首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 937 毫秒
1.
李韬  任玲  胡斌  王双  赵明  张玉泉  杨苗 《农业工程学报》2023,39(23):174-184
为了提高番茄穴盘苗分级检测精度,该研究提出了改进YOLOv5s目标检测模型,并通过迁移学习对番茄穴盘病苗识别精度进行优化。采用轻量级网络EfficientNetv2的Backbone部分作为特征提取网络,保留YOLOv5s中的SPPF空间金字塔池化模块,压缩模型参数数量以减少计算量;更改模型Neck部分原始上采样模块为CARAFE轻量级上采样模块,在引入很少参数量的情况下提高模型精度;同时将PANet替换为BiFPN,引入特征权重信息,增强不同尺度特征融合能力;引入有效多尺度注意力机制(efficient multi-scale attention,EMA),提高对番茄苗的关注,减少背景干扰;替换CIoU损失函数为SIoU损失函数,考虑真实框与预测框之间的方向匹配,提高模型收敛效果。试验结果表明,改进的YOLOv5s目标检测模型经过迁移学习训练后,平均精度均值达到95.6%,较迁移学习前提高了0.7个百分点;与原YOLOv5s模型相比,改进YOLOv5s模型平均精度均值提升2.6个百分点;改进YOLOv5s模型的参数量、计算量和权重大小分别为原YOLOv5s模型的53.1%、20.0%...  相似文献   

2.
为了快速精准地识别复杂果园环境下的葡萄目标,该研究基于YOLOv5s提出一种改进的葡萄检测模型(MRWYOLOv5s)。首先,为了减少模型参数量,采用轻量型网络MobileNetv3作为特征提取网络,并在MobileNetv3的bneck结构中嵌入坐标注意力模块(coordinate attention,CA)以加强网络的特征提取能力;其次,在颈部网络中引入RepVGG Block,融合多分支特征提升模型的检测精度,并利用RepVGG Block的结构重参数化进一步加快模型的推理速度;最后,采用基于动态非单调聚焦机制的损失(wise intersection over union loss,WIoU Loss)作为边界框回归损失函数,加速网络收敛并提高模型的检测准确率。结果表明,改进的MRW-YOLOv5s模型参数量仅为7.56 M,在测试集上的平均精度均值(mean average precision,mAP)达到97.74%,相较于原YOLOv5s模型提升了2.32个百分点,平均每幅图片的检测时间为10.03 ms,比原YOLOv5s模型减少了6.13 ms。与主流的目标检测模型S...  相似文献   

3.
为解决莲田环境下不同成熟期莲蓬的视觉感知问题,该研究提出了一种改进YOLOv5s的莲蓬成熟期检测方法。首先,通过在主干特征网络中引入BoT(bottleneck transformer)自注意力机制模块,构建融合整体与局部混合特征的映射结构,增强不同成熟期莲蓬的区分度;其次,采用高效交并比损失函数EIoU(efficient IoU)提高了边界框回归定位精度,提升模型的检测精度;再者,采用K-means++聚类算法优化初始锚框尺寸的计算方法,提高网络的收敛速度。试验结果表明,改进后YOLOv5s模型在测试集下的精确率P、召回率R、平均精度均值mAP分别为98.95%、97.00%、98.30%,平均检测时间为6.4ms,模型尺寸为13.4M。与YOLOv3、 YOLOv3-tiny、 YOLOv4-tiny、 YOLOv5s、YOLOv7检测模型对比,平均精度均值mAP分别提升0.2、1.8、1.5、0.5、0.9个百分点。基于建立的模型,该研究搭建了莲蓬成熟期视觉检测试验平台,将改进YOLOv5s模型部署在移动控制器Raspberry Pi 4B中,对4种距离范围下获取的莲蓬场景图像...  相似文献   

