首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The inheritance of resistance to green leafhopper, Nephotettix impicticeps Ichi, was studied in 11 cultivars of rice, Oryza saliva L. These resistant cultivars were crossed with the susceptible cultivar ‘TN1’. The materials consisted of F1, F2 and F3 populations including parents which were assessed by the bulk screening test. It was found that resistance in the cultivars TR36′, UPR254-35-3′-2′, ‘Jhingasail’, ‘Govind’, ‘RP825-45-1-3’, ‘MRC603-303’, ‘RD4’, and ‘Irat104 ’ was conditioned by a single dominant gene, whereas resistance in ‘Ptb8’ IR9805-97-1′, and ‘BG367-7’ was controlled by one recessive gene. The test on the allelic relationships of the resistance genes in the test cultivars with the known genes Glb1 and Glb2 revealed that the single dominant gene that conveyed the resistance in ‘UPR254-35-3-2’ and ‘Jhingasail’ was allelic to Glh1 and segregated independently of Glh2. The resistance in ‘Govind’ and ‘RP82S-45-1-3’ was governed by the Glh2 gene which was independent of Glh1. The test cultivars ‘IR36’;. ‘MRC603-303’, ‘RD4’. and Irat104 ’ had a dominant gene for resistance which was nonallelic to Glb1 and Glb2. The recessive gene which conditioned the resistance in ‘Ptb8’, ‘IR9805-97-1’, and ‘BG367-1’ segregated independently of Glh1 and Glh2. Eleven trisomics in an ‘TR36’ background were crossed with ‘Java’, a cultivar susceptible to green leafhopper. The segregation pattern of the F2 and backcross generations revealed that the Glb6 gene was located on chromosome 5.  相似文献   

2.
Summary Bell pepper suffers considerable losses from a strain of potato virus Y (PVYo-sbp). Crosses were attempted between two resistant lines Perennial and S41-1 and two highly susceptible bell pepper commercial cultivars California Wonder and Yolo Wonder. Studies of F1's, F2's, back crosses and F3's indicated that Perennial and S41-1 carry a recessive gene imparting resistance to potato virus Y.  相似文献   

3.
Summary Six chickpea lines resistant to Ascochyta rabiei (Pass.) Lab. were crossed to four susceptible cultivars. The hybrids were resistant in all the crosses except the crosses where resistant line BRG 8 was involved. Segregation pattern for diseases reaction in F2, BCP1, BCP2 and F3 generations in field and glasshouse conditions revealed that resistance to Ascochyta blight is under the control of a single dominant gene in EC 26446, PG 82-1, P 919, P 1252-1 and NEC 2451 while a recessive gene is responsible in BRG 8. Allelic tests indicated the presence of three independently segregating genes for resistance; one dominant gene in P 1215-1 and one in EC 26446 and PG 82-1, and a recessive one in BRG 8.Research paper No. 3600  相似文献   

4.
有关稻白叶枯病的抗性遗传研究,自1967年日本的西村首次报道了第一个抗白叶枯病基因以来,迄今在水稻上总共发现并命名了12个位点上的15个抗白叶枯病基因。其中,4个显性基因 Xa-1、Xa-2、Xa-3;Xa-kg 包括两个复等位基因 Xa-1~h、Xa-kg~h 是由日本用日本的菌系鉴定和命名的~((37)),另5个显性抗病基因 Xa-4、Xa-6、Xa-7、Xa-10、  相似文献   

5.
Genetics of thermosensitive genic male sterility in rice   总被引:4,自引:0,他引:4  
Summary Inheritance of thermosensitive genic male sterility (TGMS) in Norin PL12 and IR32364TGMS and their allelic relationship were studied from F1, F2 testcross (TC) and F3 generations of the crosses made with the two mutants and several fertile tester parents. F2, TC and F3 segregation behavior for pollen and spikelet fertility indicated that the TGMS trait in the two mutants was controlled by a single recessive gene. Allelic relationship studies indicated that TGMS genes of the two mutants were different. Since TGMS gene in Norin PL12 has been designated as tms 2 , the TGMS gene present in IR32364TGMS is tentatively designated as tms 3 (t) until allelic test is done with another TGMS gene (tms 1 ) reported from China in a line 5460S seeds of which were not available.  相似文献   

