首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
OBJECTIVE: To compare concentrations of gentamicin in serum and bronchial lavage fluid after IV and aerosol administration of gentamicin to horses. ANIMALS: 9 healthy adult horses. PROCEDURE: Gentamicin was administered by aerosolization (20 ml of gentamicin solution [50 mg/ml]) and IV injection (6.6 mg of gentamicin/kg of body weight) to each horse, with a minimum of 2 weeks between treatments. Samples of pulmonary epithelial lining fluid were collected by small volume (30 ml) bronchial lavage 0.5, 4, 8, and 24 hours after gentamicin administration. Serum samples were obtained at the same times. All samples were analyzed for gentamicin concentration, and cytologic examinations were performed on aliquots of bronchial lavage fluid collected at 0.5, 8, and 24 hours. RESULTS: Gentamicin concentrations in bronchial lavage fluid were significantly greater 0.5, 4, and 8 hours after aerosol administration, whereas serum concentrations were significantly less at all times after aerosol administration, compared with IV administration. Neutrophil counts in bronchial lavage fluid increased from 0.5 to 24 hours, regardless of route of gentamicin administration. CONCLUSIONS AND CLINICAL RELEVANCE: Aerosol administration of gentamicin to healthy horses resulted in gentamicin concentrations in bronchial fluid that were significantly greater than those obtained after IV administration. A mild inflammatory cell response was associated with aerosol delivery of gentamicin and repeated bronchial lavage. Aerosol administration of gentamicin may have clinical use in the treatment of bacterial bronchopneumonia in horses.  相似文献   

2.
The administration of antibiotics by aerosol to horses suffering from respiratory infections may partially circumvent the limitations of antimicrobial therapy, e.g. large injection volumes, low bioavailability and risk of diarrhoea. Only injectable formulations are available currently and usually contain other substances that could irritate the mucosa and induce coughing and bronchospasm. In addition, the quality of the aerosol, particularly in terms of the delivery of antibiotics to the deep parts of the lung, is unknown. Although used under field conditions, cefquinome delivered by aerosol has never been studied in horses. This study examined the safety of cefquinome injectable solution, administered by aerosol at a dose of 225 mg/inhalation to 7 healthy horses, by assessing (1) pulmonary function before and 15 min after a single inhalation, at the first day (Day 1) and the fifth day (Day 5) of a 5 day period treatment; and (2) the inflammatory status of the lung, i.e. percentage neutrophils and myeloperoxidase concentration, based on bronchoalveolar lavage (BAL) at D1 and D5. In addition, cefquinome concentrations were measured in bronchoalveolar lavage fluid after aerosol, intravenous (i.v.) and intramuscular (i.m.) administrations. A single aerosol of cefquinome injectable solution did not induce any immediate nor delayed pulmonary side effects in healthy horses and produced cefquinome concentrations in bronchoalveolar lavage (BAL) within 30 min that were higher than the minimal inhibitory concentration of the main equine respiratory pathogens. These results should stimulate further studies, especially in horses suffering from bronchial hyper‐reactivity. Aerosol delivery of antibiotics may well have a role in equine therapeutics.  相似文献   

