首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Simulation of crop yield allows better planning and efficient management under different environmental inputs such as water and nitrogen application. However, most of the models are complicated and difficult to understand. Furthermore, input data are not readily available. The objectives of this investigation were to use logistic equation to quantify the influence of seasonal water and nitrogen application on maize biomass accumulation and grain yield and to develop empirical models for prediction of maize biomass and grain yield. Logistic equations were fitted to dray matter (DM) yield at different times in the growing season at different irrigation water and nitrogen levels. The parameters of the logistic equations were then fitted to irrigation water and nitrogen as empirical functions. Further, the harvest index (HI) was related to the applied water and nitrogen as another empirical model. The empirical logistic models were used to estimate the DM and grain yield based on data from another experiment in the same area. Results indicated that the empirical models predicted the DM yield during the growing season with an acceptable accuracy, but dry matter (DM) prediction at harvest was very good. The grain yield also was predicted with a very good accuracy. It is concluded that logistic equation along with the presented empirical models for prediction of constants in logistic equation and HI are appropriate for accurate prediction of DM and grain yield of maize at the study region.  相似文献   

2.
Water use efficiency and yield of barley were determined in a field experiment using different irrigation waters with and without nitrogen fertilizer on a sandy to loamy sand soil during 1994–1995 and 1995–1996. Depending upon different fertilizer treatments, the overall mean crop yield ranges for two crop seasons were: greenmatter from 19.48–55.0 Mg ha−1 (well water) and 21.92–66.5 Mg ha−1 (aquaculture effluent); drymatter from 6.86–20.69 Mg ha−1 (well water) and 7.87–20.90 Mg ha−1 (aquaculture effluent); biomass from 4.12–21.31 Mg ha−1 (well water) and 8.10–19.94 Mg ha−1 (aquaculture effluent) and grain yield from 2.12–5.50 Mg ha−1 (well water) and 3.25–7.25 Mg ha−1 (aquaculture effluent). The WUE for grain yield was 3.37–8.74 kg ha−1 mm−1 (well water) and 5.17–11.53 kg ha−1 mm−1 (aquaculture effluent). The WUE for total biomass ranged between 6.55–33.88 kg−1 ha−1 mm−1 (well water) and 12.88–31.70 kg ha−1 mm−1 (aquaculture effluent). The WUE for drymatter was 10.91–32.90 kg ha−1 mm−1 (well water) and 12.51–33.22 kg ha−1 mm−1 (aquaculture effluent). It was found that grain yield and WUE obtained in T-4 and T-5 irrigated with well water and receiving 75 and 100% nitrogen requirements were comparable with T-4 and T-5 irrigated with aquaculture effluent and receiving 0 and 25% nitrogen requirements. In conclusion, application of 100 to 150 kg N ha−1 for well water and up to 50 kg N ha−1 for aquaculture effluent irrigation containing 40 Mg N l−1 would be sufficient to obtain optimum grain yield and higher WUE of barley in Saudi Arabia.  相似文献   

3.
针对宁夏扬黄灌区降水少、春季低温不利于玉米出苗和生长,而作物生育中后期高温胁迫导致玉米生产力低下等问题,在滴灌条件下设置秸秆全量还田(9000 kg/hm2)配施3个不同纯氮用量:150,300,450 kg/hm2(即处理N1,N2,N3),并以秸秆还田不施氮肥为对照处理(CK),研究不同施氮量对土壤水分、土壤温度、...  相似文献   

4.
在水资源管理中,水量水质联合调控主要是为了协调生态环境.利用运筹学、系统方法论、宏观经济学为计算基础,通过控制流域污染物来达到水质控制的目标.基于此,本文对水资源管理中水量水质联合调控的模式进行探讨.  相似文献   