6.
The genetics of resistance to green leafhopper, Nephotettix virescens (Distant), in rice varieties ‘IR36’ and ‘Maddai Karuppan’ and breeding line ‘IR20965‐11‐3‐3’ was studied. The reactions of F1 hybrids, F2 populations and F3 lines from the crosses of test varieties with the susceptible variety ‘TN1’ revealed that resistance in ‘IR36’ and ‘Maddai Karuppan’, is governed by single recessive genes while resistance in ‘IR20965‐11‐3‐3’ is controlled by a single dominant gene. Allele tests with the known genes for resistance to green leafhopper revealed that the recessive gene of ‘IR36’ is different from and inherited independently of Glh1, Glh2, Glh3, Glh4, Glh5, Glh8 and Glh9t. This gene is designated as glh10t. The recessive gene of ‘Maddai Karuppan’ and the dominant gene of ‘IR20965‐11‐3‐3’ are also non‐allelic to Glh1, Glh2, Glh3, Glh4, Glh5 and Glh8t. Thus, the dominant gene of IR20965‐11‐3‐3 is designated as Glh11t. The allelic relationships of the recessive gene of ‘Maddai Karuppan’ with glh8 and glh10t should be investigated.  相似文献   

7.
Summary Inheritance of aphid resistance and allelic relationships among sources of resistance was studied in the parents, F1, F2, F3, and backcross populations of cowpea crosses. Each 4-day old seedling was infested with five fourthinstar aphids. Seedling reaction was recorded 14–16 days after infestation when the susceptible check was killed. The segregation data from eight crosses between resistant and susceptible cowpea cultivars indicated that aphid resistance was inherited as a monogenic dominant trait. Segregation data from crosses among eight resistant cultivars indicated that one or two loci and modifier(s) were involved in the expression of resistance to aphids. It was suggested that further studies on allelism among sources of resistance needed to be conducted in order to resolve this.  相似文献   

8.
Inheritance of reaction to Pseudomonas lachrymans in pickling cucumber   总被引:2,自引:0,他引:2  
Summary Cucumber (Cucumis sativus) lines resistant to angular leafspot caused by Pseudomonas lachrymans react to an infection by developing necrotic lesions that lack the chlorotic halo characteristic of the susceptible reaction. The inheritance of the non-halo lesion reaction was studied in all possible crosses between resistant lines MSU 9402 and Gy 14A, and susceptible cultivars Wisc. SMR 18 and National Pickling. Genetic analysis of the F1, F2, backcross and F3 populations revealed that the non-halo lesion type, associated with resistance, was controlled by a single recessive gene, pl. This character appears to be an important component of resistance to P. lachrymans.  相似文献   

9.
The genetics of resistance to three Indian pathotypes of Xanthomonas campestris pv. oryzae, namely, IX01, IX08 and IX09, was studied in a landrace of Indica rice ‘ARC 10464’. Resistance to each of the two pathotypes IX01 and IX09 was governed by two independently-inherited dominant genes while a single dominant gene was operative against patho-type 1X08. The joint segregation tests conducted on F2 plant progenies (F3 families) using pathotypes IX01, IX08 and IX09 suggested that the gene/(s) effective against each of the pathotypes are different.  相似文献   

10.
Summary Pea blight caused by Assochyta pinodella does considerable damage to the pea crop every year. To ascertain the inheritance of resistance to pea blight and incorporate resistance in the commercial cultivars, crosses were made between Kinnauri resistant to pea blight and four highly susceptible commercial pea cultivars — Bonneville, Lincoln, GC 141 and Sel. 18. Studies of the F1's, F2's, back crosses and F3's indicated that Kinnauri carries a dominant gene imparting resistance to pea blight.  相似文献   