3.
The concentration of gentamicin in plasma and synovial fluid of normal adult horses was measured periodically for 24 hours after IV (2.2 mg/kg of body weight), intra-articular (IA; 150 mg), and simultaneous IV and IA administrations. Gentamicin also was buffered with sodium bicarbonate (3 mEq) and then was administered IA and simultaneously IV and IA. Synovial fluid specimens were obtained via an indwelling catheter placed into the antebrachiocarpal joint. The peak mean plasma gentamicin concentration (8.30 micrograms/ml) after IV administration was significantly (P less than 0.05) greater than that (0.69 microgram/ml) after IA administration of gentamicin and that (0.55 microgram/ml) after administration of gentamicin buffered with sodium bicarbonate. Gentamicin concentration greater than a therapeutic concentration was not attained in the plasma after IA administration of buffered or unbuffered gentamicin. The peak mean synovial fluid concentration (1,828 micrograms/ml) after IA administration of unbuffered gentamicin was significantly (P less than 0.05) greater than that (2.53 micrograms/ml) after IV administration and significantly (P less than 0.05) less than that (5,720 micrograms/ml) after simultaneous IV and IA administration. The peak mean synovial fluid concentration after IA administration of buffered gentamicin, with and without simultaneous IV administration (2,128 and 2,680 micrograms/ml, respectively), was not significantly different than that after IA treatment with unbuffered gentamicin. Mean synovial fluid concentration did not differ significantly between groups after IA administration of gentamicin in any combination at postinjection hours 8, 12, and 24, but remained significantly (P less than 0.05) greater than that at the same times after IV administration.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
5.
6.
OBJECTIVE: To determine serum amyloid A (SAA) concentrations in serum and synovial fluid from healthy horses and horses with joint disease and assess the effect of repeated arthrocentesis on SAA concentrations in synovial fluid. Animals-10 healthy horses and 21 horses with various types of joint disease. PROCEDURES: Serum and synovial fluid samples were obtained from each horse. In 5 of the 10 healthy horses, arthrocentesis was repeated 9 times. Concentrations of SAA were determined via immunoturbidometry. RESULTS: Serum and synovial fluid SAA concentrations were less than the assay detection limit in healthy horses and did not change in response to repeated arthrocentesis. Synovial fluid SAA concentrations were significantly higher in horses with suspected bacterial joint contamination or infectious arthritis, or tenovaginitis than in healthy controls, and serum concentrations were significantly higher in horses with infectious conditions than in the other groups. Neither serum nor synovial fluid SAA concentrations in horses with low-inflammation joint conditions differed significantly from those in healthy controls. Concentrations of SAA and total protein in synovial fluid were significantly correlated. CONCLUSIONS AND CLINICAL RELEVANCE: Synovial fluid SAA concentration was a good marker of infectious arthritis and tenovaginitis and appeared to reflect changes in inflammatory activity. The advantages of use of SAA as a marker include the ease and speed of measurement and the fact that concentrations in synovial fluid were not influenced by repeated arthrocentesis in healthy horses. Further study of the SAA response in osteoarthritic joints to assess its usefulness in diagnosis and monitoring of osteoarthritis is warranted.  相似文献   