5.
黑河中游地区由于农业水资源紧缺、灌溉方式粗放及水肥的不合理调配,导致该区水土资源浪费严重,为了节约水土资源,提高当地生产水平,本文基于2021年5-9月在水资源紧缺的黑河中游地区(张掖市民乐县益民灌溉试验站)采用膜下滴灌调亏灌溉技术,通过田间试验和理论分析相结合,主要研究膜下滴灌水氮耦合下大豆干物质积累及对产量的影响,研究结果表明:灌水量一定的情况下,适量增施氮肥可以促进大豆干物质的积累,但过量的氮素会导致大豆干物质的积累程下降趋势。N2W2处理是实现大豆产量较优的水氮耦合模式,较CK(不施氮量)、N1、N3(高施氮量)处理相比显著提高大豆产量39.94%、13.11%、20.73%。  相似文献   

6.
为探究东北半湿润区喷灌水肥一体化条件下春玉米最佳施氮管理模式,于2017年在东北地区开展了不同喷灌施氮管理对春玉米生长、产量及水氮利用效率的田间试验研究.试验设置了3个总施氮量:N200(200 kg/hm2),N160(160 kg/hm2)和N120(120 kg/hm2),其中播种时统一埋施氮肥60 kg/hm2,苗期统一喷施氮肥10 kg/hm2,其余在拔节期和灌浆期按照3种施氮比例T1(1∶0),T2(2∶1)和T3(3∶1)通过水肥一体化喷施施入.结果表明:T1获得了最高的氮肥偏生产力、氮素收获指数和水分利用效率.增加施氮量能够促进产量的增加,但N200和N160的平均产量差异不具有统计学意义(P>0.05).所有处理中T1N200的产量最高,为12 489 kg/hm2;T1N160处理的氮收获指数最大,为74.98 kg/kg.施氮量增加,氮肥偏生产力随之降低,0~100 cm土壤内的硝态氮残留量随之增多.T1处理的平均硝态氮残留量最少,降低了氮素淋失的风险.综合考虑,推荐该地区采用总施氮量160~200 kg/hm2,其中播种期施基肥60 kg/hm2,苗期追施10 kg/hm2,其余在拔节期全部追施的施氮管理模式.  相似文献   

7.
A field experiment was conducted for 2 years to investigate the effects of deficit irrigation, nitrogen and plant growth minerals on seed cotton yield, water productivity and yield response factor. The treatment comprises six levels of deficit irrigation (Etc 1.0, 0.9, 0.8, 0.7, 0.6 and 0.5) and four levels of nitrogen (80, 120, 160 and 200 kg N ha−1). These were treatments superimposed with and without plant growth mineral spray. Furrow irrigation treatments were also kept. Cotton variety Ankur-651 Bt was grown during 2006 and 2007 cotton season. Drip irrigation at 1.0 Etc saved 26.9% water and produced 43.1% higher seed cotton yield over conventional furrow irrigation (1.0 Etc). Imposing irrigation deficit of 0.8 Etc caused significant reduction in seed cotton yield to the tune of 9.3% of the maximum yield. Further increase in deficit irrigation from 0.7 Etc to 0.5 Etc significantly decreased seed cotton yield over its subsequent higher irrigation level. Decline in the yield under deficit irrigation was associated with reduction in number of bolls plant−1 and boll weight. Nitrogen at 200 kg ha−1 significantly increased mean seed cotton yield by 36.3% over 80 kg N ha−1. Seed cotton yield tended to increase linearly up to 200 kg N ha−1 with drip Etc 0.8 to drip Etc 1.0. With drip Etc 0.6-0.5, N up to 160 kg ha−1 provided the highest yield, thereafter it had declined. Foliar spray of plant growth mineral (PGM) brought about significant improvement in seed cotton yield by 14.1% over control. The water productivity ranged from 0.331 to 0.491 kg m−3 at different irrigation and N levels. On pooled basis, crop yield response factor of 0.87 was calculated at 20% irrigation deficit.  相似文献   