11.
Genetic basis of adult plant leaf rust resistance in three released Indian wheat cultivars viz. DWR195, RAJ3765 and HP1731 was investigated through detailed inheritance study under controlled polythene house condition at Flowerdale, India. The F2, F3, F4 and F5 generations were analyzed with the most frequent and virulent Indian leaf rust pathotype 121R63-1. Two complementary recessive genes imparted resistance in DWR195, two complementary dominant genes governed the resistance of RAJ3765 whereas two independent dominant genes were involved in the resistance of HP1731. The genes responsible for adult plant resistance in the three cultivars were not allelic. The two complementary genes of DWR195 and two independent dominant genes of HP1731 have been isolated as single gene lines. Utilization of resistance from HP1731, which carries two independent dominant genes, will be easy as compared to DWR195 and RAJ3765.  相似文献   

12.
Soybean Cyst nematode (SCN) Heterodera glycines Ichinohe is the most serious pest of soybean [Glycine max (L.) Merr.] in the world and genetic resistance in soybean cultivars have been the most effective means of control. Nematode populations, however, are variable and have adapted to reproduce on resistant cultivars over time due mainly to the narrow genetic base of SCN resistance in G. max. The majority of the resistant cultivars trace to two soybean accessions. It is hoped that new sources of resistance might provide durable resistance. Soybean plant introductions PI 467312 and PI 507354, are unique because they provide resistance to several nematode populations, i.e. SCN HG types 0, 2.7, and 1.3.6.7 (corresponding to races 3, 5, and 14) and HG types 2.5.7, 0, and 2.7 (corresponding to races 1, 3, and 5), respectively. The genetic basis of SCN resistance in these PIs is not yet known. We have investigated the inheritance of resistance to SCN HG types 0, 2.7, and 1.3.6.7 (races 3, 5, and14) in PI467312 and the SCN resistance to SCN HG types 2.5.7 and 2.7 (races 1 and 5) in PI 507354. PI 467312 was crossed to ‘Marcus’, a susceptible cultivar to generate F1 hybrids, 196 random F2 individuals, and 196 F2:3 families (designated as Pop 467). PI 507354 and the cultivar Hutcheson, susceptible to all known SCN races, were crossed to generate F1 hybrids, 225 random F2 individuals and 225 F2:3 families (designated as Pop 507). The F2:3 families from each cross were evaluated for responses to the specific SCN HG types in the greenhouse. Chi-square (χ2) analyses showed resistance from PI 467312 to HG types 2.7, and 1.3.6.7 (races 5 and 14) in Pop 467 were conditioned by one dominant and two recessive genes (Rhg rhg rhg) and resistance to HG type 0 (race 3) was controlled by three recessive genes (rhg rhg rhg). The 225 F2:3 progenies in Pop 507 showed a segregation of 2:223 (R:S) for response to both HG types 2.5.7 and 2.7 (corresponding to races 1 and 5). The Chi-square analysis showed SCN resistance from PI 507354 fit a one dominant and 3 recessive gene model (Rhg rhg rhg rhg). This information will be useful to soybean breeders who use these sources to develop SCN resistant cultivars. The complex inheritance patterns determined for the two PIs are similar to the three and four gene models for other SCN resistance sources known to date.  相似文献   

13.
Summary F2 plants of five, and F3 plants of three, crosses between genotypes carrying the race-specific resistance gene Xa-4 and genotypes not carrying this gene were inoculated with two isolates of Xanthomonas campestris pv. oryzae. Half the tillers of each plant received isolate PX061, avirulent on the Xa-4 gene, the other half of the tillers received isolate PX099, virulent for the Xa-4 gene. The F2 and F3 populations segregated for a single dominant resistance gene, Xa-4.The parental, F2 and F3 genotypes not carrying Xa-4 had mean lesion lengths between 28 and 29 cm for both isolates. The Xa-4 carrying parents showed a mean lesion length of 2.7 cm with the avirulent isolate and of 12.4 cm with the virulent isolate. The Xa-4 carrying F2 and F3 genotypes had mean lesion lengths of 5.2 and 20.1 cm for the two isolates, respectively. These observations strongly indicate that the Xa-4 gene, carried by the rice genotypes studied (IR28, Cisadane and BR51-282-8), had a considerable residual effect when exposed to virulent isolate PXO99.  相似文献   