7.
Drug concentrations in serum, synovial fluid and tissue cage fluid (TCF) in calves were measured after single i.m. doses of oxytetracycline hydrochloride (OTC), procaine penicillin G (PPG) and potassium penicillin G (KPG) and single i.v. doses of sulphadimidine (SDM) and OTC. For all drugs, concentration-time curves in serum and synovial fluid were not identical but they had similar profiles, with peak levels occurring at about the same time. Concurrent concentrations were lower in synovial fluid than in serum. For each drug, elimination half-lives from synovial fluid and from serum were similar, except for penicillin G after KPG administration which had a significantly longer half-life from synovial fluid than from serum (P less than 0.05). Of the two penicillin G preparations, PPG gave a significantly higher synovial fluid:serum area under curve (AUC) ratio than did KPG; 0.76 +/- 0.10 and 0.54 +/- 0.12, respectively (P less than 0.05). For OTC, the synovial fluid:serum AUC-ratio was 0.33 +/- 0.12 after i.m. and 0.34 +/- 0.08 after i.v. administration. Drug concentration-time curves of TCF had different profiles compared with serum, with relatively low and delayed peak levels and slow elimination from TCF. TCF:serum AUC-ratios did not differ significantly for i.m. and i.v. administration of OTC; 0.10 +/- 0.10 and 0.19 +/- 0.03 respectively (P greater than 0.05). Potassium penicillin G (KPG), however, gave a significantly higher TCF:serum AUC-ratio than PPG; 0.55 +/- 0.21 and 0.19 +/- 0.07, respectively (P less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
9.
This study establishes preliminary pharmacokinetic data on the use of gentamicin sulfate administered IM to baboons. Serum concentrations greater than or equal to 12 micrograms/ml are generally agreed to cause toxicosis in human beings. On the basis of preliminary test results suggesting that the manufacturer's recommended dosage for dogs of 4.4 mg/kg of body weight caused potentially toxic serum concentrations, a dosage of 3 mg/kg was chosen to conduct a single-dose kinetic study in 6 baboons. Using a single-compartment model, the gentamicin serum half-life for IM administration of 3 mg of gentamicin/kg was 1.58 hours, and serum concentrations remained below the potentially toxic concentrations reported for human beings. We suggest that a dosage of 3 mg/kg is safer than a dosage of 4.4 mg/kg administered IM to baboons. Minimal inhibitory concentrations for 2 Pseudomonas aeruginosa isolates were less than or equal to 1 micrograms/ml. On the basis of our measured elimination half-life of 1.58 hours, it is reasonable to suppose that dosing q24 h will be inadequate to maintain therapeutic serum concentrations. We calculate that serum concentrations will remain at or above our measured minimal inhibitory concentration for P aeruginosa (1 micrograms/ml) for 100% of the treatment time if the animal is dosed q 6h, 78% for dosing q 8h, and 52% for dosing q 12h. Therefore, we suggest 3 mg/kg, q 8h or q 6h as appropriate dosing schedules for the use of gentamicin sulfate administered IM to baboons.  相似文献   

10.
Chemical and cytologic effects and bactericidal activity of gentamicin in septic synovial fluid were evaluated in an experimental model of infectious arthritis in horses. Septic arthritis was induced by inoculation of approximately 7.5 X 10(6) colony-forming units of Escherichia coli into 1 antebrachiocarpal joint in each of 16 clinically normal adult horses. Clinical signs of septic arthritis were evident 24 hours after inoculation. Horses were allotted to 3 groups: group-1 horses (n = 5) each were given 150 mg of gentamicin (50 mg/ml; 3 ml) intra-articularly (IA); group-2 horses (n = 5) each were given 2.2 mg of gentamicin/kg of body weight, IV, every 6 hours; and group-3 horses (n = 6) each were given buffered gentamicin, consisting of 3 mEq of sodium bicarbonate (1 mEq/ml; 3 ml) and 150 mg of gentamicin (50 mg/ml; 3 ml), IA. Synovial fluid specimens were obtained at posttreatment hour (PTH) 0, 0.25, 1, 4, 8, 12, and 24 via an indwelling intra-articular catheter. Synovial fluid pH was evaluated at PTH 0, 0.25, and 24. Microbiologic culture and cytologic examination were performed on synovial fluid specimens obtained at PTH 0 and 24, and gentamicin concentration was measured in all synovial fluid specimens. At PTH 0, E coli was isolated from synovial fluid specimens obtained from all horses. Synovial fluid pH was lower (range, 7.08 to 7.16) and WBC count was higher (range, 88,000 to 227,200 cells/microliters) and predominantly neutrophilic (95 to 99%) at PTH 0 than before inoculation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
OBJECTIVE: To evaluate pharmacokinetics of once daily i.v. administration of gentamicin sulfate to adult horses that had abdominal surgery. DESIGN: Prospective study. ANIMALS: 28 adult horses that underwent abdominal surgery for colic. PROCEDURE: 14 horses were treated with each dosage of gentamicin (i.e., 6.6 or 4 mg/kg, i.v., q 24 h) and blood samples were collected for pharmacokinetic analysis. Plasma gentamicin concentrations were measured by use of a fluorescence polarization immunoassay. Pharmacokinetic analysis measured the elimination half-life, volume of distribution, and gentamicin total systemic clearance. Treatment outcome, CBC, and serum creatinine concentrations were recorded. RESULTS: 1 horse in the high-dosage group died. All other horses successfully recovered, and did not develop bacterial infection or have evidence of drug toxicosis resulting in renal injury. Mean pharmacokinetic variables for gentamicin administration at a high or low dosage (i.e., 6.6 or 4 mg/kg, i.v., q 24 h) were half-life of 1.47 and 1.61 hours, volume of distribution of 0.17 and 0.17 L/kg, and systemic clearance of 1.27 and 1.2 ml/kg/min, respectively. Mean serum creatinine concentration was 1.74 and 1.71 for the high and low dosages, respectively, and serum creatinine concentration was not correlated with gentamicin clearance. CONCLUSIONS AND CLINICAL RELEVANCE: Gentamicin administration at a dosage of 4 mg/kg, i.v., every 24 hours, will result in plasma concentrations that are adequate against susceptible bacteria with a minimum inhibitory concentration (MIC) of < or = 2.0 micrograms/ml. Gentamicin administration at a calculated dosage of 6.8 mg/kg, i.v., every 24 hours will result in optimum plasma concentrations against susceptible bacteria with a MIC of < or = 4.0 micrograms/ml.  相似文献   

