首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 62 毫秒
1.
错综复杂的土地利用模式和破碎的地物斑块制约了土地利用/覆被分类的精度和效率。一方面,混合像元模糊了地物的光谱信息,影响了分类精度。另一方面,如何高效利用地物的光谱、形状和纹理特征是当前土地利用/覆被分类的研究热点。为了提高基于遥感技术的土地利用/覆被分类精度,该研究基于Sentinel-2A遥感影像,开展融合光谱混合分解与面向对象的土地利用/覆被分类研究。首先,基于地物的光谱、形状和纹理特征,在3个分割尺度通过NDWI(Normalized Difference Water Index)、NDVI(Normalized Difference Vegetation Index)、SBL(Soil Background Level)等8个特征参数构建了不同地物信息的提取规则。其次,利用光谱混合分解模型提取研究区基质(SL;岩石和土壤)、植被(GV;光合作用叶片)和暗色物质(DA;阴影和水)3类通用端元。最后,尝试融合3端元光谱特征优化地物信息提取规则。研究结果表明:1)基于构建的光谱、形状和纹理的地物信息提取规则,使用模糊函数、阈值法进行土地利用/覆被分类,获得了较高的分类精度,总体精度为80.83%,Kappa系数为0.76。2)融合3端元的光谱特征的提取规则将分类精度提升至90.00%,Kappa系数提升至0.88。3)具有明确物理意义的3端元的融入增强了像元内各组分信息的差异性,弥补了传统光谱指数对植被与土壤间的亮度信息解析度不足的缺陷。该方法能充分利用影像的光谱信息,是一种由易到难、对不确定因素进行逐层剥离的土地利用/覆被信息提取技术。因此,对中高分辨率的多光谱遥感影像十分友好,在土地利用/覆被的精细化分类中有较大应用潜力。  相似文献   

2.
绿洲景观多季相特征的线性光谱混合分解方法研究   总被引:2,自引:2,他引:2  
因干旱、半干旱区生态环境的脆弱性和社会经济的干扰,区域景观季相间具有显著变异,但该类区域季相景观异质性研究相对薄弱。加上遥感数据空间分辨率的约束,表征荒漠化状态的异质性景观特征以一定程度的混合像元存在,传统的景观信息提取方法具有一定的局限性。以甘肃省民勤县为例,进行了荒漠化异质性季相景观特征的线性光谱混合分解方法研究,包括端元类型确定,多季相代表性端元选择和光谱值优化等关键步骤。结果表明,多季相线性光谱混合分解模型考虑了端元在季相之间的可比性和分解结果的物理意义,可以直接进行物理解译,有效模拟民勤绿洲的景观要素分布,多季相端元丰度可以描述各类端元的季相变异,为土地荒漠化监测评价提供保障。  相似文献   

3.
高精度监测土地利用对实现可持续发展有重要意义。然而,由于遥感传感器成像的限制和地物的复杂性,单一的高光谱和多光谱图像已经不能满足高精度土地利用分类的要求,充分利用高光谱和多光谱遥感图像的互补信息能克服仅采用单一遥感图像分类的不足。该研究设计双分支卷积神经网络协同高光谱和多光谱遥感图像进行土地利用分类。针对高光谱图像设计3维-1维卷积神经网络(3D-1D Convolutional Neural Networks,3D-1D CNN)分支自动提取高光谱图像的空间-光谱特征;针对多光谱图像,设计3维卷积神经网络(3D Convolutional Neural Networks,3D CNN)分支提取多光谱图像的空间-光谱特征;设计融合层将从高光谱和多光谱图像提取的特征进行融合,最后通过全连接层输出土地利用类别。研究表明,与决策树(Decision Tree,DT)、支持向量机(Support Vector Machine,SVM)以及1D、2D和3D CNN方法相比,该文提出的基于双分支卷积神经网络的方法在两个数据集上Kappa系数平均分别提升了15.9、8.1、5.4、5.4和2.7个百分点。  相似文献   

