首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 78 毫秒
1.
基于无人机遥感多光谱影像的棉花倒伏信息提取   总被引:2,自引:1,他引:2  
为在棉花发生倒伏灾害后快速获取田块尺度下的受灾信息,该文以2017年8月21日强风暴雨导致大面积棉花倒伏的新疆生产建设兵团第八师135团的部分田块作为研究区,由无人机遥感试验获取倒伏后的多光谱影像,通过分析倒伏和正常棉花的光谱反射率差异提取了多种植被指数和主成分纹理特征,结合地面调查样本建立了3种花铃期倒伏棉花的Logistic二分类模型并进行了精度评价和验证。结果表明:棉花倒伏前后在可见光波段的反射率差异微小,而在红边和近红外波段的反射率明显降低0.12~0.20;以第一主成分均值(PCA1_mean)建立的Logistic二分类纹理模型效果最优,在测试集上分类结果的准确率为91.30%,ROC(receiver operating characteristic)曲线距左上角点最近,AUC(area under the roc curve)值为0.80。通过将该模型应用于试验区影像,分类制图效果良好且符合棉田倒伏症状特点。该研究可为无人机多光谱遥感棉花灾损评估提供参考。  相似文献   

2.
基于小型无人机遥感的玉米倒伏面积提取   总被引:8,自引:10,他引:8  
该文使用2012年小型无人机遥感试验获取的红、绿、蓝彩色图像研究灌浆期玉米倒伏的图像特征和面积提取方法。研究首先计算和统计正常、倒伏玉米的30项色彩、纹理特征,然后比较特征的变异系数和相对差异评选出适宜区分正常、倒伏玉米的特征;通过分析发现,与红、绿、蓝色灰度比较,多项色彩、纹理特征的变异系数更大或不同类别间的相对差异更小,不适用于准确区分正常、倒伏玉米,最适于区分正常和倒伏玉米的特征是3项基于灰度共生矩阵的红、绿、蓝色均值纹理特征。分别基于色彩特征和评选出的纹理特征提取倒伏玉米面积,对比2种方法的误差发现,基于红、绿、蓝色均值纹理特征提取倒伏玉米面积的误差最小为0.3%,最大为6.9%,显著低于基于色彩特征提取方法的。该研究结果为应用无人机彩色遥感图像准确提取倒伏玉米面积提供了依据和方法。  相似文献   

3.
基于无人机多光谱影像的完熟期玉米倒伏面积提取   总被引:2,自引:3,他引:2  
由于土壤、地形、水分以及耕作方式等存在的时空变异性,致使灾后完熟期玉米地块存在4类作物形态,包括叶片呈绿色的未倒伏玉米、叶片淡黄的未倒伏玉米、叶片淡黄的倒伏玉米、黑色阴影区域。为进一步提高现有倒伏玉米面积提取方法的精度,该文以黑龙江省国营农场典型玉米倒伏地块为研究区,获取无人机多光谱数据,对比4类作物形态的光谱、植被指数以及纹理特征差异,经特征筛选后,首先面向倒伏玉米提取构建了5种典型特征组合。然后针对植被指数特征、光谱和纹理特征组合采用最大似然法分类,最后对提取结果的精度进行评价和分析。结果表明:反射光谱特征或植被指数特征无法准确区分4类作物形态,提取的倒伏玉米面积偏差较大;多类纹理特征法所得结果最优,4类典型作物形态的识别平均误差为9.82%,倒伏面积提取的误差为3.40%,Kappa系数为0.84。该研究延展了纹理特征在倒伏玉米面积提取中的应用并对完熟期倒伏玉米识别具有重要的借鉴意义。  相似文献   

4.
利用无人机平台搭载多光谱相机组成的遥感监测系统在农业上已取得了一些成果,但利用无人机多光谱影像开展作物氮素估测研究少有尝试。基于此,该文利用国家精准农业基地2017年夏玉米3个关键生育期无人机多光谱影像和田间实测叶片氮含量数据,开展夏玉米叶片氮素含量的无人机遥感估测研究。对该研究选用的15个光谱变量,通过相关性分析解析光谱变量与LNC的相关关系,筛选出对玉米叶片氮素含量敏感的光谱变量;应用后向逐步回归方法分析不同变量指数下估测精度变化,最终确定不同生育期夏玉米LNC估测的光谱变量,实现对夏玉米叶片氮含量的较高精度监测。研究发现:1)在3个生育时期,GRE和GNDVI与LNC都有很强的相关性,表明绿波段可以很好地进行夏玉米生物理化参数的反演;2)在喇叭口期和灌浆期,OSAVI、SAVI与LNC具有高度相关性,证明在夏玉米生长前期和后期选择控制土壤因素的光谱变量可以提高对氮素估测的能力。在筛选最优光谱变量建模过程中发现,喇叭口期选取5个光谱变量(GNDVI、GRE、OSAVI、REG、SAVI)建模效果最好,估测模型的R~2、RMSE和nRMSE分别为0.63、27.63%、11.62%;抽雄吐丝期选取6个光谱变量(REG、GRE、GNDVI、MNLI、RED、NDVI)建模效果最好,估测模型的R~2、RMSE和n RMSE分别为0.64、20.50%、7.80%;灌浆期选取5个光谱变量(GRE、GNDVI、RED、NDVI、OSAVI)建模效果最好,估测模型的R~2、RMSE和n RMSE分别为0.56、31.12%、12.71%;在不同生育期选取最优光谱变量进行夏玉米LNC估测具有很好的效果。应用无人机多光谱遥感影像数据可以很好地监测田块尺度夏玉米LNC的空间分布,可为玉米田间氮素精准管理提供空间决策服务信息支持。  相似文献   