8.
Under semi-arid or arid conditions, growing needs for agricultural commodities dictate the intensification of agricultural activities through the application of irrigation and fertilization practices aimed at increasing crop yields. A certain amount of the added irrigation water is designed to seep below the root zone and leach excessive salts accumulated in the irrigated soil. This entails, in part, recharging the ground water-table aquifers. Hence, intensification of agricultural activities introduces a long-term risk of groundwater pollution by unused fertilizers, e.g., nitrogen, salts and pesticides, herbicides, leached from the irrigated fields. To avert or minimize this risk, the amounts of applied water and fertilizer should be determined and minimized by optimizing them to match crop requirements. The objectives of the present work were to determine the amounts of water and salts leached below several agricultural areas subjected to differing soil fertility practices, and to try to relate them to the yields obtained. Published data and experimental data sets of water, chloride and nitrate concentration – depth distributions were used and analyzed. The results show that intensification of agricultural activities leads to increased hazards to surface and groundwater pollution and this can be diminished provided balanced irrigation – fertilization programs are developed for different crops, by using the results of leachate loads seeping from long-term fertility and irrigation studies (permanent plot experiments).  相似文献   

9.
Summary Wheat was grown in field and glasshouse experiments to assess the effect of nitrogen fertilizer on yield when water stress occurred in the later half of the growth. N application was deferred until the main culm apex of the plant was at the double-ridge stage of development. In the glasshouse water stress was imposed by altering the watering regime; in the field it was anticipated as naturally occurring and compared to an irrigated control. The response to deferred N was much stronger at adequate water supply giving rise to a significant positive N X W interaction effect. This positive N X W interaction was shown by number of ears, leaf area index, green area duration, water use and root growth, as well as grain yield. In both the glasshouse and field, N increased post-anthesis green area duration (PGD) which was highly correlated with grain yield, but since the components of grain yield determining the response to N were largely established by anthesis (number of ears), PGD does not appear to increase grain yield, which was rather caused by increased survival of tillers. In concert with its effect on PGD, deferred N resulted in greater root survival and/or growth at deeper layers late in the season. Water stress as measured in these experiments was insufficient to cause decreases in yield from use of N at low water supply. However, in the field nitrogen application did lower plant water potential late in the growing season.  相似文献   

10.
A three-year field experiment (2006–2008) on clingstone peach cv. Andross was conducted in a commercial orchard under mechanical harvesting for the processing industry. Three irrigation strategies were evaluated: full irrigation throughout the growing season; restricted irrigation during stage-II (~70% restriction) and restricted irrigation during stage-III (~30% restriction), combined with three nitrogen fertilization treatments: 0, 60 and 120 kg N/ha. Trees were fertigated on a daily basis. Daily patterns of soil moisture were monitored with capacitance probes. Irrigation restriction strategies and nitrogen dose affected yield and fruit quality at commercial harvest. As well as the individual effects of applying irrigation strategies and N doses, interactions between the two factors were analyzed. In the second year, there was a nitrogen × irrigation interaction for fruit yield. A positive yield effect for N applied to fully irrigated trees occured, while the opposite was observed when the irrigation restrictions were applied during stage-III.  相似文献   

11.
含氮化合物是水体污染监测中的重要指标,因此需要可靠精确的检测方法作为支撑.本文采用气相分子吸收光谱法对亚硝酸盐氮、硝酸盐氮、总氮进行检测分析,结果表明:标准曲线相关系数均大于0.999,检出限、精密度、准确度、加标回收率均满足方法要求.表明气相分子吸收光谱法具有较高的灵敏度和准确度,稳定性好,可实现样品在线自动稀释和在...  相似文献   

12.
Research we have conducted over the past several years relative to agricultural application of remote sensing is reviewed. In addition, new data are presented from recent experiments reported here for the first time.The subjects treated are soil moisture, evaporation, irrigation scheduling, and crop yield estimation. The analyses indicate that we have the technology at hand to successfully integrate remote sensing techniques into agricultural operations designed to enhance production via intelligent water management.Avenues for additional fruitful research are indicated.  相似文献   

