 4, the gross N mineralization rate reached 8.4 and 4.0 mg N kg−1 dry soil day−1 in the treatment with younger and older residue, respectively. During the same period, there was no difference in protease activity between the two residue amended treatments. The fact that protease activity was not related to gross N mineralization, even though the products of protease activity are the substrates for N mineralization, suggests that not all organic molecules released from residue or soil N passed through the soil mineral N pool. In fact, when leucine and glycine were added, only 10 and 53% of the amino acid-N, respectively, was mineralized. The fraction of N taken up via the direct route was estimated to be 55 and 62% for the young and older residue, respectively. After 28 days of incubation, the proportion of amino acid-N mineralized had increased especially in the soil amended with older residue, suggesting that the MIT route became increasingly important. This result is supported by an increase in the activities of enzymes responsible for the intracellular assimilation of ammonium (NH4+). Our results suggest that in contrast to what is proposed by many models of soil N cycling, both the direct and MIT routes were operative, with the direct route being the preferred route of residue N uptake. The direct route became less important over time and was more important in soil amended with older residue, suggesting that the direct route is favored by lower mineral N availabilities. An important implication of these findings is that when the direct route is dominant, gross N mineralization underestimates the amount of N made available from the residue. 相似文献
5.
Yunfu Gu Xiaoping Zhang Shihua Tu Kristina Lindström 《European Journal of Soil Biology》2009,45(3):239-246
Soil microbial biomass carbon (SMBC) and nitrogen (SMBN), soil microbial community structure, and crop yields were studied in a long-term (1982–2004) fertilization experiment carried out in Suining, Sichuan province of PR China. Eight treatments included three chemical fertilizer (CF) treatments (N, NP, NPK), three CF + farmyard manure (M) treatments (NM, NPM, NPKM), M alone and no fertilizer (CK) as control. The results showed that the soil microbial biomass was higher in soil treated with CFM than in soil treated with CF alone, and that NPKM gave the highest rice and wheat yields. The SMBC and SMBN were higher after rice than those after wheat cropping. SMBC correlated closely with soil organic matter. Average yields of wheat and rice for 22 years were higher and more stable in the fertilized plots than in control plots. Bacterial community structure was analyzed by PCR-DGGE targeting eubacterial 16S rRNA genes. A higher diversity of the soil bacterial community was found in soil amended with CFM than in other fertilizer treatments. Some specific band emerged in the soil amended with M. The highest diversity of bacterial communities was found in the NPKM treated soil. The bacterial community structures differed in rice and wheat plots. Sequencing of PCR products separated in DGGE showed that some of the common and dominant bands were closely related to Aquicella lusitana and to Acidobacteria. This study demonstrated that mixed application of N, P, and K with additional M amendment increased soil microbial biomass, diversified the bacterial communities and maintained the crop production in the Calcareous Purplish Paddy soil. 相似文献
6.
《Communications in Soil Science and Plant Analysis》2012,43(1-2):173-185
Abstract Within plants, sulphur (S), and nitrogen (N) equilibrium is a requisite for their normal development. Pot experiments with oilseed rape and barley fertilized at different N to S ratios were carried out under glasshouse conditions by using the “rhizobag”; technique. The objective was to compare the induced‐influence of rhizosphere and non‐rhizosphere soil on N and S nutrition of the studied plants. Thus, SO4 2‐S, NC3 ‐‐N and NH4 +‐N concentrations, and total N and S taken up by the plants were examined. Barley increased the pH of rhizosphere soil whereas no real change of pH was observed with oilseed rape. Both plants took up all the NO3 ‐ present in the soil solution, but rapeseed took up greater quantities of NH4 +‐N and SO4 2‐ ‐S than barley. Moreover, the ratio values of N to S of the aerial parts of the rapeseed were significantly and positively correlated to those of soil available‐N to ‐S ratios while this correlation was significant but negative with barley. This indicated a clear‐cut different influence between the two rhizospheres which oppositely induce the N and S nutrition of the two plant species. 相似文献
7.