5.
基于无人机遥感影像的玉米苗期株数信息提取   总被引:1,自引:5,他引:1  
准确、快速地获取玉米苗期株数对于育种早期决策起着至关重要的作用。该文利用2017年6月于北京市小汤山镇采集的无人机影像,首先对比分析RGB、HSV、YCbCr及L*A*B 4种色彩空间,变换优选HSV颜色模型对无人机影像前景(作物)与后景(土壤背景)进行分割,得到分类二值图。然后利用骨架提取算法及多次去毛刺处理等数学形态学流程提取玉米苗形态,得到高精度作物形态骨架,结合影像尺度变换剔除噪声影像,将影像分为多叶、少叶2类,经Harris、Moravec和Fast角点检测识别结果对比,Harris角点检测算法可以较好地提取玉米苗期影像的株数信息。结果表明,少叶类型识别率达到96.3%,多叶类型识别率达到99%,总体识别率为97.8%,将目前传统影像识别精度提高了约3%。同时在多个植株叶片交叉重叠覆盖的情况下,该文的研究方法有良好的适用性。通过无人机影像提取玉米苗期作物准确数目是可行的。该文采用了数学形态学的原理,通过HSV色彩空间变换得到的二值图,从无人机影像中识别提取玉米苗期形态信息,利用影像尺度缩放变换去除噪点,优化骨架识别算法使得识别精度大大提高,最后采用角点检测从无人机影像中直接读取玉米材料小区内的具体数目,该方法节省了人力物力,为田间大面积测定出苗率及最终估产提供了参考。  相似文献   

6.
黄化病是一种严重危害槟榔生长的病害,迫切需要及时、准确地监测其侵染的严重度差异和空间分布。低空无人机遥感可有效解决槟榔种植区由于多云雨天气而造成光学卫星影像获取不足,提高槟榔黄化病监测的实时性。该文利用大疆精灵Phantom 4 Pro V2.0四旋翼无人机搭载MicaSense RedEdge-M多光谱相机获取5波段多光谱影像,基于最小冗余最大相关算法(Minimum Redundancy Maximum Relevance,mRMR)从15个潜在的植被指数中优选比值植被指数(Ratio Vegetation Index,RVI)、改进的简单比值指数(Modified Simple Ratio Index,MSR)和花青素反射指数(Anthocyanin Reflectance Index,ARI)作为敏感特征,分别利用后向传播神经网络(Back Propagation Neural Network, BPNN)、随机森林(Random Forest, RF)和支持向量机(Support Vector Machine, SVM)分类算法,构建了槟榔黄化病严重度监测模型。结果表明,BPNN模型总体精度达到91.7%,分别比RF模型和SVM模型提高6.7%和10.0%,且Kappa系数为0.875,为所有模型中最高,漏分、错分误差也最小,健康,轻度和重度分别为11.1%、15.8%,13.6%、9.5%和0、0。研究结果证明了无人机多光谱遥感影像监测槟榔黄化病的可行性,同时也可为其他热带作物病害监测提供案例研究。  相似文献   