13.
为探讨水、盐、氮三因素对棉花生长的耦合效应及最优水肥制度,分别设置了4种灌溉定额(1 575,2 100,2 625,3 150 m3/hm2)、4种施氮量(0,150,300,450 kg/hm2)和4种土壤盐分(非盐化土、轻度、中度和重度盐化土),通过盆栽试验,研究了水、氮、盐对膜下滴灌棉花产量的影响.结果表明:灌溉定额、施氮量和土壤盐分与棉花产量之间符合回归模型,模型对水氮盐的耦合效果较好;单因素对棉花产量影响按因素排序由大到小为灌水量,土壤含盐量,施氮量;耦合作用的影响按因素排序由大到小为盐氮,水氮,水盐;水氮施加量对棉花产量的影响均存在阈值,低于此阈值,棉花增产效果较为明显;中、重度土壤盐分含量明显抑制棉花生长;通过回归模型进行耦合分析,最适合研究区的水肥盐耦合方式为轻盐土壤、灌溉定额2 677 m3/hm2和施氮量202 kg/hm2.本研究可为盐碱区棉田水肥高效利用提供科学依据.  相似文献   

14.
In order to explore the effects of different irrigation and nitrogen application on growth cha-racteristics and yield of apple trees under surge-root irrigation in mountainous areas of northern Shaanxi, field experiments were carried out with different apple trees. Three irrigation levels were applied: 85%-100%(H1), 70%-85%(H2)and 55%-70%(H3)of the field water capacity, respectively, and three nitrogen levels were N1(360 g/plant), N2(240 g/plant)and N3(120 g/plant). The results show that irrigation and nitrogen application has significant effects on new shoot length, flowering, fruit-setting, fruit diameter, fruit volume and yield of apple. The leaf area index(LAI)shows a singlet trend during the growth period, and the peak value appears in the middle of July. Under the same irrigation level, compared with N3, N1 increases in yield, new shoot length, LAI, transverse diameter, longitudinal diameter, volume, flowering and fruit setting by 17.91%, 28.31%, 18.75%, 11.38%, 10.13%, 36.60%, 20.92% and 5.19%, respectively, while N2 also increases by 12.40%, 15.63%, 4.86%, 5.40%, 5.11%, 17.01%, 26.17% and 13.74%, respectively. The rate of flowering and fruit setting decreases with the increase of nitrogen application. Under the same nitrogen level, compared with H3, H1 increases in yield, new shoot length, LAI, transverse diameter, longitudinal diameter, volume, flowering and fruit setting by 34.65%, 15.49%, 30.77%, 3.93%, 4.95%, 12.86%, 33.15% and 28.62%, respectively, while H2 also increases by 33.67%, 16.42%, 67.52%, 3.81%, 2.97%, 11.57%, 43.45%, and 27.26%, respectively. The rate of flowering and fruit setting decreases first and then increases with the increase of irrigation amount. Compared with H3N3, the yield of other treatments increases by 2.69%-52.20%, While H2N1 treatment has the highest yield(26 852.55 kg/ha). Considering from the point of view of promoting growth and increasing yield, the best water and nitrogen combination mode of mountain apple in northern Shaanxi is medium water deficit irrigation and high nitrogen(H2N1)treatment. The results from this study can provide a theoretical basis for apple water and nitrogen management in mountainous areas of northern Shaanxi.  相似文献   

