首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
OBJECTIVE: To determine potency and selectivity of nonsteroidal anti-inflammatory drugs (NSAID) and cyclooxygenase- (COX-) specific inhibitors in whole blood from horses, dogs, and cats. SAMPLE POPULATION: Blood samples from 30 healthy horses, 48 healthy dogs, and 9 healthy cats. PROCEDURE: Activities of COX-1 and COX-2 were determined by measuring coagulation-induced thromboxane and lipopolysaccharide-induced prostaglandin E2 concentrations, respectively, in whole blood with and without the addition of various concentrations of phenylbutazone, flunixin meglumine, ketoprofen, diclofenac, indomethacin, meloxicam, carprofen, 5-bromo-2[4-fluorophenyl]-3-14-methylsulfonylphenyl]-thiophene (DuP 697), 5,5-dimethyl-3-(3-fluorophenyl)-4-(4-methylsulphonyl) phenyl-2(5H)-furan one (DFU), 3-(3,4-difluorophenyl)-4-(4-(methylsulfonyl)phenyl)-2-(5H)-furanone (MF-tricyclic), and celecoxib. Potency of each test compound was determined by calculating the concentration that resulted in inhibition of 50% of COX activity (IC50). Selectivity was determined by calculating the ratio of IC50 for COX-1 to IC50 for COX-2 (COX-1/COX-2 ratio). RESULTS: The novel compound DFU was the most selective COX-2 inhibitor in equine, canine, and feline blood; COX-1/COX-2 ratios were 775, 74, and 69, respectively. Carprofen was the weakest inhibitor of COX-2, compared with the other COX-2 selective inhibitors, and did not inhibit COX-2 activity in equine blood. In contrast, NSAID such as phenylbutazone and flunixin meglumine were more potent inhibitors of COX-1 than COX-2 in canine and equine blood. CONCLUSIONS AND CLINICAL RELEVANCE: The novel COX-2 inhibitor DFU was more potent and selective in canine, equine, and feline blood, compared with phenylbutazone, flunixin meglumine, and carprofen. Compounds that specifically inhibit COX-2 may result in a lower incidence of adverse effects, compared with NSAID, when administered at therapeutic dosages to horses, dogs, and cats.  相似文献   

2.
Newer cyclo-oxygenase-2 (COX-2) selective nonsteroidal anti-inflammatory drugs (NSAIDs), such as firocoxib, are proposed to reduce inhibition of cyclo-oxygenase-1 (COX-1) and avoid undesirable side effects, while continuing to inhibit inflammation associated with COX-2. However, COX selectivity is typically based on in vitro testing, which may not provide sufficient information critical for treatment selection. This study investigated the pharmacokinetics and ex vivo COX-1 and COX-2 inhibition of phenylbutazone, flunixin meglumine, meloxicam and firocoxib. Horses (n = 3) were administered one of the four drugs, in a randomised cross-over design, with 3-week washout periods. For each drug, three doses were given and sampling performed. Drug plasma concentrations, thromboxane B2 (TXB2) and prostaglandin E2 (PGE2) were determined. After one dose, TXB2 and PGE2 levels were significantly higher in horses administered firocoxib compared to flunixin meglumine. Following the third dose, TXB2 levels in horses administered firocoxib and meloxicam were significantly higher compared to flunixin meglumine or phenylbutazone; all drugs reduced PGE2 to a similar degree. The mean plasma half-lives were 5.97 ± 0.47, 4.74 ± 0.14, 8.24 ± 3.74 and 47.42 ± 7.41 h for phenylbutazone, flunixin meglumine, meloxicam and firocoxib, respectively. Firocoxib and meloxicam exhibited significantly less COX-1 inhibition compared to flunixin meglumine and phenylbutazone; all drugs inhibited COX-2. The plasma half-life of firocoxib was longer than the other NSAIDs, including meloxicam. Data from this study have important clinical relevance and should be used to inform practitioners’ drug selection of a COX-1 sparing or traditional NSAID and dose selection and to provide knowledge of the duration for the four NSAIDs studied.  相似文献   