4.
棉田虫害的快速检测与准确识别是预防棉田虫害、提高棉花品质的重要前提。针对真实棉田环境下昆虫相似度高、背景干扰严重的问题,提出一种ECSF-YOLOv7棉田虫害检测模型。首先,采用EfficientFormerV2作为特征提取网络,以加强网络的特征提取能力并减少模型参数量;同时,将卷积注意力模块(convolution block attention module,CBAM)嵌入到模型的主干输出端,以增强模型对小目标的特征提取能力并削弱背景干扰;其次,使用GSConv卷积搭建Slim-Neck颈部网络结构,在减少模型参数量的同时保持模型的识别精度;最后,采用Focal-EIOU(focal and efficient IOU loss,Focal-EIOU)作为边界框回归损失函数,加速网络收敛并提高模型的检测准确率。结果表明,改进的ECSF-YOLOv7模型在棉田虫害测试集上的平均精度均值(mean average precision,mAP)为95.71%,检测速度为69.47帧/s。与主流的目标检测模型YOLOv7、SSD、YOLOv5l和YOLOX-m相比,ECSF-YOLOv7模型的mAP分别高出1.43、9.08、1.94、1.52个百分点,并且改进模型具有参数量更小、检测速度更快的优势,可为棉田虫害快速准确检测提供技术支持。  相似文献   

5.
为了实现种薯芽眼的精准检测,方便后续实现马铃薯种薯的智能化切块,该研究提出一种基于深度学习一阶段目标检测算法YOLO的种薯芽眼检测改进模型。改进后的模型在YOLOv5检测模型基础上引入C3 Faster,降低参数量的同时加强了芽眼特征的提取能力;引入GOLD-YOLO中信息聚集-分发结构,提高模型检测芽眼的准确性;使用WIoU Loss代替CIoU Loss作为边界框损失函数,加快网络模型收敛的同时提高检测精度;使用遗传算法对超参数进行优化;最后使用剪枝与蒸馏技术,降低模型运行参数量与运行内存。优化后的模型大小为8.7 MB,仅为原始模型的61.3%,模型参数量约为原始模型的57.1%,最终的检测平均精确度在自制的种薯数据集中的测试集与验证集上分别为90.5%以及90.1%,该改进模型于自制种薯数据集的测试集上相较同类型的轻量级网络YOLOv7-tiny、YOLOv8n、YOLOv5n、YOLOv5s,平均精度均值分别高出0.5、1.3、2.8、1.1个百分点,在验证集上平均精度均值分别高出2.9、1.9、3.2、1.6个百分点,在本地计算机上检测速度达到了27.5帧/s,该研究结果可为后续种薯芽眼识别及实时切块技术提供参考。  相似文献   

6.
为解决自然环境中苹果叶片病害检测场景复杂、小目标病害检测难度高以及模型参数大无法在移动端和嵌入式设备部署等问题,提出一种基于YOLOv5s的苹果叶片小目标病害轻量化检测方法。该方法将YOLOv5s的骨干网络更改为ShuffleNet v2轻量化网络,引入CBAM(convolutional block attention module)注意力模块使模型关注苹果叶片小目标病害,添加改进RFB-s(receptive field block-s)支路获取多尺度特征,提高苹果叶片病害检测精度,并更改边界框回归损失函数为SIoU(scylla-intersection over union),增强病斑定位能力。试验表明改进后的YOLOv5s模型在IoU大于0.5时的平均精度均值(mean average precision,mAP0.5)和每秒传输帧数(frame per second,FPS)分别达到90.6%和175帧/s,对小目标的平均检测准确率为38.2%,与基准模型YOLOv5s相比,其mAP0.5提升了0.8个百分点,参数量减少了6.17 MB,计算量减少了13.8 G,对小目标的检测准确率提高了3个百分点。改进后的YOLOv5s目标检测模型与Faster R-CNN、SSD、YOLOv5m、YOLOv7、YOLOv8和YOLOv5s目标检测模型相比,具有最小的参数量和计算量,对小目标病害叶斑病和锈病的检测准确率分别提高了1.4、4.1、0.5、5.7、3.5、3.9和1.5、4.3、1.2、2.1、4、2.6个百分点,该方法为真实自然环境下苹果叶片病害尤其是小目标病害的轻量化检测提供参考依据。  相似文献   