7.
倒伏水稻的识别对灾后农业生产管理、灾害保险、补贴等工作有重要意义。为应用高分辨率遥感影像准确提取倒伏水稻面积,本文利用2019年9月27日获取的哨兵2号多光谱遥感影像,研究黑龙江省同江市倒伏水稻的光谱、纹理特征,并基于光谱与纹理特征建立倒伏水稻的遥感提取模型。研究结果表明水稻倒伏后可见光-近红外-短波红外等8个波段的反射率均升高,其中短波红外、红光和红边1等3个波段的反射率上升大于0.06。倒伏水稻的典型植被指数中,归一化植被指数、比值植被指数、增强植被指数和红边位置指数均降低,但差值植被指数升高。倒伏与正常水稻在红光、红边1和短波红外等3个波段的均值纹理数值差距明显,红光波段的纹理均值差异最大。利用归一化植被指数、地表水分指数、比值植被指数和差值植被指数以及红光波段的纹理均值构建决策树分类模型,监测结果表明农场内倒伏水稻分布较散,其西部和南部水稻受灾面积较大,北部受灾面积较小,中部偏北和东部基本未倒伏。将本文模型所提取的结果与实测面积对比,正常与倒伏水稻的面积识别误差分别为3.33%和2.23%。利用随机验证样本与模型验证结果进行混淆矩阵分析,倒伏水稻的用户精度和制图精度均为92.0%,Kappa系数为0.93。该方法能够适用于大区域倒伏水稻提取,可为高分辨率多光谱遥感数据调查水稻倒伏面积提供相关依据。  相似文献   

8.
基于Worldview-2影像的玉米倒伏面积估算   总被引:4,自引:5,他引:4  
为应用高分辨率遥感影像准确调查玉米倒伏面积,该文使用2012年9月14日获取的Worldview-2多光谱影像研究灌浆期倒伏玉米的光谱、纹理特征及其最优的面积估算方法。通过对影像进行大气校正后得到正常玉米和倒伏玉米的反射率,结果显示玉米倒伏后8个波段的反射率均升高,其中红边、近红外1和近红外2等3个波段的上升数值超过0.1。通过对反射率数据进行滤波得到正常、倒伏玉米的均值纹理特征,统计结果显示各波段纹理特征有差异,其中绿色、红边、近红外1及近红外2等4波段的均值纹理特征数值差距更明显。比较使用不同波段数量、特征及分类方法的倒伏面积估算值,结果表明基于最大似然分类法使用红边、近红外1和近红外2等3波段光谱反射率的倒伏面积估算方法最优,其最小误差为2.2%,最大误差为8.9%,平均误差为4.7%。该研究结果为应用高分辨率多光谱遥感数据调查玉米倒伏面积提供了相关依据。  相似文献   

9.
为研究无人机多光谱遥感5个波段光谱反射率反演冬小麦SPAD(Soil and Plant Analyzer Development)值的可行性,该研究采用六旋翼无人机搭载五波段多光谱相机,采集冬小麦拔节期、孕穗期、抽穗期、开花期的冠层光谱影像并提取反射率特征参数,建立SPAD值的反演模型。结果表明,当波长范围在蓝光、绿光和红光波段,冬小麦拔节期、孕穗期和开花期的无人机多光谱影像反射率参数与SPAD值呈负相关关系,而在抽穗期,二者呈正相关;当波长范围为红边及近红外波段,在整个生长期,二者均呈现正相关关系。该研究构建冬小麦SPAD值反演模型采用了主成分回归、逐步回归和岭回归法,经对比发现基于逐步回归法构建的模型效果最优,该模型的校正决定系数为0.77,主成分回归法次之,岭回归法较差。此外,冬小麦抽穗期多光谱反射率反演SPAD值效果最显著,主成分回归、岭回归和逐步回归3种回归模型的校正决定系数分别为0.72、0.74和0.77。该研究可为无人机多光谱遥感监测作物长势、实现精准农业生产管理提供技术依据。  相似文献   

10.
为了满足多旋翼植保无人机悬停、定速飞行2种作业模式下近地遥感的需求,该文设计了一套液晶光谱成像装置。首先,通过硬件、软件开发,实现了装置采集模块、控制模块和通信模块3部分的协同工作。其中,采集模块由16位CCD灰度相机、消色差镜头、液晶可调滤光器以及UV镜组成,控制模块由微电脑处理器和USB连接器组成,通信模块由数传、北斗定位系统和地面工作站组成。由5V3A电源供电。开发相应软件实现各硬件模块之间的协同控制,以及数据处理的功能。数据处理功能既可用于拍摄前装置的参数调节,又可单独用于光谱图像分析。基于本装置的数据采集方法,实现了光谱图像采集与旋翼无人机2种飞行模式的匹配。通过室内模拟飞行试验和田间试验,对装置性能进行测试。结果显示装置可获得清晰的光谱图像,光谱范围400~720 nm,光谱间隔最高可达到2 nm,空间分辨率1392×1040,且光谱连续平滑、特征稳定可靠。本装置基于面阵分光原理,采用密接耦合光路设计、核心器件同步触发技术,结构紧凑、抗震性好、稳定度高,适合植保作业,有望应用于精准农药喷施、作物处方图生成等多个领域。  相似文献   

11.
为解决农业机器人在玉米田行间行走的全局路径规划问题,该研究提出一种基于全卷积神经网络(FullyConvolutional Networks,FCN)的无人机玉米遥感图像垄中心线提取方法.基于无人机获取的高精度可见光遥感图像,设计了针对农田垄中心线提取的数据集标注方法,采用滑动窗口法进行图像分块,利用深度学习语义分割网...  相似文献   