3.
Much useful information relevant to elucidation of mechanism of action of nonsteroidal anti-inflammatory drugs (NSAIDs) at the molecular level can be obtained from integrating pharmacokinetic (PK) and pharmacodynamic (PD) data, such data being obtained usually, although not necessarily, in separate studies. Integrating PK and PD data can also provide a basis for selecting clinically relevant dosing schedules for subsequent evaluation in disease models and clinical trials. The principles underlying and uses of PK-PD integration are illustrated in this review for phenylbutazone in the horse and cow, carprofen and meloxicam in the horse, carprofen and meloxicam in the cat and nimesulide in the dog. In the PK-PD modelling approach for NSAIDs, the PK and PD data are generated (usually though not necessarily) in vivo in the same investigation and then modelled in silico, usually using the integrated effect compartment or indirect response models. Drug effect is classically modelled with the sigmoidal E(max) (Hill) equation to derive PD parameters which define efficacy, potency and sensitivity. The PK-PD modelling approach for NSAIDs can be undertaken at the molecular level using surrogates of inhibition of cyclooxygenase (COX) isoforms (or indeed other enzymes e.g. 5-lipoxygenase). Examples are provided of the generation of PD parameters for several NSAIDs (carprofen, ketoprofen, vedaprofen, flunixin and tolfenamic acid) in species of veterinary interest (horse, calf, sheep and goat), which indicate that all drugs investigated except vedaprofen were non-selective for COX-1 and COX-2 in the four species investigated under the experimental conditions used, vedaprofen being a COX-1 selective NSAID. In these studies, plasma concentration was linked to COX inhibitory action in the biophase using an effect compartment model. Data for S-(+)-ketoprofen have been additionally subjected to inter-species modelling and allometric scaling of both PK and PD parameters. For several species values of four PK parameters were highly correlated with body weight, whilst values for PD parameters based on COX inhibition lacked allometric relationship with body weight. PK-PD modelling of NSAIDs has also been undertaken using clinical end-points and surrogates for clinical end-points in disease models. By measurement of clinically relevant indices in clinically relevant models, data generated for PD parameters have been used to set dosages and dose intervals for evaluation and confirmation in clinical trials. PK-PD modelling of NSAIDs is likely to prove superior to conventional dose titration studies for dosage schedule determination, as it sweeps the whole of the concentration-effect relationship for all animals and therefore permits determination of genuine PD parameters. It also introduces time as a second independent variable thus allowing prediction of dosage interval. Using indirect response models and clinically relevant indices, PD data have been determined for flunixin, phenylbutazone and meloxicam in the horse, nimesulide in the dog and meloxicam in the cat.  相似文献   

4.
Nonsteroidal anti-inflammatory drugs (NSAIDs) are commonly used to manage a wide variety of conditions in horses, including management of colic. Flunixin meglumine is by far the most commonly used drug in the control of colic pain and inflammation and has become a go-to for not only veterinarians but also horse-owners and nonmedical equine professionals. NSAID use, however, has always been controversial in critical cases due to a high risk of adverse effects associated with their potent cyclo-oxygenase (COX) inhibition. There are two important COX isoenzymes: COX-1 is generally beneficial for normal renal and gastrointestinal functions and COX-2 is associated with the pain and inflammation of disease. Newer selective NSAIDs can target COX-2-driven pathology while sparing important COX-1-driven physiology, which is of critical importance in horses with severe gastrointestinal disease. Emerging research suggests that firocoxib, a COX-2-selective NSAID labelled for use in horses, may be preferable for use in colic cases in spite of the decades-long dogma that flunixin saves lives.  相似文献   

5.
Carprofen, a non-steroidal anti-inflammatory drug (NSAID), was injected intravenously in six cows after calving, either as a single or a daily dose of 0.7 mg/kg for five days. Carprofen was well tolerated by the cows at this dose rate, the milk production and biochemical variables remaining within the normal ranges. The plasma elimination half-life of carprofen ranged from 44.5 to 64.6 h after repeated daily injections. These values are longer than those reported for other NSAIDs used in veterinary medicine, e.g. flunixin and phenylbutazone. The volume of distribution and the clearance values calculated after a single intravenous injection amounted to 0.09 l/kg and 9.0 ml/min. The concentration of carprofen in milk collected twice daily (morning and evening) was, in general, below the sensitivity limit of the analytical method (25 ng/ml) up to five days after the last carprofen injection; the concentration of carprofen reached about 30 ng/ml in only a few milk samples collected after the fourth or fifth injection. This indicates that carprofen is poorly excreted in the milk.  相似文献   