7.
针对目前三七检测算法在复杂田间收获工况下检测精度低、模型复杂度大、移动端部署难等问题,该研究提出一种基于YOLOv5s的轻量化三七目标检测方法。首先,采用GSConv卷积方法替换原始颈部网络的传统卷积,引入Slim-neck轻量级颈部网络,降低了模型复杂度,同时提升了模型精度;其次,使用ShuffleNetv2轻量型特征提取网络对主干网络进行轻量化改进,提升了模型实时检测性能,并采用角度惩罚度量的损失(SIoU)优化边界框损失函数,提升了轻量化后的模型精度和泛化能力。试验结果表明,改进后的PN-YOLOv5s模型参数量、计算量、模型大小分别为原YOLOv5s模型的46.65%、34.18%和48.75%,检测速度提升了1.2倍,F1值较原始模型提升了0.22个百分点,平均精度均值达到了94.20%,较原始模型低0.6个百分点,与SSD、Faster R-CNN、YOLOv4-tiny、YOLOv7-tiny和YOLOv8s模型相比能够更好地平衡检测精度与速度,检测效果更好。台架试验测试结果表明,4种输送分离作业工况下三七目标检测的准确率达90%以上,F1值达86%以上,平均精度均值达87%以上,最低检测速度为105帧/s,实际收获工况下模型的检测性能良好,可为后续三七收获作业质量实时监测与精准分级输送提供技术支撑。  相似文献   

8.
基于YOLOv5s的农田垃圾轻量化检测方法   总被引:2,自引:2,他引:0  
针对目前垃圾检测算法在农田复杂环境下检测精度不高、检测效率低,模型复杂等问题,该研究提出了基于YOLOv5s的农田垃圾轻量化检测方法。首先,使用轻量级分类网络ShuffleNetV2的构建单元作为特征提取网络,降低模型的计算量和参数量,提高运行速度,以满足移动端的应用要求;其次,为应对模型轻量化后带来的检测精度降低,该文相继对ShuffleNetV2的构建单元进行了卷积核扩大化改进和激活函数优化,在增加部分计算量的前提下提高了模型精度;此外,为增强模型在田间环境下对目标的精准定位能力,该研究针对边界框损失函数进行了优化,将CIoU边界框损失函数高宽纵横比的损失项拆分为预测框的高宽分别与最小外接框高宽的差值,然后通过不断迭代减小差值,提高模型的收敛速度和回归精度。试验结果显示,最终的改进模型检测精度达到了90.9%,此时检测速度为74 ms/帧,计算量仅为3.6 GFLOPs,与当前主流的目标检测算法SSD、YOLOv3等相比,不仅具有更优越的检测精度和推理速度,同时还大幅减少了计算量;最后,将改进前后的模型部署到Jetson TX1和Raspberry 4B 两种边缘计算设备上进行测试,测试结果表明,改进后的YOLOv5s模型在边缘计算设备上的检测速度相对原模型提高了至少20%,同时保持了较好的检测效果,平衡了边缘计算设备对精度和速度的性能需求,为田间垃圾检测任务提供了参考。  相似文献   

9.
融合YOLO v5n与通道剪枝算法的轻量化奶牛发情行为识别   总被引:2,自引:2,他引:0  
及时、准确地监测奶牛发情行为是现代化奶牛养殖的必然要求。针对人工监测奶牛发情不及时、效率低等问题,该研究提出了一种融合YOLO v5n与通道剪枝算法的轻量化奶牛发情行为识别方法。在保证模型检测精度的基础上,基于通道剪枝算法,对包括CSPDarknet53主干特征提取网络等在内的模块进行了修剪,以期压缩模型结构与参数量并提高检测速度。为了验证算法的有效性,在2239幅奶牛爬跨行为数据集上进行测试,并与Faster R-CNN、SSD、YOLOX-Nano和YOLOv5-Nano模型进行了对比。试验结果表明,剪枝后模型均值平均精度(mean Average Precision, mAP)为97.70%,参数量(Params)为0.72 M,浮点计算量(Floating Point operations, FLOPs)为0.68 G,检测速度为50.26 帧/s,与原始模型YOLOv5-Nano相比,剪枝后模型mAP不变的情况下,Params和FLOPs分别减少了59.32和49.63个百分点,检测速度提高了33.71个百分点,表明该剪枝操作可有效提升模型性能。与Faster R-CNN、SSD、YOLOX-Nano模型相比,该研究模型的mAP在与之相近的基础上,参数量分别减少了135.97、22.89和0.18 M,FLOPs分别减少了153.69、86.73和0.14 G,检测速度分别提高了36.04、13.22和23.02 帧/s。此外,对模型在不同光照、不同遮挡、多尺度目标等复杂环境以及新环境下的检测结果表明,夜间环境下mAP为99.50%,轻度、中度、重度3种遮挡情况下平均mAP为93.53%,中等尺寸目标和小目标情况下平均mAP为98.77%,泛化性试验中奶牛爬跨行为检出率为84.62%,误检率为7.69%。综上,该模型具有轻量化、高精度、实时性、鲁棒性强、泛化性高等优点,可为复杂养殖环境、全天候条件下奶牛发情行为的准确、实时监测提供借鉴。  相似文献   

