首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 0 毫秒
1.
The virulence of 57 Australian isolates of Pyrenophora tritici-repentis (Ptr), a necrotrophic fungal pathogen responsible for the major wheat disease tan spot, was assessed through plant infection assays. Isolates collected from the northern, southern, and western wheat-cropping regions of Australia were evaluated against 16 Australian bread wheat cultivars under controlled growth conditions. Following infection, the wheat panel displayed varying disease symptoms ranging from tiny necrotic specks to spreading chlorotic and necrotic lesions. Analysis of variance indicated that the wheat cultivar exhibited a greater effect on the disease response, explaining 62.7% of the variation, in comparison to the isolate (10.4%). The interaction between the cultivar and the isolate was statistically significant and was attributed to 9.8% of the total variation. All Ptr isolates examined were able to cause disease, but did not display a clear distinction in virulence on the wheat panel investigated, instead showing subtle differences in aggressiveness. Based on the disease responses, there was no obvious pattern between isolate aggressiveness and cropping region. Some cultivars, such as Hydra, exhibited an effective level of resistance in relation to the panel of isolates tested. All 57 Ptr isolates were found to possess the ToxA effector gene and lack the ToxB effector gene. The gene expression level of ToxA was up-regulated at 3 days postinfection in both ToxA-sensitive and -insensitive cultivars, independent of ToxA–Tsn1 recognition.  相似文献   

2.
Tan spot, caused by Pyrenophora tritici-repentis, is a common disease of wheat (Triticum aestivum) responsible for economic losses in some wheat growing areas worldwide. In this study the pathogenic and genetic diversity of 51 P. tritici-repentis isolates collected from different ecological regions of Argentina were analyzed. Virulence tests were conducted on 10 selected wheat cultivars: Buck Halcón, Chris, Gabo, Glenlea, Klein Dragón, Klein Sendero, Max, ND 495, ProInta Guazú and ProInta Imperial. Data revealed significant differences between all main factors evaluated and the interactions for 19 of the isolates analyzed. Based on the reaction type of each isolate/cultivar combination, 48 different pathogenic patterns were detected. The molecular analysis using Inter-Simple Sequence Repeats (ISSR) revealed the existence of 36 different haplotypes among 37 isolates of P. tritici-repentis originally selected for this study. These results indicate that P. tritici-repentis on wheat in Argentina is a heterogeneous fungus, implying that screening wheat germoplasm for resistance for tan spot disease requires a wide range of pathogen isolates.  相似文献   

3.
The pathogenicity of Alternaria spp. isolated from wheat leaves collected in regions where alternaria leaf blight has been reported was compared with that of IMI reference isolates of A. triticina and A. alternata using two durum and two bread wheat genotypes. To identify isolates putatively corresponding to A. triticina , morphological and DNA sequence analyses based on ribosomal DNA from the internal transcribed spacer (ITS) region (ITS1, 5·8S rRNA gene, ITS2) and toxicity bioassays of culture filtrate were combined. Glasshouse inoculations provided reliable information to assess the pathogenicity of A. triticina isolates on wheat. Alternaria leaf blight symptoms were produced by the A. triticina isolates only on durum wheat cv. Bansi, while A. alternata , A. tenuissima and A. arborescens isolates were found to be nonpathogenic on the wheat cultivars tested. Alternaria triticina isolates were distinguished from other Alternaria species by Simmons and Roberts' sporulation pattern 6 and two to three conidia per sporulation unit associated with primary conidia bearing long (> 7  µ m) apical secondary conidiophores. Phylogenetic analysis also proved effective at discriminating wheat-pathogenic A. triticina from other nonpathogenic Alternaria species. Alternaria triticina isolates yielded longer ITS sequences than A. alternata , A. tenuissima and A. arborescens isolates, leading to clear-cut differences as visualized with agarose gel electrophoresis. Additionally, only culture filtrates of A. triticina isolates caused nonspecific necrotic lesions on leaves of 3-week-old wheat plants.  相似文献   