4.
当前面对紧迫的自然资源管理压力和生态环境监测需求,针对国产遥感卫星大数据应用能力的挖掘将面临很大的挑战。GF-6卫星具有大角度、高频次和新谱段的特点,该文基于GF-6卫星数据,测试新增的红边、黄光和紫光波段响应能力。利用具有物理意义的全约束线性光谱混合分解模型,根据研究区物候特征确定四端元包括植被(GV),裸地和建设用地等基质(SU),山体植被阴影(DA)以及水(WA),通过对比保留红边、黄光波段、紫光波段和去除红边、黄光、紫光波段后的分解结果,对各新增波段和GV端元、SU端元、差均方根(RMSE)进行相关性分析;最后对比光谱混合分解结果和基于专家知识决策树分类结果。通过对比丰度值估计参数和决策树分类结果发现红边波段对植被较为敏感,对光谱混合分解模型的适用性、稳健性以及丰度值估计精度有着很大贡献,黄光波段和紫光波段经过数据降维后对植被和裸地、建设用地有少量贡献。通过相关性分析发现红边2波段、近红外波段与GV端元丰度图有最大的相关性,紫光波段、黄光波段和红边1波段与GV端元反向相关;红边1波段、紫光波段和黄光波段与SU端元丰度图显著相关;红边1波段和黄光波段对丰度值计算误差有主要贡献,是主要的噪音来源,紫光波段次之。通过对比GF-6数据和OLI、Sentinel-2数据丰度值估计结果发现GF-6丰度值估计的均方根误差以及除了WA端元的各端元丰度值估计变异系数均小于OLI和Sentinel-2载荷,体现出CF-6卫星在地表信息识别上较高的精度和稳健性。  相似文献   

5.
LUCC是全球变化研究的重要内容,土地利用/覆盖信息的获取是其前提和基础。决策树分类法是每次利用一定的规则,对遥感影像进行逐级细化的分类模型,具有直观、高效等特点。在综合分析每一种土地利用/覆盖类型各种特征的基础上,探讨了将不同土地利用/覆盖类型的光谱特征、空间特征、波段比值特征等信息融入决策树分类模型,对龙口市土地利用/覆盖信息进行自动分类的方法,取得了较高的分类精度。  相似文献   

6.
为了提高土地利用遥感识别精度,探索不同识别期及不同特征变量对土地利用类型遥感识别精度的影响.该研究采用Landsat时间序列影像数据,考虑不同月份和不同特征变量(波段、光谱指数及纹理特征)组合方式建立土地利用决策树分类模型,并利用河套灌区永济灌域实测数据和Google earth影像对不同组合方式的土地利用模型进行数量...  相似文献   

7.
干旱区土地退化(荒漠化)作为全球面临生态环境挑战之一,对粮食安全、环境质量和区域自然资源管理至关重要。土地退化本质是人与自然因素协同作用下土地利用/覆被类型、数量、结构以及功能的改变而引起的生态服务价值降低,核心是土壤和植被的退化。一方面,人与自然共同作用下的土地利用覆被可以表征土地退化状态,另一方面植被-土壤生境时间序列相互作用过程进一步辅助土地退化过程诊断。因此,该文首先从覆被结构、退化类型和退化程度3个层次建立干旱区土地退化状态评价体系。其次,采用GF-1/WFV时间序列遥感影像,基于多端元光谱混合分解模型建立土地利用/覆被精细分类量化表征下垫面质量属性,并进一步利用植被-生境组分互动特征参数进行功能量化,综合评价民勤2015年退化类型和退化程度。最后,结合地面立地景观照片以及采样点实测数据,对土地退化状态评价结果进行绝对定标和交叉验证。结果表明:遥感评价识别土地退化类型和程度的能力分别为87.5%和78.7%。对于民勤旱地系统,沙化过程、沙-盐化过程是主要的土地退化过程,轻度沙化、中度沙化为主导退化程度。该方法为宽波段遥感国产高分1号卫星在旱地系统土地退化状态信息提取和深入应用提供科学依据和实证研究。  相似文献   