10.
为解决新梅在树干树叶遮挡、果实重叠情况下难以准确检测的问题,该研究建立了新梅目标检测模型SFF-YOLOv5s。在真实果园环境下构建新梅数据集,以YOLOv5s模型作为基础网络,首先在Backbone骨干网络C3模块中引入CA(coordinate attention)注意力机制以增强模型对新梅关键特征信息的提取能力并减少模型的参数量;其次在Neck层中引入加权双向特征金字塔网络,增强模型不同特征层之间的融合能力,从而提高模型的平均精度均值;最后使用SIoU损失函数替换原模型中的CIoU损失函数提高模型的检测准确率。试验结果表明,SSF-YOLOv5s模型对新梅检测准确率为93.4%,召回率为92.9%,平均精度均值为97.7%,模型权重仅为13.6MB,单幅图像平均检测时间12.1ms,与Faster R-CNN、YOLOv3、YOLOv4、YOLOv5s、YOLOv7、YOLOv8s检测模型相比平均精度均值分别提升了3.6、6.8、13.1、0.6、0.4、0.5个百分点,能够满足果园复杂环境下对新梅进行实时检测的需求,为后续新梅采摘机器人的视觉感知环节提供了技术支持。  相似文献   

11.
基于改进YOLOv5s的自然环境下猕猴桃花朵检测方法   总被引:2,自引:2,他引:0  
为实现对猕猴桃花朵的快速准确检测,该研究提出了一种基于改进YOLOv5s的猕猴桃花朵检测模型YOLOv5s_S_N_CB_CA,并通过对比试验进行了精度验证。在YOLOv5s基础上引入C3HB模块和交叉注意力(criss-cross atte ntion,CCA)模块增强特征提取能力,结合样本切分和加入负样本处理方法进一步提升模型精度。改进模型的检测精确率为85.21%,召回率为90%,模型大小为14.6 MB,交并比(intersection over union,IoU)为0.5下的均值平均精度(mAP0.5)为92.45%,比仅进行样本缩放处理的原始YOLOv5s提高了31.91个百分点,检测速度为35.47帧/s,比原始YOLOv5s提高了34.15%。使用改进模型对自然环境下不同天气、晴天不同时段光照强度下的猕猴桃花朵进行检测,结果表明模型检测晴天、阴天下猕猴桃花朵的mAP0.5分别为91.96%、91.15%,比原始YOLOv5s分别高出2.55、2.25个百分点;检测晴天9:00-11:00、15:00-17:00光强下猕猴桃花...  相似文献   

12.
针对目前在水下复杂环境中池塘养殖河蟹与饵料的检测算法存在检测精度低、速度慢等问题,该研究提出了基于改进YOLOv5s(you only look once version 5 small)的河蟹与饵料检测方法。首先,采用轻量化卷积Ghost替换普通卷积,同时利用GhostBottleneck结构替换原主干网络中的残差结构快速提取网络特征,减少模型计算量,满足安卓端的应用要求。其次,为了弥补因网络参数量减少造成网络检测精度稍有降低的问题,借鉴BiFPN(bidirectional feature pyramid network)的思想改进原始YOLOv5s的双向融合骨干网络,以较低的计算成本提高网络对小目标的检测精度。此外,为了帮助网络进一步更好地识别目标,加入了CA(coordinate attention)注意力机制,使得图像中感兴趣的区域能够更准确地被捕获。试验结果表明:该研究改进模型平均精度均值为96.9%,计算量为8.5GFLOPs,与当前主流的单阶段有锚框目标检测算法SSD(single shot multibox detector)和YOLOv3相比,具有更高的检测精度以及更少的计算量。相比于原始YOLOv5s模型,本文改进模型平均精度均值提高了2.2个百分点,计算量和模型内存都降低了40%以上。最后,将改进前后的模型部署到安卓设备上测试。测试结果表明:改进后模型的平均检测速度为148ms/帧,相较于原始模型检测速度提高了20.9%,并且保持了较好的检测效果,平衡了安卓设备对模型检测精度以及速度的性能需求,能够为河蟹养殖投饵量的精准确定提供参考。  相似文献   