14.
J. E. Parlevliet 《Euphytica》1976,25(1):241-248
Summary The latent period (LP) in the barley-leaf rust relationship is an important component of the partial resistance complex. The inheritance of the host plant effect on LP was studied in five crosses between four cultivars. The LP, effectuated by the susceptible cultivars L94 and L92, were 8.0 and 8.6 days resp., those of the resistant cultivars Minerva (Mi) and Vada (Va) 16.9 and 17.1 days resp. The mean F1 and F2 values of the crosses L92×L94 and Mi x Va were intermediate between the parental ones. The variances of the F2's were slightly larger than those of the parents and the F1's indicating some segregation. In the crosses between a susceptible and a resistant cultivar the F1 value was half way between the mid-parent and susceptible parent value. The F2 mean lay approximately half way between the mid-parent and F1 value, with a distribution positively skewed and slightly bimodal. There was no transgression, in fact not even the parental values were recovered among nearly 500 F2 plants. The F3-lines of the crosses between susceptible and resistant cultivars showed within line variances from as low as the parental values to as high as or higher than those of the F2. In hte F3's the parental values could be recovered although no transgression occurred.L94 is supposed to carry no genes effecting a longer LP. The long LP of Mi and Va, assuming no linkage, is thought to be effectuated by the cumulative action of a recessive gene with a fairly large effect and some four to five minor genes with additive inheritance. One of these minor genes is supposed to be carried by L92, while Mi and Va are thought to differ for one minor gene only. In case linkage exists, the number of minor genes involved could be higher.  相似文献   

15.
Summary Genetic analysis of generation means of F1, F2, F3, F4, and the parental populations of the cross IR10154-23-3-3A/IR15795-232-3-3-2 for ratooning ability was conducted. Good ratooning ability is a recessive trait. The parents differed by at least two pairs of major genes for ratooning ability. A large proportion of transgressive segregants in F2 suggested that the expression of ratooning ability is influenced not only by major genes but also by modifiers. Broad-sense heritability estimates computed by different methods ranged from 0.66 to 0.88. Narrow-sense heritability by the F4–F3 regression method was 0.39. The heritability estimates were 0.42 and 0.33 by the variance component method. The prevalence of additive x additive type of gene effects along with prominent additive effects imply some scope for selection in the segregating generations. However, non-additive type of gene action also affects the expression of ratooning ability.  相似文献   

16.
Summary The genetics of resistance to angular leaf spot caused by Pseudomonas syringae pv. tabaci in Nicotiana tabacum cultivars Burley 21 and Kentucky 14 was investigated by studying disease reactions to three isolates of parental, F1, F2 and backcross generations derived from crosses between the resistant cultivars and the susceptible cultivar Judy's Pride. Studies were conducted in the greenhouse and in field plant beds. Chi-square values were computed to determine whether the observed ratios for disease reactions deviated from expected Mendelian ratios for a single, dominant gene controlling resistance to angular leaf spot in tobacco. Based on the resistance of the F1 and the backcross generation to the resistant parent (BC-R), a 3 resistant: 1 susceptible segregation ratio in the F2, and a 1 resistant: 1 susceptible segregation ratio in the backcross generation to the susceptible parent (BC-S), it was concluded that resistance to three isolates of Pseudomonas syringae pv. tabaci is governed by a single, dominant gene.  相似文献   