12.
Nine barrows (23.8 +/- 0.9 kg) and 9 gilts (23.1 +/- 0.9 kg) were used to determine the disposition of radiocarbon after oral [14C]clenbuterol (4-amino-alpha-[t-butylaminomethyl]-3,5-dichlorobenzyl [7-(14)C]alcohol hydrochloride) administration and to determine total and parent residues in edible tissues. Three barrows and three gilts, housed in metabolism crates, were fed 1 ppm [14C]clenbuterol HCl for seven consecutive days in three separate trials; a single barrow and gilt from each trial was slaughtered after 0-, 3-, or 7-d preslaughter withdrawal periods. Urine and feces were collected during the dosing and the withdrawal period; edible and inedible tissues were collected at slaughter. Total recovery of radiocarbon was 94.2 +/- 6.5%. Total clenbuterol absorption was greater than 75% for barrows and 60% for gilts. Total radioactive residues in tissues were not different (P > 0.05) between barrows and gilts. Concentrations of parent clenbuterol in liver, kidney, skeletal muscle, adipose tissue, and lung did not differ between barrows and gilts (P > 0.05). Total radioactive and parent residues declined in tissues as withdrawal period increased. After the 0-d withdrawal period, total liver residues (286 ppb) were approximately equal to lung residues, twice those of the kidney, and about 15 times those of adipose tissue and skeletal muscle. After a 7-d withdrawal period, total radioactive residues in liver (15 ppb) were roughly three times greater than lung, kidney, and adipose tissue total residues and about 13 times those of skeletal muscle total residues. Parent clenbuterol represented 79, 63, 42, 67, and 100% of the total radioactive residue in adipose tissue, kidney, liver, lung, and skeletal muscle, respectively, in hogs slaughtered with a 0-d withdrawal period. With increasing withdrawal period, the percentage of total radioactive residue present as parent clenbuterol within edible tissues (including lung) decreased, so that after a 7-d withdrawal period, 7, 16, and 29% of the total residue was composed of parent clenbuterol in kidney, liver, and lung, respectively. After a 7-d withdrawal period, parent clenbuterol exceeded the European maximum residue limit (0.5 ppb) 4.6-fold in liver and 2.4-fold in lung. In muscle, clenbuterol was approximately 40 times the limit after a 0-d withdrawal period but had dropped below 0.5 ppb after a 3-d withdrawal period. Results from this study indicate that clenbuterol HCl is well absorbed in swine and that the use of clenbuterol in this species in an off-label manner is inconsistent with human food safety standards used in developed countries.  相似文献   