13.
利用目标检测获取水下鱼类图像中的生物信息,对于实现水产养殖信息化、智能化有重要意义。受到成像设备与水下拍摄环境等因素的影响,重叠鱼群尾数检测仍为水下目标检测领域的难点之一。该研究以水下重叠鱼群图像为研究对象,提出了一种基于图像增强与改进Faster-RCNN网络的重叠鱼群尾数检测模型。在图像预处理部分,该研究利用MSRCR算法结合自适应中值滤波算法进行水下图像增强;在Faster-RCNN网络的改进部分,该研究采用ResNeXt101网络作为模型主干网络、增加带有CBAM(Convolution Block Attention Module)注意力机制的Bi-PANet(Bilinear-Path Aggregation Network)路径聚合网络、使用PAM(Partitioning Around Medoids)聚类算法优化网络初始预测框的尺度和数量、以Soft-NMS(Soft Non-Maximum Suppression)算法替代NMS(Non-Maximum Suppression)算法。通过以上措施提高模型对于重叠鱼群尾数的检测精度。通过消融试验可得,改进后的模型对水下重叠鱼群图像的平均检测精度和平均召回率分别为76.8%和85.4%,两项指标较Faster-RCNN模型分别提高了8.4个百分点和13.2个百分点。通过对多种模型的实际试验结果进行对比可知,改进后的模型的平均准确率相较于YOLOv3-spp、SSD300和YOLOv5x6分别高出32.9个百分点、12.3个百分点和6.7个百分点。改进后的模型对重叠数量为2~5尾的鱼群进行数量检测时,成功率分别为80.4%、75.6%、65.1%和55.6%,明显高于其他目标检测算法,可为重叠鱼群尾数检测提供参考。  相似文献   

14.
为提高小麦病害检测精度,实现将模型方便快速部署到移动端,该研究提出了一种基于改进YOLOv8的轻量化小麦病害检测方法。首先,使用PP-LCNet模型替换YOLOv8网络结构的骨干网络,并在骨干网络层引入深度可分离卷积(depthwise separable convolution, DepthSepConv)结构,减少模型参数量,提升模型检测性能;其次,在颈部网络部分添加全局注意力机制(global attention mechanism, GAM)模块,强化特征中语义信息和位置信息,提高模型特征融合能力;然后,引入轻量级通用上采样内容感知重组(content-aware reassembly of features,CARAFE)模块,提高模型对重要特征的提取能力;最后,使用Wise-IoU(weighted interpolation of sequential evidence for intersection over union)边界损失函数代替原损失函数,提升网络边界框回归性能和对小目标病害的检测效果。试验结果表明,对于大田环境下所采集的小麦病害数据集,改进后模型的参数量及...  相似文献   

15.
针对复杂环境下柑橘果实大量重叠、枝叶遮挡且现有模型参数量大、计算复杂度高等问题,提出了一种基于改进YOLOv8n的柑橘识别模型YOLOv8-MEIN。首先,该研究设计了ME卷积模块并使用它改进YOLOv8n的C2f模块。其次,为了弥补CIoU损失函数在检测任务中泛化性弱和收敛速度慢的问题,使用Inner-CIoU损失函数加速边界框回归,提高模型检测性能。最后,在自建数据集上进行模型试验对比,试验结果表明,YOLOv8-MEIN模型交并比阈值为0.5的平均精度均值mAP0.5值为96.9%,召回率为91.7%,交并比阈值为0.5~0.95的平均精度均值mAP0.5~0.95值为85.8%,模型大小为5.8MB,参数量为2.87M。与原模型YOLOv8n相比,mAP0.5值、召回率、mAP0.5~0.95值分别提高了0.4、1.0、0.6个百分点,模型大小和参数量相比于原模型分别降低了3.3%和4.3%,为柑橘的自动化采摘提供技术参考。  相似文献   