6.
7.
Synovitis in horses is frequently treated by administration of non-steroidal anti-inflammatory drugs (NSAIDs), which inhibit cyclooxygenase isoforms (COX-1 and COX-2). Constitutively expressed COX-1 is involved in physiologic functions such as maintenance of gastric mucosal integrity, whereas COX-2 is up-regulated at sites of inflammation. Thus, COX-2 inhibitors reduce inflammation with reduced gastrointestinal side effects as compared to non-selective COX inhibitors. The objective of the present study was to compare the anti-inflammatory effects of the preferential COX-2 inhibitor etodolac with the non-selective COX inhibitor phenylbutazone in horses with lipopolysaccharide (LPS)-induced synovitis. Three groups of horses (n=6) received no treatment, phenylbutazone (4.4 mg/kg, IV, q12h), or etodolac (23 mg/kg, IV, q12h), respectively, 2-h following injection of LPS into one middle carpal joint. Synovial fluid was analyzed for white blood cell (WBC) count, and TXB2 and PGE2 levels. Phenylbutazone and etodolac significantly reduced WBC count 6 and 24-h following injection of LPS compared to untreated horses. In addition, both drugs significantly reduced PGE2 levels (P<0.05) 6-h following LPS injection, whereas the probable COX-1 prostanoid TXB2 was significantly reduced by phenylbutazone (P<0.05), but not etodolac. Etodolac may serve as a more selective anti-inflammatory agent than phenylbutazone for treatment of equine synovitis.  相似文献   

8.
OBJECTIVE: To evaluate adverse effects of long-term oral administration of carprofen, etodolac, flunixin meglumine, ketoprofen, and meloxicam in dogs. ANIMALS: 36 adult dogs. PROCEDURES: Values for CBC, urinalysis, serum biochemical urinalyses, and occult blood in feces were investigated before and 7, 30, 60, and 90 days after daily oral administration (n = 6 dogs/group) of lactose (1 mg/kg, control treatment), etodolac (15 mg/kg), meloxicam (0.1 mg/kg), carprofen (4 mg/kg), and ketoprofen (2 mg/kg for 4 days, followed by 1 mg/kg daily thereafter) or flunixin (1 mg/kg for 3 days, with 4-day intervals). Gastroscopy was performed before and after the end of treatment. RESULTS: For serum gamma-glutamyltransferase activity, values were significantly increased at day 30 in dogs treated with lactose, etodolac, and meloxicam within groups. Bleeding time was significantly increased in dogs treated with carprofen at 30 and 90 days, compared with baseline. At 7 days, bleeding time was significantly longer in dogs treated with meloxicam, ketoprofen, and flunixin, compared with control dogs. Clotting time increased significantly in all groups except those treated with etodolac. At day 90, clotting time was significantly shorter in flunixin-treated dogs, compared with lactose-treated dogs. Gastric lesions were detected in all dogs treated with etodolac, ketoprofen, and flunixin, and 1 of 6 treated with carprofen. CONCLUSIONS AND CLINICAL RELEVANCE: Carprofen induced the lowest frequency of gastrointestinal adverse effects, followed by meloxicam. Monitoring for adverse effects should be considered when nonsteroidal anti-inflammatory drugs are used to treat dogs with chronic pain.  相似文献   

9.
Carprofen, flunixin meglumine and placebo in the form of a physiological solution of sodium chloride were tested in an open randomised cross-over trial for analgesic efficacy in horses with two external skin-stimulation systems. Both systems, the withers model and the "heating element" model, were compared in order to find an optimal way to measure pain perception after stimulating the skin with high temperature. No analgesic effect of flunixin or carprofen could be demonstrated when using the withers model. In the "heating element" model, a 1.1 mg/kg i.v. dose of flunixin meglumine failed to inhibit the peripheral pain, while it could be shown that a 0.7 mg/kg i.v. dose of carprofen inhibited the peripheral perception of pain in horses for approximately 24 hours after the drug injection. To induce an analgesic effect with carprofen, its plasma concentration had to be at least 1.5 micrograms/ml.  相似文献   

10.
A potential adverse effect of cyclo-oxygenase (COX) inhibitors (nonsteroidal anti-inflammatory drugs [NSAIDs]) in horses is colitis. In addition, we have previously shown an important role for COX-produced prostanoids in recovery of ischaemic-injured equine jejunum. It was hypothesised that the nonselective COX inhibitor flunixin would retard repair of bile-injured colon by preventing production of reparative prostaglandins, whereas the selective COX-2 inhibitor, etodolac would not inhibit repair as a result of continued COX-1 activity. Segments of the pelvic flexure were exposed to 1.5 mmol/l deoxycholate for 30 min, after which they were recovered for 4 h in Ussing chambers. Contrary to the proposed hypothesis, recovery of bile-injured colonic mucosa was not affected by flunixin or etodolac, despite significantly depressed prostanoid production. However, treatment of control tissue with flunixin led to increases in mucosal permeability, whereas treatment with etodolac had no significant effect. Therefore, although recovery from bile-induced colonic injury maybe independent of COX-elaborated prostanoids, treatment of control tissues with nonselective COX inhibitors may lead to marked increases in permeability. Alternatively, selective inhibition of COX-2 may reduce the incidence of adverse effects in horses requiring NSAID therapy.  相似文献   