15.
The increasing demand for irrigation water to secure food for growing populations with limited water supply suggests re-thinking the use of non-conventional water resources. The latter includes saline drainage water, brackish groundwater and treated waste water. The effects of using saline drainage water (electrical conductivity of 4.2–4.8 dS m−1) to irrigate field-grown tomato (Lycopersicon esculentum Mill cv Floradade) using drip and furrow irrigation systems were evaluated, together with the distribution of soil moisture and salt. The saline water was either diluted to different salinity levels using fresh water (blended) or used cyclically with fresh water. The results of two seasons of study (2001 and 2002) showed that increasing salinity resulted in decreased leaf area index, plant dry weight, fruit total yield and individual fruit weight. In all cases, the growth parameters and yield as well as the water use efficiency were greater for drip irrigated tomato plants than furrow-irrigated plants. However, furrow irrigation produced higher individual fruit weight. The electrical conductivity of the soil solution (extracted 48 h after irrigation) showed greater fluctuations when cyclic water management was used compared to those plots irrigated with blended water. In both drip and furrow irrigation, measurements of soil moisture one day after irrigation, showed that soil moisture was higher at the top 20 cm layer and at the location of the irrigation water source; soil moisture was at a minimum in the root zone (20–40 cm layer), but showed a gradual increase at 40–60 and 60–90 cm and was stable at 90–120 cm depth. Soil water content decreased gradually as the distance from the irrigation water source increased. In addition, a few days after irrigation, the soil moisture content decreased, but the deficit was most pronounced in the surface layer. Soil salinity at the irrigation source was lower at a depth of 15 cm (surface layer) than that at 30 and 60 cm, and was minimal in deeper layers (i.e. 90 cm). Salinity increased as the distance from the irrigation source increased particularly in the surface layer. The results indicated that the salinity followed the water front. We concluded that the careful and efficient management of irrigation with saline water can leave the groundwater salinity levels unaffected and recommended the use of drip irrigation as the fruit yield per unit of water used was on average one-third higher than when using furrow irrigation.  相似文献   

16.
A lysimeter experiment was conducted to investigate the effect of water table management (WTM) on distribution of soil salinity and annual alfalfa (Medicago scutellata) yield. Subirrigations with three levels of water table namely, 0.5 (WT0.5), 0.7 (WT0.7), and 1.0 m (WT1.0) and a free drainage (FD) conventional irrigation treatment were selected for this study. All treatments were arranged in a complete randomized block design with three replicates. The results of this study indicated that the average soil electrical conductivity of the saturated extract (ECe) in the root zone gradually increased and exceeded the designated crop threshold value (4 dS/m) after the first forage harvest in subirrigated lysimeters. A higher salt accumulation was observed at the WT0.5 treatment. The average dry matter yield of annual alfalfa in WT0.5 and WT0.7 treatments was found to be 52 and 73% higher compared with the control treatment, respectively.  相似文献   

17.
Quantifying the effect of drainage on crop yield is of essential importance in agricultural management. In this article a model is described with which this effect can be computed. For both arable land and grassland the factors acting in spring, summer and autumn are dealt with separately.Arable land. In spring sowing date is the main factor affecting the crop yield. Sowing date depends on the tillage conditions of the soil toplayer. By means of an existing model, the course in time of the soil water tension of the upper layer is simulated in connection with rainfall, evaporation, drain depth and drain intensity data. Using specific criteria on minimum soil water tension for tillage operations, the dates and number of workable days can be established from the model output. The expected yield depression is then derived, using an experimental relationship between yield depression and number of days of sowing delay.During the growing season the yield directly depends on the magnitude of the actual evapotranspiration. This value can be computed by means of a known evapotranspiration model for various drought frequencies, groundwater table depths in spring, drain intensities and amounts of water supplied. The yield can be obtained from the relationship between yield and relative evapotranspiration. Combining this yield with the yield depression obtained by means of the workability model gives the actual yield.In autumn crop yield is influenced by the working conditions during harvest. Via the workability model, the dates and the number of days available for harvesting are determined. Yields are derived from an experimental relationship between yield depression and number of days of earlier harvesting. An example is given for summer cereals growing on a heavy sandy loam soil under meteorological conditions prevailing in The Netherlands.Grassland. The effect of shallow groundwater table depths in winter and spring on the yield of the first and second cut can be determined with the workability model in an identical manner to that given for arable land. Because of lack of data, a slightly different approach was followed in this paper. With the workability model the course of groundwater table depth during winter and spring can be simulated and the mean depth determined. From the relation between yield depression and mean groundwater table depth over the period November through May the yield depression can be found. Combining this with the yield obtained with the evapotranspiration model gives the actual yield. An example representative for The Netherlands is given for grass on peat soil.  相似文献   