The fate of [ring-14C]methyl parathion in a silt loam soil was monitored during a 49-day incubation. After this period, 54% of the initial 14C remained in the soil; of this, 13% was soxhletextractable with methanol and 87% was bound residue. Soils were then treated with inorganic and organic amendments and incubated for an additional 70 days. Release of methyl parathion bound residues could not be demonstrated, but both bound and extractable 14C were mineralized to 14CO2, CO2 was evolved slowly and continuously by the controls and where soil was amended with H2SO4, (NH4)2SO4, NH4OH, chitin, oat seedlings or oat straw. Glucose and asparagine caused higher rates of 14CO2 production. HgCl2 gave very high initial rates of 14CO2 loss; the rate declined to that of the control only after 9–10 weeks. The lime treatment exceeded the controls after 1 week, declining only slightly with time. The effects of sewage sludge and dairy manure were similar to the controls except that: sludge caused a very high initial release of 14CO2, and both treatments gave an unaccountable loss of 14C, perhaps as 14CH4 resulting from the formation of anaerobic conditions. By 70 days, amounts of extractable 14C and bound 14C had both declined twice as rapidly in certain soils as in unamended controls.Studies carried out with soxhlet-extracted soils, containing only bound residues, indicated that the soil microflora able to mineralize bound residues without any appreciable buildup of 14C activity in the extractable phase. 相似文献
8.
A wide range of tillage systems have been used by producers in the Corn-Belt in the United States during the past decade due to their economic and environmental benefits. However, changes in soil organic carbon (SOC) and nitrogen (SON) and crop responses to these tillage systems are not well documented in a corn–soybean rotation. Two experiments were conducted to evaluate the effects of different tillage systems on SOC and SON, residue C and N inputs, and corn and soybean yields across Iowa. The first experiment consisted of no-tillage (NT) and chisel plow (CP) treatments, established in 1994 in Clarion–Nicollet–Webster (CNW), Galva–Primghar–Sac (GPS), Kenyon–Floyd–Clyde (KFC), Marshall (M), and Otley–Mahaska–Taintor (OMT) soil associations. The second experiment consisted of NT, strip-tillage (ST), CP, deep rip (DR), and moldboard plow (MP) treatments, established in 1998 in the CNW soil association. Both corn and soybean yields of NT were statistically comparable to those of CP treatment for each soil association in a corn–soybean rotation during the 7 years of tillage practices. The NT, ST, CP, and DR treatments produced similar corn and soybean yields as MP treatment in a corn–soybean rotation during the 3 years of tillage implementation of the second experiment. Significant increases in SOC of 17.3, 19.5, 6.1, and 19.3% with NT over CP treatment were observed at the top 15-cm soil depth in CNW, KFC, M, and OMT soil associations, respectively, except for the GPS soil association in a corn–soybean rotation at the end of 7 years. The NT and ST resulted in significant increases in SOC of 14.7 and 11.4%, respectively, compared with MP treatment after 3 years. Changes in SON due to tillage were similar to those observed with SOC in both experiments. The increases in SOC and SON in NT treatment were not attributed to the vertical stratification of organic C and N in the soil profile or annual C and N inputs from crop residue, but most likely due to the decrease in soil organic matter mineralization in wet and cold soil conditions. It was concluded that NT and ST are superior to CP and MP in increasing SOC and SON in the top 15 cm in the short-term. The adoption of NT or CP can be an effective strategy in increasing SOC and SON in the Corn-Belt soils without significant adverse impact on corn and soybean yields in a corn–soybean rotation. 相似文献
9.
Grain legume production with rhizobial inoculation has drawn attention not only because of the economic value of nitrogen
(N) fixation by grain legumes, but also because of the concern that N2 fixation by grain legumes may enhance emissions of nitrous oxide (N2O), a powerful greenhouse gas. However, the relationship between N2O emissions and biological N2 fixation by grain legumes is not well understood. The objective of this study was to quantify N2O emissions associated with N2 fixation by grain legumes as affected by wetting/drying cycles and crop residues. Two grain legumes, lentil (Lens esculenta Moench) and pea (Pisum sativum L.), either inoculated with two Rhizobium leguminosarum biovar viciae strains, 99A1 and RGP2, respectively, or fertilized with 15N-labeled fertilizer were grown in a controlled environment under three wetting/drying cycles. Profile N2O concentrations and surface N2O emissions were measured from the soil–plant systems, which were compared with those from a cereal, spring wheat (Triticum aestivum L. ac. Barrie). After harvest, crop residues were incorporated into soils that were seeded to spring wheat to evaluate the effect of crop
residues on N2O emissions. Results indicated that: (1) inoculating grain legumes with non-denitrifying rhizobia did not enhance N2O emissions and the presence of grain legumes did not increase N2O emissions compared with the cereal crop, and (2) profile N2O accumulation and surface emissions were not related to the type of crop residues added to the soil, but related to the residual
N applied previously as N fertilizer. This suggests that N2O emissions are not directly related to biological N2 fixation by grain legumes, and on a short time scale, N rich residues of N2-fixing crops have a limited impact on N2O emissions compared with N fertilization. 相似文献
10.