11.
The medical treatment of osteoarthritis (OA) in the horse is one of the most utilized therapeutic regimens in the equine practice. It is important to understand the anatomy of synovial joints and the pathophysiology of the disease process to treat OA adequately. Once a thorough understanding of the disease process is comprehended the proper combination of systemic nonsteroidal anti-inflammatory drugs (NSAIDs), intraarticular steroids, viscosupplementation and chondroprotectants can be used to treat the disease and inhibit further progression of degenerative changes to the cartilage surface. The equine practitioner is faced with many choices for controlling inflammation in OA. This review presents the background and appropriate uses of various NSAIDs such as phenylbutazone, flunixin meglumine, ketoprofen, naproxen, and carprofen as well as their associated toxicities. Various steroid formulations exist for intraarticular (IA) administration and much has been learned in the past decade regarding correct dosage, frequency of administrations, indications and toxicity. This review presents IA steroids and their indications in addition to various chondroprotective drugs that also exist to control inflammation and provide viscosupplementation. Data are also given on disease modifying OA drugs such as glucosamine and chondroitin sulphate that have more recently become available to the equine practitioner.  相似文献   

12.
OBJECTIVE: To evaluate cyclooxygenase isozyme distribution in tissues from dogs and determine the differential sensitivity of canine cyclooxygenase (COX)-1 and -2 isozymes to nonsteroidal anti-inflammatory drugs (NSAIDs). SAMPLE POPULATION: Canine tissue samples (stomach, duodenum, ileum, jejunum, colon, spleen, cerebral cortex, lung, ovary, kidney, and liver) were obtained from 2 dogs for northern and western blot analyses, and blood for whole blood COX assays was obtained from 15 dogs. PROCEDURE: 11 NSAIDs were evaluated to determine their COX-2 selectivity in whole blood assays. The concentrations of the drug needed to inhibit 50% of enzyme activity (IC50) were then calculated for comparison. Expression and tissue distribution of COX isozymes were determined by northern and western blot analysis. RESULTS: Aspirin, diclofenac, indomethacin, ketoprofen, meclofenamic acid, and piroxicam had little selectivity toward COX isozymes, whereas NS398, carprofen, tolfenamic acid, nimesulide, and etodolac had more than 5 times greater preference for inhibiting COX-2 than COX-1. All canine tissues examined, including those from the gastrointestinal tract, coexpressed COX-1 and -2 mRNA, although protein expression was observed only for COX-1. CONCLUSIONS AND CLINICAL RELEVANCE: Canine COX-2 was selectively inhibited by etodolac, nimesulide, and NS398; tolfenamic acid and carprofen also appeared to be preferential COX-2 inhibitors in dogs. The roles of COX-1 as a constitutive housekeeping enzyme and COX-2 as a proinflammatory inducible enzyme (as determined in humans) appear to apply to dogs; therefore, COX-2-selective inhibitors should prove useful in reducing the adverse effects associated with nonselective NSAIDs.  相似文献   

13.
OBJECTIVE: To determine the effectiveness of administering multiple doses of phenylbutazone alone or a combination of phenylbutazone and flunixin meglumine to alleviate lameness in horses. ANIMALS: 29 adult horses with naturally occurring forelimb and hind limb lameness. PROCEDURES: Lameness evaluations were performed by use of kinematic evaluation while horses were trotting on a treadmill. Lameness evaluations were performed before and 12 hours after administration of 2 nonsteroidal anti-inflammatory drug (NSAID) treatment regimens. Phenylbutazone paste was administered at approximately 2.2 mg/kg, PO, every 12 hours for 5 days, or phenylbutazone paste was administered at approximately 2.2 mg/kg, PO, every 12 hours for 5 days in combination with flunixin meglumine administered at 1.1 mg/kg, IV, every 12 hours for 5 days. RESULTS: Alleviation of lameness was greater after administration of the combination of NSAIDs than after oral administration of phenylbutazone alone. Improvement in horses after a combination of NSAIDs did not completely mask lameness. Five horses did not improve after either NSAID treatment regimen. All posttreatment plasma concentrations of NSAIDs were less than those currently allowed by the United States Equestrian Federation Inc for a single NSAID. One horse administered the combination NSAID regimen died of acute necrotizing colitis during the study. CONCLUSIONS AND CLINICAL RELEVANCE: Administration of a combination of NSAIDs at the dosages and intervals used in the study reported here alleviated the lameness condition more effectively than did oral administration of phenylbutazone alone. This may attract use of combinations of NSAIDs to increase performance despite potential toxic adverse effects.  相似文献   