18.
Summary The effect of three climatic parameters and their interaction with water and nitrogen treatments on the monthly yield of dry matter by two Fescue grass species was studied for four years in a replicated field experiment. Yields from plots receiving weekly irrigation and the heaviest rates of nitrogen application were linearly related to the total number of hours of bright sunshine during the growth period unless the minimum air humidity was below 40% and the maximum air temperature above 26° C. On a seasonal scale only the direct and interactive effects of water and nitrogen were significant.  相似文献   

19.
Root growth, grain yield and water uptake by wheat in relation to soil water regime and depth of nitrogen (N) placement were studied in metallic cylinders filled with loamy sand soil. Root-length and -weight densities were greater under irrigated than under unirrigated conditions and they increased with deep placement as compared to surface mixing of fertilizer N. The differences were relatively larger in the deeper than in the upper soil layers and increased during later stages of plant growth. Under non-irrigated conditions, constant water table at 100 cm depth produced maximum root growth in the top 30 cm soil. Water uptake rate increased with increase in root density depending on root age and soil water status. Dry matter accumulation at different stages of plant growth and grain yield varied significantly with moisture regime and depth of N placement. Deep placement of fertilizer N under shallow water table and non-irrigated conditions caused greater root growth, better water utilization and a higher production.  相似文献   

20.
The publication is a synthesis of previous publications on the results of a long-term lysimeter experiment. From 1989 to 1998, the experimental variables were soil salinity and soil type, from 1999 onwards, soil salinity and crop variety. The plant was studied during the whole growing period by measuring the saline stress and analyzing its effect on leaf area and dry matter development and on crop yield. Salinity affected the pre-dawn leaf water potential, stomatal conductance, evapotranspiration, leaf area and yield.The following criteria were used for crop salt tolerance classification: soil salinity, evapotranspiration deficit, water stress day index. The classification according to soil salinity distinguished the salt tolerant group of sugar beet and wheat, the moderately salt sensitive group comprising broadbean, maize, potato, soybean, sunflower and tomato, and the salt sensitive group of chickpea and lentil. The results for the salt tolerant and the moderately salt sensitive groups correspond with the classification of Maas and Hoffman, excepted for soybean.The evapotranspiration deficit criterion was used, because for certain crops the relation between yield and evapotranspiration remains the same in case of drought and salinity. This criterion, however, did not appear useful for salt tolerance classification.The water stress day index, based on the pre-dawn leaf water potential, distinguished a tolerant group, comprising sugar beet, wheat, maize, sunflower and potato, and a sensitive group, comprising tomato, soybean, broadbean, chickpea and lentil. The classification corresponds with a difference in water use efficiency. The tolerant crops show a more or less constant water use efficiency. The sensitive crops show a decrease of the water use efficiency with increasing salinity, as their yield decreases stronger than the evapotranspiration. No correlation could be found between osmotic adjustment, leaf area and yield reduction. As the flowering period is a sensitive period for grain and fruit formation and the sensitive crops are all of indeterminate flowering, their longer flowering period could be a cause of their greater sensitivity.The tolerant group according to water stress day index can be divided according to soil salinity in a salt tolerant group of sugar beet and wheat and a moderately sensitive group, comprising maize, sunflower and potato. The difference in classification can be attributed to the difference in evaporative demand during the growing period.The sensitive group according to water stress day index can be divided according to soil salinity in a moderately sensitive group, comprising tomato, soybean and broadbean, and a salt sensitive group of chickpea and lentil. The difference in classification can be attributed to the greater salt sensitivity of the symbiosis between rhizobia and grain legume in the case of chickpea and lentil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号