17.
The inheritance of resistance to rice gall midge (Ranchi biotype) was studied in 12 resistant cultivars by crossing with susceptible cultivars. By the study of F1, F2, F3, B1 and B2 generations, it was found that resistance was governed by a single dominant gene in ‘Surekha’, ‘Phalguna’, ‘Rajendra Dhan 202’, ‘IET 7918’‘IET 6187’, ‘BG 404-1’; by duplicate dominant genes in ‘W 1263’, ‘RPW 6-17’ and ‘WGL 48684’ and a monogenic recessive gene in ‘OB 677’ and ‘BKNBR 1008-21’. The allelism test of the resistant genes in the test cultivars with already known genes Gm1 and Gm2 was carried out. A single dominant gene that conveyed the resistance in ‘RPW 6–17’, ‘IET 7918’ and ‘IET 6187’ was allelic to Gm1 and segregated independently of Gm2. The resistance in ‘Phalguna’, ‘Rajendra Dhan 202’, ‘W 1263’ and ‘RPW 6–17’, ‘IR 36’ and ‘WGL 48684’ was governed by Gm2 gene which was independent of Gm1. Two additional genes were identified and designated as Gm3 and gm4. Three test cultivars ‘BG 404-1’, ‘W 1263’ and ‘WGL 48684’ were found to have Gm3 gene for resistance which was non-allelic and segregated independently of Gm1 and Gm2. Thus the cultivars ‘W 1263’ and ‘WGL 48684’ had two resistance genes Gw2 and Gm3 together. The cultivar ‘RPW 6–17’ also had two resistance genes Gm1 and Gm2 together. The recessive gene gm4 which conditioned the resistance in ‘OB 677’ and ‘BKNBR 1008-21’ was nonallelic to and segregated independently of Gm1, Gm2 and Gm3 genes. Linkage studies of the resistance gene with pigment characters were carried out in ‘Purple gora/IR 36’ cross. The resistance gene Gm2 was found to be linked with the genes governing the pigmentation in node, apiculus and stigma with crossover values of 15.78, 31.57 and 35.78 % respectively. By the trisomic analysis, it was found that the Gm2 gene was located on chromosome 3.  相似文献   

18.
G. S. Sidhu  G. S. Khush 《Euphytica》1979,28(2):233-237
Summary Two-way classification of 400 F3 families from the rice cross IR2153-159-1 x Babawee for plant stature and for resistance to brown planthopper, green leafhopper, and bacterial blight indicated that Glh 3 (dominant gene for resistance to green leafhopper) and bph 4 (recessive gene for resistance to brown planthopper) are linked with a map distance of 34 units. The bph 4 gene also appears to be linked with sd 1 (recessive gene for semidwarf stature) although the linkage is less strong. However, bph 4 and Xa 4 (dominant gene for bacterial blight resistance) are inherited independently of each other. No segregation for susceptibility was observed among F3 families of crosses between varieties having Bph 3 and bph 4 genes for resistance to brown planthopper. Apparently, Bph 3 and bph 4 are either allelic or closely linked.  相似文献   

19.
E. Roumen 《Euphytica》1996,89(2):243-248
Summary Divergent selection for higher and lower partial resistance to leaf blast was applied in F2 populations of crosses between the rice cultivars IR36, IR64 and CO39 after exposure to a virulent isolate. IR36 and IR64 are partially resistant while CO39 is highly susceptible. As selection criteria the number of sporulating lesions in leaves of the main culm or the lesion density in the topmost leaf relative to other F2 plants with the same stage of development were used. A highly significant and meaningful response to selection was obtained in most cases, but the heritability was low. Realized heritabilities varied from 0.14 to 0.25 depending on the cross and were similar for both selection criteria. Selection for improved partial resistance to leaf blast is possible as early as the F2. The efficiency of selection is probably much higher if replicated tests could be made, and better results are therefore expected if selection among F3 lines is carried out. The results indicated that the relatively low infection efficiency in IR36 and IR64 is oligo- or polygenically controlled.  相似文献   

20.
Summary Inheritance of resistance to the Punjab isolate of Xanthomonas campestris pv. oryzae of bacterial blight disease of rice was studied in seven breeding lines resistant to the disease. The results revealed that resistance in breeding lines PAU 122-73-1-4-1, PAU 164-102-1-2-1-1-1, KJT 24, IR 5657-33-2-1-2 and IR 22082-41-2-2 was controlled by single dominant genes allelic to the dominant gene which confers resistance to the Punjab isolate in Patong 32. Resistance to the Punjab isolate in breeding lines IET 7172 and RP 2151-40-1 was found to be controlled by single recessive resistance genes allelic to one of the recessive resistance genes present in BJ 1. The two genes are independently inherited and are being used to develop bacterial blight resistant varieties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号