14.
OBJECTIVES: To determine the in vitro effect of prostaglandin E2 (PGE2), PGF2alpha, PGI2; and nonsteroidal anti-inflammatory drugs (NSAID; ie, flunixin meglumine, ketoprofen, carprofen, and phenylbutazone) on contractile activity of the equine dorsal colon, ventral colon, and pelvic flexure circular and longitudinal smooth muscle. ANIMALS: 26 healthy horses. PROCEDURE: Tissue collected from the ventral colon, dorsal colon, and pelvic flexure was cut into strips and mounted in a tissue bath system where contractile strength was determined. Incremental doses of PGE2, PGF2alpha,, PGI2, flunixin meglumine, carprofen, ketoprofen, and phenylbutazone were added to the baths, and the contractile activity was recorded for each location and orientation of smooth muscle. RESULTS: In substance P-stimulated tissues, PGE2 and PGF2alpha enhanced contractility in the longitudinal smooth muscle with a decrease or no effect on circular smooth muscle activity. Prostaglandin I2 inhibited the circular smooth muscle response with no effect on the longitudinal muscle. The activity of NSAID was predominantly inhibitory regardless of location or muscle orientation. CONCLUSIONS AND CLINICAL RELEVANCE: In the equine large intestine, exogenous prostaglandins had a variable effect on contractile activity, depending on the location in the colon and orientation of the smooth muscle. The administration of NSAID inhibited contractility, with flunixin meglumine generally inducing the most profound inhibition relative to the other NSAID evaluated in substance P-stimulated smooth muscle of the large intestine. The results of this study indicate that prolonged use of NSAID may potentially predispose horses to develop gastrointestinal tract stasis and subsequent impaction.  相似文献   

15.
Presently, in the United States, there are no nonsteroidal anti-inflammatory drugs, except aspirin, that are approved for use in animals intended for food production. Use of phenylbutazone, flunixin meglumine, and dipyrone for treatment of food animals may be considered in special circumstances. Such use requires strict adherence to FDA guidelines for extra-label use of drugs. Flunixin meglumine and phenylbutazone have been shown to have a favorable influence on the course and outcome of certain diseases. This report reviews information concerning the pharmacology, pharmacokinetics, and therapeutics of phenylbutazone and flunixin as they have been used on an experimental basis in food animals.  相似文献   

16.
OBJECTIVE: To evaluate the effects of anti-inflammatory drugs on lipopolysaccharide (LPS)-challenged and -unchallenged equine synovial membrane in terms of production of prostaglandin E2 (PGE2) and hyaluronan, viability, and histomorphologic characteristics. SAMPLE POPULATION: Synovial membranes were collected from the carpal, tarsocrural, and femoropatellar joints of 6 adult horses. PROCEDURE: Synovial membranes from each horse were minced and pooled and explants were treated with one of the following: no drug (control), drug, LPS alone, or LPS and drug. Treatment drugs were phenylbutazone (PBZ), flunixin meglumine (FNX), ketoprofen (KET), carprofen (CRP), meloxicam (MEL), low-concentration methylprednisolone (METH), high-concentration METH, dimethyl sulfoxide (DMSO), or an experimental COX-2 inhibitor (dissolved in DMSO). Following 48 hours of culture, medium was assayed for PGE2 and hyaluronan concentration. Synovial explants were assessed for viability and histomorphologic characteristics. RESULTS: For the LPS-challenged explants, PBZ, FNX, KTP CRF MEL, and low-concentration METH suppressed PGE2 production, compared with LPS challenge alone. Only MEL suppressed PGE2 production from LPS-challenged explants, compared with unchallenged explants. Synovial explants maintained > 90% viability and there was no significant difference in viability or hyaluronan production among explants. Histomorphologic scores were significantly decreased for explants treated with low-concentration METH or DMSO. CONCLUSIONS AND CLINICAL RELEVANCE: PBZ, FNX, KTP, CRFP MEL, and low-concentration METH suppressed PGE2 production in LPS-challenged explants. Meloxicam appeared to have more selective suppression of COX-2 activity. Histomorphologic scores suggest detrimental effects of METH, DMSO, and the experimental COX-2 inhibitor. Commonly used nonsteroidal anti-inflammatory drugs suppress induced synovial membrane PGE2 production without detrimental effects on synovial membrane viability and function.  相似文献   