Premasis Sukul 《Soil biology & biochemistry》2006,38(2):320-326
A laboratory experiment was conducted to study the impact of metalaxyl application at different concentration levels on microbial biomass and the biochemical activities in soil. A dissipation study of metalaxyl highlighted 52.5-56.8% loss of metalaxyl due to the presence of microbial activity. However, a small but significant decline in microbial biomass was observed on 60 d of incubation period. Metalaxyl showed a highly significant effect in decreasing total N and organic C content in soil from 0 to 30 d of incubation. Dehydrogenase, phosphatase, urease, arylsulphatase and β-glucosidase activities were monitored in metalaxyl treated soils. Except urease, all the enzymatic activities initially increased and then decreased. Urease activity showed a continuous gradual decrease throughout the experimental period. Thus, metalaxyl might influence the growth and development of crop-plants, since it has direct impact on nutrient recycling and energy flow in soil. 相似文献
11.
Arylsulfatase activity of microbial biomass in soils as affected by cropping systems 总被引:5,自引:0,他引:5
The impacts of crop rotations and N fertilization on different pools of arylsulfatase activity (total, intracellular, and
extracellular) were studied in soils of two long-term field experiments in Iowa to assess the contibution of the microbial
biomass to the activity of this enzyme. Surface-soil samples were taken in 1996 and 1997 in corn, soybeans, oats, or meadow
(alfalfa) plots that received 0 or 180 kg N ha–1 before corn, and an annual application of 20 kg P ha–1 and 56 kg K ha–1. The arylsulfatase activity in the soils was assayed at optimal pH (acetate buffer, pH 5.8) before and after chloroform fumigation;
microbial biomass C (Cmic) and N (Nmic) were determined by chloroform-fumigation methods. All pools of arylsulfatase activity in soils were significantly affected
by crop rotation and plant cover at sampling time, but not by N fertilization. Generally, the highest total, intracellular,
and extracellular arylsulfatase activities were obtained in soils under cereal-meadow rotations, taken under oats or meadow,
and the lowest under continuous cropping systems.Total, intracellular, and extracellular arylsulfatase activities were significantly
correlated with Cmic (r>0.41, P<0.01) and Nmic (r>0.38, P<0.01) in soils. The averages of specific activity values, i.e., of arylsulfatase activity of the microbial biomass, expressed
per milligram Cmic, ranged from 315 to 407 μg p-nitrophenol h–1. The total arylsulfatase activity was significantly correlated with the intracellular activity, with r values >0.79 (P<0.001). In general, about 45% of the total arylsulfatase activity was extracellular, and 55% was associated with the microbial
biomass in soils, indicating the importance of the microflora as an enzyme source in soils.
Received: 23 April 1998 相似文献
12.
The impacts of crop rotations and N fertilization on different pools of urease activity were studied in soils of two long-term
field experiments in Iowa; at the Northeast Research Center (NERC) and the Clarion-Webster Research Center (CWRC). Surface
soil samples (0–15 cm) were taken in 1996 and 1997 in corn, soybeans, oats, or meadow (alfalfa) plots that received 0 or 180 kg
N ha–1, applied as urea before corn and an annual application of 20 kg P and 56 kg K ha–1. The urease activity in the soils was assayed at optimal pH (THAM buffer, pH 9.0), with and without toluene treatment, in
a chloroform-fumigated sample and its nonfumigated counterpart. The microbial biomass C (Cmic) and N (Nmic) were determined by chloroform fumigation methods. The total, intracellular, extracellular and specific urease activities
in the soils of the NERC site were significantly affected by crop rotation, but not by N fertilization. Generally, the highest
total urease activities were obtained in soils under 4-year oats–meadow rotations and the lowest under continuous corn. The
higher total activities under multicropping systems were caused by a higher activity of both the intracellular and extracellular
urease fractions. In contrast, the highest values for the specific urease activity, i.e. of urease activity of the microbial
biomass, were found in soils under continuous soybean and the least under the 4-year rotations. Total and extracellular urease
activities were significantly correlated with Cmic (r>0.30* and >0.40**) and Nmic (r>0.39** and >0.44**) in soils of the NERC and CWRC sites, respectively. Total urease activity was significantly correlated
with the intracellular activity (r>0.73***). About 46% of the total urease activity of the soils was associated with the microbial biomass, and 54% was extracellular
in nature.