13.
To evaluate the effects of compression atelectasis on the composition of pulmonary secretions in anesthetized horses, cytological and biochemical examinations were performed on bronchoalveolar lavage (BAL) fluids obtained from both dependent and independent lung regions. Six horses were anesthetized with isoflurane and oxygen for 120 min, and were positioned in right lateral recumbency. Percentage of neutrophils and total protein concentration in BAL fluids significantly increased at the end of anesthesia, and total phosphorous concentration significantly decreased at 72 hr after anesthesia in dependent lung. Such changes were not observed within 168 hr after anesthesia. These findings suggest that the effects of compression atelectasis on the composition of pulmonary secretions may be eliminated within 168 hr after anesthesia.  相似文献   

14.
Tinidazole 15 mg/kg was administered to eight Beagle dogs with gingivitis or periodontitis twice daily for 3 days. Tinidazole concentrations in blood and gingival crevicular fluid (GCF) were measured 1,3,6 and 9 h after the morning dose each day. The concentration of tinidazole was determined by high performance liquid chromatography (HPLC). The mean concentration of tinidazole in GCF for each dog ranged from 6.05 to 9.32 αg/mL at different time points after the first dose, and on the first day the highest concentration was observed 6 h after the drug administration. Tinidazole concentrations were 34 ± 4%-72 ± 9% (mean ± SEM) of simultaneous plasma concentration. At steady-state, on the third treatment day, the mean tinidazole concentrations in GCF ranged from 6.68 to 13.1 μg/mL, i.e. 44 ± 6%-75 ± 25% of the corresponding concentrations in plasma. Tinidazole concentration in GCF exceeded the MIC values for putative path-ogenic periodontal bacteria and it is concluded that, when indicated, tinidazole could be used for chemotherapy of periodontitis in dogs.  相似文献   

15.
16.
OBJECTIVE: To characterize pharmacokinetics of voriconazole in horses after oral and IV administration and determine the in vitro physicochemical characteristics of the drug that may affect oral absorption and tissue distribution. ANIMALS: 6 adult horses. PROCEDURES: Horses were administered voriconazole (1 mg/kg, IV, or 4 mg/kg, PO), and plasma concentrations were measured by use of high-performance liquid chromatography. In vitro plasma protein binding and the octanol:water partition coefficient were also assessed. RESULTS: Voriconazole was adequately absorbed after oral administration in horses, with a systemic bioavailability of 135.75 +/- 18.41%. The elimination half-life after a single orally administered dose was 13.11 +/- 2.85 hours, and the maximum plasma concentration was 2.43 +/- 0.4 microg/mL. Plasma protein binding was 31.68%, and the octanol:water partition coefficient was 64.69. No adverse reactions were detected during the study. CONCLUSIONS AND CLINICAL RELEVANCE: Voriconazole has excellent absorption after oral administration and a long half-life in horses. On the basis of the results of this study, it was concluded that administration of voriconazole at a dosage of 4 mg/kg, PO, every 24 hours will attain plasma concentrations adequate for treatment of horses with fungal infections for which the fungi have a minimum inhibitory concentration 相似文献   

17.
Furosemide is the most common diuretic drug used in horses. Furosemide is routinely administered as IV or IM bolus doses 3-4 times a day. Administration PO is often suggested as an alternative, even though documentation of absorption and efficacy in horses is lacking. This study was carried out in a randomized, crossover design and compared 8-hour urine volume among control horses that received placebo, horses that received furosemide at 1 mg/kg PO, and horses that received furosemide at 1 mg/kg IV. Blood samples for analysis of plasma furosemide concentrations, PCV, and total solids were obtained at specific time points from treated horses. Furosemide concentrations were determined by reversed-phase high-performance liquid chromatography with fluorescent detection. Systemic availability of furosemide PO was poor, erratic, and variable among horses. Median systemic bioavailability was 5.4% (25th percentile, 75th percentile: 3.5, 9.6). Horses that received furosemide IV produced 7.4 L (7.1, 7.7) of urine over the 8-hour period. The maximum plasma concentration of 0.03 microg/mL after administration PO was not sufficient to increase urine volume compared with control horses (1.2 L [1.0, 1.4] PO versus 1.2 L [1.0, 1.4] control). There was a mild decrease in urine specific gravity within 1-2 hours after administration of furosemide PO, and urine specific gravity was significantly lower in horses treated with furosemide PO compared with control horses at the 2-hour time point. Systemic availability of furosemide PO was poor and variable. Furosemide at 1 mg/kg PO did not induce diuresis in horses.  相似文献   