17.
18.
OBJECTIVE: To develop and validate in cats suitable in vitro assays for screening and ranking nonsteroidal antiinflammatory drugs (NSAIDs) on the basis of their inhibitory potencies for cyclooxygenase (COX)-1 and COX-2. ANIMALS: 10 cats. PROCEDURE: COX-1 and COX-2 activities in heparinized whole blood samples were induced with calcium ionophore and lipopolysaccharide, respectively. For the COX-2 assay, blood was pretreated with aspirin. The COX-1 and COX-2 assays were standardized, such that time courses of incubation with the test compounds and conditions of COX expression were as similar as possible in the 2 assays. Inhibition of thromboxane B2 production, measured by use of a radioimmunoassay, was taken as a marker of COX-1 and COX-2 activities. These assays were used to test 10 to 12 concentrations of a COX-1 selective drug (SC-560) and of 2 NSAIDs currently used in feline practice, meloxicam and carprofen. Selectivities of these drugs were compared by use of classic 50% and 80% inhibitory concentration (ie, IC50 and IC80) ratios but also with alternative indices that are more clinically relevant. RESULTS: These assay conditions provide a convenient and robust method for the determination of NSAID selectivity. The S(+) enantiomeric form of carprofen was found to be COX-2 selective in cats, but meloxicam was only slightly preferential for this isoenzyme. CONCLUSIONS AND CLINICAL RELEVANCE: In vitro pharmacodynamic and in vivo pharmacokinetic data predict that the COX-2 selectivity of both drugs for cats will be limited when used at the recommended doses. This study provides new approaches to the selection of COX inhibitors for subsequent clinical testing.  相似文献   

19.
OBJECTIVE: To review the evidence regarding the use of nonsteroidal anti-inflammatory drugs (NSAIDs) in cats. DATABASES USED: PubMed, CAB abstracts. CONCLUSIONS: Nonsteroidal anti-inflammatory drugs should be used with caution in cats because of their low capacity for hepatic glucuronidation, which is the major mechanism of metabolism and excretion for this category of drugs. However, the evidence presented supports the short-term use of carprofen, flunixin, ketoprofen, meloxicam and tolfenamic acid as analgesics in cats. There were no data to support the safe chronic use of NSAIDs in cats.  相似文献   

20.
The direct effects of four non-steroidal anti-inflammatory drugs (NSAIDs) on equine polymorphonuclear (PMN) and mononuclear (MN) leucocyte movement were investigated using two in vitro assay systems. The Boyden chamber microfilter technique measures both chemokinetic and chemotactic locomotion, and the agarose microdroplet assay measures solely chemokinesis. Zymosan-activated plasma (ZAP) and the synthetic peptide N-formyl-methionyl-leucyl-phenylalanine (FMLP) were used as standard chemoattractants for PMN and MN leucocytes, respectively. The actions of six concentrations of each NSAID, indomethacin (50 microM-10 mM), phenylbutazone (10 microM-1 mM), oxyphenbutazone (2.5 microM-500 microM) and flunixin (0.1 microM-50 microM), in suppressing cell movement induced by ZAP and FMLP were investigated. All four drugs exerted inhibitory effects on induced movement of both cell types in the Boyden chamber assay, usually in a concentration-dependent manner, although oxyphenbutazone action on PMN cells occurred only at the highest concentration tested. Significant inhibition of PMN and MN cell locomotion was produced by indomethacin, flunixin and oxyphenbutazone, and inhibition of PMN movement by phenylbutazone occurred in the agarose microdroplet assay. Flunixin was the most potent of the four drugs investigated in both assay systems. The findings may be of importance to the use of phenylbutazone and flunixin as NSAIDs in equine medicine, since the concentrations used were similar to concentrations of both drugs and the phenylbutazone metabolite oxyphenbutazone previously reported to occur in equine plasma and inflammatory exudate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号