8.
肖艳  王斌  姜琦刚  闻雅 《农业工程学报》2020,36(16):134-141
为实现PolSAR数据极化信息的充分利用,以进一步改善分类效果,该研究提出了一种基于极化分解和集成学习的PolSAR影像分类方法。该方法首先利用多种极化分解方法从PolSAR影像中提取极化参数;将提取的极化参数组合成一幅多通道影像;然后对多通道影像进行分割和特征提取,分别提取出各目标极化分解方法所对应的特征;并进行特征选择和分类,得到各目标极化分解方法的分类结果;最后利用集成学习技术对各分类结果进行集成。该研究以吉林省长春市部分区域为研究区,Radarsat2影像为数据源,将提出的方法应用于土地覆被分类中,取得了较好的分类效果,总体精度和Kappa系数分别达到了92.49%和0.90。此外,该研究还将提出方法与其他基于多种极化分解的分类方法进行比较,对比方法的总体精度和Kappa系数分别为90.74%和0.88,比提出方法分别低1.75%和0.02,对比结果进一步证明了提出方法的优越性。  相似文献   

9.
为了获取多时相的土地覆盖基础数据以支持区域土壤侵蚀定量评价,基于线性光谱混合模型分解MODIS多光谱影像,并对分解结果进行了定性、定量评价。结果表明,结合像元年内植被指数变化特征,基于线性混合像元分解,可解译出耕地、林地、草地、裸地、水体、居民地等类型。分类结果与2006年TM分类结果的总体一致性为64.46%,Kappa系数为0.519 9,土地覆盖类型分类结果可靠;各类端元估算误差基本小于20%,且与对应TM分类结果具有相关性,总体精度较好;林地端元能够较好地反映植被盖度信息。基于LSMM分解MODIS影像可为区域环境研究提供可靠的土地覆盖类型图和植被覆盖信息。  相似文献   

10.
为有效利用微波遥感影像进行土地覆盖/土地利用分类,该研究以内蒙古河套灌区解放闸灌域为研究区域,采用春耕后试验区Radarsat-2全极化数据,利用极化目标分解方法提取得到了散射熵、平均散射角、反熵、平均特征值、单次反射特征值相对差异度、二次反射特征值相对差异度。结合实地数据,分析了各参数对于耕地、裸地、含植被水体、建筑等类别的可分离性。根据分析结果选取平均散射角、平均特征值、单次反射特征值相对差异度为分类特征变量,通过最小距离法计算了决策边界,最后结合树分类器对试验区影像进行了分类。整体分类精度93.89%,分类Kappa系数为0.914。结果表明,利用平均散射角可有效区分表面散射与二次散射及体散射;平均特征值可有效区分含植被水体与建筑物;单次反射特征值相对差异度参数可有效区分耕地与裸地。利用极化目标分解方法结合决策树分类器可精确地进行土地覆盖/土地利用分类。  相似文献   

11.
基于HJ-CCD数据和决策树法的干旱半干旱灌区土地利用分类   总被引:2,自引:5,他引:2  
为了实现干旱半干旱灌区地表信息低成本、高效率的动态监测,利用HJ-CCD数据的多时相和多光谱信息,探讨了平罗县土地利用遥感分类方法。首先建立研究区内典型地物的NDVI时间序列曲线,提取反映该区物候模式的时序特征参数;然后对土壤信息丰富的3月份多光谱影像进行主成分变换,选取第1主成分(PC1)作为光谱特征参数,最后基于分类回归树(classification and regression tree,CART)算法进行决策树监督分类。总体分类精度达到92.26%,Kappa系数为0.91,比最大似然法分类结果精度提高了2.58%。研究表明:构建的NDVI时间序列曲线对研究区内的地类具有较强的代表性,提取的时间维和光谱维的分类参数对各地类均有很好地区分性,CART决策树算法分类结果清晰准确且精度较高。该方法为HJ小卫星在干旱半干旱区等区域的深入应用提供科学依据和实证基础。  相似文献   