Received: 25 May 1999 相似文献
13.
Yong-Shan Li Liang-Huan Wu Xing-Hua Lu Li-Mei Zhao Qiao-Lan Fan Fu-Suo Zhang 《Biology and Fertility of Soils》2006,43(1):107-111
The long-term field experiments were initiated in 2001 on five sites in Zhejiang province of China to monitor the impacts of non-flooded plastic mulching management on rice soil microbial biomass for sustainable agro-ecosystem. The three treatments were plastic film mulching with no flooding (PM), no plastic film mulching and no flooding (UM), and the traditional flooding management (TF). Microbial biomass C accounted for 0.3–2.4% of the soil total organic C, microbial biomass N for 0.79–4.3% of the soil total N, and microbial biomass P for 0.1–1.6% of the soil total P. Three years of non-flooded plastic film mulching reduced microbial biomass C and N and increased microbial biomass P in rice soil. 相似文献
14.
A. de Varennes M. O. Torres C. Cunha-Queda M. J. Goss C. Carranca 《Biology and Fertility of Soils》2007,44(1):49-58
We investigated conservation and cycling of N under oat–oat and lupine–oat rotations in disturbed and undisturbed soil, when
roots or roots plus aboveground residues were retained. Crop residues were labelled with 15N in Year 1, and differential soil disturbance was imposed after harvest. In Year 2, plant growth, N transfer from residue
into the various sinks of the second crop (plant, soil, and residual residues), and changes in microbial activity and numbers
were determined. Oat biomass was greater after lupine than after oat due to differences in supply of N from these residues.
Buried residues of both crops appeared to decompose faster than when left on the soil surface. Lupine residues decomposed
faster than oat residues. Oat biomass was not affected by soil disturbance if grown after lupine but decreased when oat straw
was buried in the soil. More residue N was recovered from soil than from the crop. Most 15N was recovered from disturbed soil, which also had greater dehydrogenase activity and more culturable fungi. At the end of
the oat–oat rotation, 20 and 5 kg N ha−1 were derived from the roots of the first crop in undisturbed or disturbed soil, respectively. Equivalent values for the lupine–oat
rotation were 18 and 44 kg N ha−1. Returning aboveground residues provided an extra 52–80 kg N ha−1 for oat and 61–63 kg N ha−1 for lupine relative to treatments where they were removed. Over a year, lupine contributed 9 to 20 kg N ha−1 more to the agroecosystem than did oat. 相似文献
15.
《Communications in Soil Science and Plant Analysis》2012,43(19-20):1711-1719
Abstract Laboratory incubation and greenhouse experiments were conducted with two soils having contrasting physico‐chemical characteristics to evaluate nitrogen (N) mineralization, immobilization in soil microbial biomass, and accumulation in Japanese mint (Mentha arvensis L.) using labeled (15NH4)2SO4, applied at 0, 50, and 100 mg#lbkg‐1 soil. Rate of mineralization in soils varied from 0.08 to 2.21 μg#lbg‐1#lbday‐1. Fertilizer application increased the mineralization of native soil N. About 22 to 60% of the applied 15N was recovered in the soil microbial biomass during the growth period of mint (January‐June). Relative contribution of fertilizer 15N towards total N uptake by mint at maturity was 42–54% in soil I and 35 to 55% in soil II. Contribution of soil N towards total N accumulation increased with the doses of 15N application. 相似文献
16.
17.
18.