16.
基于YOLOv4模型剪枝的番茄缺陷在线检测   总被引:4,自引:4,他引:0  
为解决番茄缺陷检测过程中的精确性和实时性问题,该研究提出一种基于模型剪枝的番茄表面缺陷实时检测方法。采用模型剪枝的方法在YOLOv4网络模型基础上进行模型优化,首先将3个连续检测工位采集的RGB图像拼接生成YOLOv4网络的输入图像,然后采用通道剪枝和层剪枝的方法压缩YOLOv4网络模型,从而减少模型参数,提高检测速度,最后提出一种基于L1范数的非极大值抑制方法,用于在模型微调后去除冗余预测框,从而精准定位图像中的缺陷位置,并将模型部署到分级系统上进行实时检测试验。结果表明,该研究提出的YOLOv4P网络与原YOLOv4网络相比,网络模型尺寸和推理时间分别减少了232.40 MB和10.11 ms,平均精度均值(Mean Average Precision,mAP)从92.45%提高到94.56%,能满足实际生产中针对缺陷番茄进行精准、实时检测的要求,为番茄分级系统提供了高效的实时检测方法。  相似文献   

17.
随着食用菌行业由自动化向智能化、信息化发展的趋势越来越明显,为了实现现代化菇房中平菇的准确检测,解决工厂化平菇栽培中收获阶段平菇之间相互遮挡等问题,帮助平菇采收机器人进行准确的自动化采收,该文提出了一种基于YOLOv5(you only look once version 5)模型的OMM-YOLO(ostreatus measure modle-YOLO)平菇目标检测与分类模型。通过在YOLOv5模型的Backbone层添加注意力模块,对输入的平菇图像特征进行动态加权,以获得更详细的特征信息,并在Neck层采用加权双向特征金字塔网络,通过与不同的特征层融合,提高算法的平菇目标检测的精度。此外,为了改善算法的准确性和边界框纵横比的收敛速度,该文采用了EIoU(enhanced intersection over union)损失函数替代了原有的损失函数。试验结果表明,与原始模型相比,改进模型OMM-YOLO对成熟平菇、未成熟平菇和未生长平菇的平均精度均值分别提高了0.4个百分点、4.5个百分点和1.1个百分点。与当前主流模型Resnet50、VGG16、YOLOv3、YOLOv4、YOLOv5m和YOLOv7相比,该模型的精确率、召回率和检测精度均处于优势,适用于收集现代化菇房中的平菇信息,有效避免了平菇之间因相互遮挡而产生的误检测现象。菇房平菇目标检测可以自动化地检测平菇的数量、生长状态等信息,帮助菇房工作人员掌握菇房内的菇况,及时调整温湿度等环境条件,提高生产效率,并且对可以对平菇进行质量控制,确保平菇产品的统一性和品质稳定性。同时可以减少对人工的依赖,降低人力成本,实现可持续发展,对智能化现代菇房建设具有积极作用。  相似文献   

18.
基于改进YOLOv5的茶叶杂质检测算法   总被引:1,自引:1,他引:0  
针对现有目标检测算法检测茶叶杂质精度低、速度慢的问题,该研究提出了一种基于改进YOLOv5的茶叶杂质检测算法。采用K-Means聚类算法对杂质真实框聚类,以获取适合茶叶杂质特征的锚框尺寸;通过在主干特征提取网络CSPDarkNet中引入前馈卷积注意力机制(Convolutional Block Attention Module,CBAM),将茶叶杂质输入特征图依次经过通道注意力模块和空间注意力模块,获得特征图通道维度和空间维度的关键特征;在颈部网络中添加空间金字塔池化(Spatial Pyramid Pooling,SPP)模块,融合并提取不同感受野的关键特征信息;将普通卷积替换成深度可分离卷积,增大小目标预测特征图的置信度损失权重,构建了轻量化的改进YOLOv5网络结构模型;分别制作了铁观音茶叶中混合有稻谷、瓜子壳、竹片和茶梗4种杂质的数据集并进行茶叶杂质检测试验。结果表明,改进的YOLOv5比常规YOLOv5在茶叶杂质检测中具有更高的置信度分数,且定位更为准确,未出现漏检现象。改进YOLOv5的多类别平均精度(Mean Average Precision,mAP)和每秒传输帧数(Frame Per Second,FPS)达到96.05%和62帧/s,均优于主流的目标检测算法,验证了改进算法的高效性和鲁棒性。该研究成果可为提升茶叶制作过程中小目标杂质检测精度与检测速度奠定基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号