12.
基于多特征决策树的建设用地信息提取   总被引:1,自引:1,他引:1  
饶萍  王建力  王勇 《农业工程学报》2014,30(12):233-240
城乡交接带的土地利用/覆盖类型兼具城镇和农村的典型特征。为了解决土地覆盖类型复杂、存在"同谱异物"现象的西部山区环境中建设用地信息难以精确提取的问题,该文提出一种包含多个特征节点的决策树分类法,该方法以Landsat-8影像为主要数据源,以决策树分类法为框架,结合地物光谱特征及空间特征,建立以4种归一化指数(归一化三波段指数normalized difference three bands index,NDTBI;归一化建筑指数normalized difference building index,NDBI;改进的归一化水体指数modified normalized difference water index,MNDWI;归一化植被指数normalized difference vegetation index,NDVI)、支持向量机(support vector machine,SVM)分类结果和河流缓冲区作为特征节点的决策树分类器,对贵州省毕节市城乡交接带建设用地专题信息进行提取。NDTBI是该文新构建的指数,取名为归一化三波段指数,目的是为了弥补归一化建筑指数NDBI的不足;支持向量机分类结果的使用在多指数法的基础上提高了地物的可分离性;以构建河流缓冲区的方式加入的地物空间信息,进一步提高了信息提取的精确性。由于决策树特征节点的构建过程是利用先验知识来优化特征值和提高精度的过程,克服了利用单一指数法、多指数法及单独使用模式识别法中出现的问题,精度评价结果显示总体精度达到了97.52%。为了验证方法的推广性,采用毕节市七星关区中心城区遥感影像数据该方法进行验证,精度评价结果显示总体精度达到98.03%。  相似文献   

13.
滨海光谱混淆区面向对象的土地利用遥感分类   总被引:5,自引:4,他引:5  
滨海光谱混淆区土地利用/覆盖信息获取是遥感信息提取的难点之一,该研究选择黄河三角洲垦利县为研究区,采用2007年3月11日陆地卫星TM遥感影像数据,利用面向对象的土地利用遥感分类技术,通过影像分割和采用支持向量机分类方法对研究区土地利用/覆盖信息进行提取,并将分类结果与传统的基于像元的分类方法进行对比分析。结果表明:面向对象支持向量机的分类精度达到84.83%,比基于像元的最大似然法和波谱角法分别提高了5.94%和19.53%,且有效避免了椒盐现象。说明面向对象的图像分类方法明显提高了遥感影像的分类精度和分类效率,为滨海光谱混淆区土地利用信息的快速、准确提取提供了有效技术手段。  相似文献   

14.
基于混沌免疫算法和遥感影像的土地利用分类   总被引:1,自引:2,他引:1  
为提高利用遥感影像进行土地利用分类的精度,采用了基于混沌免疫算法(Chaos Immune Algorithm)的多光谱遥感影像分类方法。首先应用混沌免疫算法对样本进行自学习得到全局最优的聚类中心,然后通过得到的聚类中心对整幅影像进行分类。该方法利用混沌变量的遍历性,进行粗粒搜索,优化免疫算法的初始抗体群;通过克隆选择算子、变异算子、抗体的循环补充操作,避免陷入局部最优解,得到全局最优的聚类中心。在对淮南矿区采用TM影像进行的土地利用分类中,试验结果表明该方法分类总精度为89.9%,Kappa系数为0.8  相似文献   

15.
MODIS土地利用/覆被多时相多光谱决策树分类   总被引:1,自引:4,他引:1  
利用MODIS多时相与多光谱结合,尝试探讨低成本、高精度的北京土地利用/覆被实时获取方法。首先根据归一化植被指数(NDVI)的均值、标准差建立了研究区各地类的典型NDVI时间序列曲线,进而提取了6个可以反映区域物候模式、植被生长速率等信息的分类参数;然后对反映地表土壤信息较多的3月份多光谱影像进行主成分变换,选取第一主成分(PC1)作为辅助分类参数;最后基于分类回归树(CART)算法进行监督决策树分类。经SPOT-5影像验证,分类总体精度达到83%,Kappa系数为0.769,PC1辅助分类后总体精度提高  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号