18.
OBJECTIVE: To determine concentrations of 2 acute-phase proteins (serum amyloid A [SAA] and lipopolysaccharide-binding protein [LBP]) in serum samples obtained from horses with colic and identify relationships among these acute-phase proteins and clinical data. ANIMALS: 765 horses with naturally developing gastrointestinal tract diseases characterized by colic (ie, clinical signs indicative of abdominal pain) and 79 healthy control horses; all horses were examined at 2 university teaching hospitals. PROCEDURE: Serum concentrations of SAA and LBP were determined by immunoturbidometric and dot-blot assays, respectively. RESULTS: SAA and LBP concentrations were determined for 718 and 765 horses with colic, respectively. Concentrations of SAA were significantly higher in nonsurvivors than in survivors, and horses with enteritis or colitis and conditions characterized by chronic inflammation (eg, abdominal abscesses, peritonitis, or rectal tears) had SAA concentrations significantly greater than those for horses with other conditions. Serum concentrations of LBP did not correlate with outcome, disease process, or portion of the gastrointestinal tract affected. CONCLUSIONS AND CLINICAL RELEVANCE: Circulating concentrations of SAA were significantly higher at admission in horses with colic attributable to conditions having a primary inflammatory cause (eg, enteritis, colitis, peritonitis, or abdominal abscesses) and were higher in horses that failed to survive the episode of colic, compared with concentrations in horses that survived. Serum concentrations of LBP did not correlate with survival. Analysis of these findings suggests that evaluation of SAA concentrations may be of use in identifying horses with colic attributable to diseases that have inflammation as a primary component of pathogenesis.  相似文献   

19.
Four bronchoalveolar lavages were performed sequentially on 9 control and 8 transport-stressed female horses. Alterations in results of fluid cytologic analyses, microbial content, and phagocyte function of recovered pulmonary macrophages in all horses were determined. Seemingly, absolute and relative increase in the number of inflammatory cells detected in the second bronchoalveolar lavage fluid of control horses was the result of irritation of the first lavage. This increased response was not observed in transport-stressed horses until 5 days after transport (third lavage; 10 days after initial lavage). Seemingly, delayed inflammatory response was the result of the transport stress. Microbial content and macrophage function were not significantly different between the 2 groups (P greater than 0.05).  相似文献   

20.
Bronchoalveolar lavage (BAL) fluid was analyzed in healthy horses, using different lavage fluid volumes and lung sites. The only significant difference in the cellular composition of BAL fluid between the right and left lungs was the mast cell numbers, which were significantly higher in the left lung. Total cell count ranged from 34 to 330 cells/microliter for the right lung and 43 to 330 cells/microliter for the left lung. Percentage of neutrophils ranged from 1 to 7% in the right lung and 1 to 5% in the left lung. The small-volume (50 ml) lavage had a greater percentage of neutrophils and a lesser percentage of mast cells in the large-volume (350 ml) lavage. Statistical difference in the composition of BAL fluid recovered was not detected between the 3 sequential 100-ml lavages and a single 300-ml lavage, except that macrophages were significantly higher in the 3 sequential 100-ml lavages. Values for BAL fluid analysis in healthy horses have varied considerably and this variation is from a failure to adhere to any standard technique for volume of fluid infused.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号