4.
Eight Mycosphaerella graminicola isolates were investigated for correlations between pathogenicity and the in vitro production of cell wall-degrading enzymes. Isolate pathogenicity was evaluated in terms of lesion and production of pycnidia in wheat leaves. Additionally, the isolates were compared over time for their ability to produce in vitro significant levels of xylanase (EC 3·2·1·8), β-xylosidase (EC 3·2·1·37), β-1,3-glucanase (EC 3·2·1·6), cellulose (EC 3·2·1·4) and polygalacturonase (EC 3·2·1·15) activities when grown in a liquid medium. Correlation tests and principal component analysis revealed a significant correlation between the in vitro production of xylanase and pectinase and pathogenicity components. Xylanase was correlated to necrosis frequency ( r  = 0·795), β-xylosidase was correlated to the mean of the lesion length ( r  = −0·787), whereas polygalacturonase was correlated to the time when 50% of the leaves contained a lesion ( r  = 0·776), the lesion frequency ( r  = 0·646) and the time when 50% of the leaves showed pycnidia ( r  = −0·711). The results suggest that these two groups of cell wall-degrading enzymes are therefore likely to be key determinants of pathogenicity in M. graminicola .  相似文献   

5.
6.
Eyespot is an economically important stem‐base disease of wheat caused by two fungal species: Oculimacula yallundae and Oculimacula acuformis. This study investigated the efficacy of two sources of resistance, viz. the genes Pch1, introgressed into hexaploid wheat from Aegilops ventricosa, and Pch2, identified in wheat cv. Cappelle Desprez, against O. yallundae and O. acuformis separately. In a series of seedling bioassays Pch1 was found to be highly effective against both species. Although Pch2 was found to confer resistance against both pathogen species, it was significantly less effective against penetration from O. yallundae than O. acuformis. Furthermore, a quantitative trait locus (QTL) analysis was not able to locate any resistance to O. yallundae on chromosome 7A of Cappelle Desprez. This has important implications for the use of Pch2 in commercial cultivars as it is necessary to have genes that confer resistance to both pathogens for effective eyespot control. In addition, a set of 22 T. monococcum accessions was screened for resistance to both O. yallundae and O. acuformis to identify potentially novel resistances and to assess the accessions for evidence of differential resistance to the eyespot species. Significant differences in resistance to the two pathogens were identified in four of these lines, providing evidence for differential resistance in T. monococcum. This study demonstrates that future screening for novel sources of eyespot resistance should investigate both pathogen species.  相似文献   

7.
This study reports the discovery of a gene for resistance to septoria tritici blotch (STB) in two spring wheat cultivars, Courtot and Tonic. The gene, named Stb9 , confers resistance to Mycosphaerella graminicola isolate IPO89011. It was mapped by quantitative trait loci (QTL) analysis using an existing map of Courtot × Chinese Spring and was located between markers Xfbb226 (3·6 cM) and XksuF1b (9 cM) on the long arm of chromosome 2B. Markers linked to Stb9 in Courtot were then shown to be linked to resistance to IPO89011 in F3 families of Tonic × Longbow. Allelism tests in which Tonic was crossed with Courtot confirmed that Tonic has a gene for resistance to IPO89011 at or very close to the Stb9 locus. SSR markers flanking Stb9 may be used in marker-assisted selection to introgress this gene into winter cultivars or in spring wheat breeding programmes outside Europe.  相似文献   

8.
Wheat blast, caused by Pyricularia oryzae, can cause large yield losses in crops. This study aimed to investigate defence responses in flag leaves and spikes of wheat cultivars BR-18 (moderately resistant) and BRS-Guamirim (susceptible), which differ in their levels of basal resistance. In contrast to cultivar BRS-Guamirim, infected plants of cultivar BR-18 showed more pronounced increases in activities of β-1,3-glucanase and chitinase as well as higher concentrations of lignin-thioglycolic acid derivatives in the flag leaves and total soluble phenolics in the spikes. Polyphenoloxidase activity increased in both flag leaves and spikes in response to fungal infection, regardless of cultivar. Phenylalanine ammonia-lyase (PAL) activity increased in infected flag leaves of both cultivars, especially in BR-18. PAL activity was lower in spikes of infected compared to noninfected plants of both cultivars, although to a lesser extent in BR-18. Compared to BRS-Guamirim, the antioxidative system in both flag leaves and spikes of BR-18 was more efficient in removing reactive oxygen species, reducing cellular damage caused by fungal infection. The lower catalase and peroxidase activities, associated with high superoxide dismutase activity, in flag leaves and spikes of infected BR-18 culminated in a high hydrogen peroxide concentration. The increase in ascorbate peroxidase activity was higher in both flag leaves and spikes of infected plants of BR-18 than in infected BRS-Guamirim. It was concluded that wheat resistance to blast depended on the basal level of resistance of the cultivar, which was mainly associated with the activities of defence enzymes and a more effective antioxidative system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号