土壤微生物生物氮与植物氮吸收的关系 总被引:13,自引:0,他引:13
The contents of the soil microbial biomass nitrogen (SMBN) in the soils sampled from the Loess Plateau of China were determined using chloroform fumigation aerobic incubation method (CFAIM),chloroform fumigation anaerobic incubation method (CFANIM) and chloroform fumigation-extraction method (CFEM). The N taken up by ryegrass on the soils was determined after a galsshouse pot experiment. The flushes of nitrogen (FN) of the soils obtained by the CFAIM and CFANIM were higher than that by the CFEM, and there were significantly positive correlations between the FN obtained by the 3 methods. The N extracted from the fumigated soils by the CFAIM,CFANIM and CFEM were significantly positively correlated with the N uptake by ryegrass. The FN obtained by the 3 methods was also closely positively correlated with the N uptake by ryegrass. The FN obtained by the 3 methods was also closely positively correlated with the plant N uptake. The contributions of the SMBN and mineral N and mineralized N during the incubation period to plant N uptake were evaluated with the multiple regression method. The results showed that the N contained in the soil microbial biomass might play a noticeable role in the N supply of the soils to the plant. 相似文献
19.
半干旱农田生态系统作物根系和施肥对土壤微生物体氮的影响 总被引:5,自引:2,他引:5
盆栽和大田试验表明,作物根系显著影响土壤微生物体氮的含量。在田间试验条件下,根际土壤微生物体氮比非根际土壤平均高出N54.7μg/g;盆栽试验中,根际土壤微生物体氮平均含量为N77.1±13.6μg/g,而非根际土壤为N65.2±17.0μg/g,差异达显著水平,根际微生物体氮含量为非际根际土壤的1.10~2.04倍。施肥能明显增加土壤微生物体氮含量,但影响程度因肥料种类而不同。秸秆和富含有机物质的厩肥对土壤微生物体氮的影响远大于化学肥料,而且土壤微生物体氮含量随秸秆施用量增加而增加。在红油土上进行的20年长期田间定位试验结果表明,对不施肥和施氮磷处理,0—20cm土层的微生物体氮分别是N102.2和110.4μg/g;在施氮磷的基础上,每公顷配施新鲜玉米秸秆9375kg、18750kg、37500kg和厩肥37500kg时,相应土层微生物体氮分别是N147.5、163.2、286.4和265.3μg/g。培养条件下,当有效能源物质缺乏时,微生物对NH4+-N的同化固定能力远大于NO3--N,但在加入有效能源物质葡萄糖后,微生物对2种形态氮的固定量大幅度增加,且对2种形态氮的固定量趋于一致。 相似文献
20.
Studies on the effects of salinity and nitrogen (N) fertilization on ionic balance, biomass, and organic N production of annual ryegrass (Lolium multiflorum Lam.) were conducted. Plants grown in sand were irrigated with nutrient solution with an electrical conductivity of 2 or 11.2 dS#lbm‐1, and N in the form of sodium nitrate (NaNO3), ammonium nitrate (NH4NO3), or ammonium sulfate [(NH4)2SO4] ranging from 0.5 to 9.0 mM. Salinity increased the concentration of total inorganic cations (C) in plants and specifically sodium (Na) by more than 3‐fold higher in plants grown at high salinity as compared with plants at low salinity. Sodium (Na) concentration in roots was higher than in shoots irrespective of the salinity level, suggesting a restriction of Na transport from roots to shoots. The concentration of total inorganic anions (A) increased with salinity and when plants were supplied with nitrate (NO3), salinity increased the concentrations of NO3 and chloride (Cl) in plants. Increasing salinity and N concentration in the growth medium increased organic anions concentration in plants, estimated as the difference between C and A. The effect of different N sources on C‐A followed the order: NH4NO3 > NO3 > ammonium (NH4). The base of organic anions and inorganic ions with salinity contributed significantly to the osmotic potential of plants shoots and roots. Changes in C affected N and organic acids metabolism in plants, since C were highly correlated (p=0.0001) with C‐A and organic N (Norg) concentrations regardless of the salinity level or N source in the nutrient solutions. A high and positive linear dependency was found between Norg and C‐A in plants grown at high and low salinity levels and different N sources, pointing out the close relationship between Norg and organic anions on metabolism under these conditions. The amount of biomass produced was correlated positively with organic anion concentration in plants exposed to different salinity levels. Plant biomass increased with N concentration in the nutrient solution regardless of the salinity level applied. Biomass accumulation decreased while Norg concentration increased with salinity. Organic N content remained unaffected in plants exposed to salinity when grown in N less than 9.0 mM. 相似文献