12.
无人机多光谱遥感反演各生育期玉米根域土壤含水率   总被引:1,自引:3,他引:1  
为准确及时地获取植被覆盖条件下农田土壤水分信息,该文以不同水分处理的大田玉米为研究对象,利用无人机遥感平台对夏玉米进行多期遥感监测,并同步采集玉米根域不同深度土壤含水率(Soil Water Content,SWC)。基于2018年夏玉米拔节期、抽雄-吐丝期和乳熟-成熟期的无人机多光谱遥感影像数据集,通过支持向量机(Support Vector Machine,SVM)分类剔除土壤背景,提取玉米冠层光谱反射率并计算10种植被指数(VegetationIndex,VI),然后利用全子集筛选(FullSubsetSelection)法对不同波段和植被指数进行不同深度土壤含水率的敏感性分析,并分别采用岭回归(Ridge Regression,RR)和极限学习机(ExtremeLearningMachine,ELM)2种方法构建全子集筛选后0~20、20~45和45~60cm不同深度下的土壤含水率定量估算模型。结果表明:基于贝叶斯信息准则(BayesianInformationCriterion,BIC)的全子集筛选法可以有效筛选最优光谱子集,筛选变量基本都通过了显著性检验,自变量个数较少;在同一生育期、同一深度条件下,ELM模型效果均优于RR模型;玉米在拔节期、抽雄-吐丝期的最佳监测深度为0~20cm,在乳熟-成熟期的最佳监测深度为20~45cm;乳熟-成熟期的20~45cm深度下的ELM反演模型效果最优,其建模集和验证集的决定系数Rc2和Rv2分别为0.825和0.750,均方根误差RMSEc和RMSEv分别为1.00%和1.32%,标准均方根误差NRMSEc和NRMSEv分别为10.85%和13.55%。利用全子集筛选法与机器学习相结合的方法可以提高土壤含水率的反演精度和鲁棒性,本研究为快速、准确地监测农田土壤墒情、实施精准灌溉提供了一种新的途径。  相似文献   

13.
基于Sentinel-1雷达影像的玉米倒伏监测模型   总被引:5,自引:3,他引:5  
在玉米发生倒伏灾害后,为定量监测区域尺度下的玉米倒伏程度,该研究以2017年8月8日因强风和强雨造成大面积玉米倒伏的小汤山国家精准农业研究示范基地作为研究区,提取倒伏前后Sentinel-1A雷达影像的多种强度信息,与实测倒伏样本关联分析,筛选出玉米倒伏前后最佳敏感后向散射系数。采用自然高与植株高的比值作为倒伏程度评价指标并构建比值公式,最终得到倒伏监测模型。结果表明,倒伏前后玉米植株高度的最优敏感后向散射系数分别为σVH和σVV+VH。32个建模点的实测差值结果与模拟差值结果的R~2为0.896(P0.01)。15个检验样本点和总样本点的倒伏程度分类准确度均达到100%。模型求解的自然高与植株高的比值与实测的比值总体相关性达到0.899。其中,中度倒伏类型的相关性最好,严重倒伏次之,轻度倒伏最差。该研究结果表明,在倒伏发生后,基于Sentinel-1A雷达后向散射系数构建的倒伏监测模型能在区域尺度下有效的实现玉米倒伏程度的分级监测。  相似文献   

14.
基于微小型无人机的遥感信息获取关键技术综述   总被引:14,自引:13,他引:14  
近年来,基于微小型无人机的遥感信息获取技术广泛应用在农业领域。采用微小型无人机遥感信息平台获取农田作物信息,具有运行成本低、灵活性高以及获取数据实时快速等特点,是目前农田作物信息快速获取的主要方法之一,是精准农业发展的重要方向。该文主要对微小型无人机遥感技术平台的发展、遥感信息获取技术、遥感图像的处理与解析、以及微小型无人机遥感平台应用在作物信息监测和生产管理等方面进行了深入剖析,强调了遥感信息获取与解析技术的重要性和存在的问题,受微小型无人机飞行稳定性和载荷量的限制,如何实时快速准确地调整机载遥感传感器的姿态使被测目标始终处于监测视野中,并实现图像信息的远距离获取与传输,以及如何处理和解析无人机遥感系统获取高质量的遥感图像是微小型无人机遥感技术能否被广泛应用在各研究领域的关键技术。最后,提出了增强无人机飞行控制系统的高稳定性、遥感图像的精确获取及数据的实时传输和高精度的图像后处理方法,对作物信息监测技术的发展和应用具有重大意义,是实现大面积精准农业生产管理决策的重要依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号