首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 156 毫秒
1.
不同利用方式下(刈割和放牧),比较了羊草(Leymus chinensis)草地土壤微生物多样性(真菌、细菌和放线菌)及群落结构的数量变化。结果表明:土壤微生物的数量在不同利用方式下表现为:刈割草地>放牧草地,在不同植物群落中表现为:羊草群落>杂类草群落>碱茅(Puccinellia distans)群落。无论在刈割还是放牧区,真菌的分布为:羊草群落>杂类草群落>碱茅群落;细菌的分布为:杂类草群落>羊草群落>碱茅群落;放线菌为:羊草群落>杂类草群落>碱茅群落。土壤微生物随土层垂直递减分布,在土层0~15 cm土壤微生物分布最多。3类微生物中,细菌数量最大, 放线菌次之, 真菌最小。相关性分析表明,只在刈割方式下羊草群落(sp1)和碱茅群落(sp2)土壤的微生物数量与地上生物量显著相关(P<0.05),其余相关性均不显著。  相似文献   

2.
采用熏蒸-提取法、微生物培养法,研究了荒漠灌区不同种植年限紫花苜蓿(Medicago sativa L. ‘Gannong No.3’)草地0~60 cm土层土壤微生物量和数量,从土壤微生物的角度对荒漠灌区苜蓿的退化机理、人工草地管理做出了评价。结果表明,不同种植年限苜蓿草地土壤微生物量碳、氮及微生物(细菌、真菌、放线菌)数量均呈现随土层深度的增加而减小的趋势;随苜蓿种植年限的增加,土壤微生物量碳、氮,细菌和放线菌数量均呈增加-降低-增加的变化趋势,真菌数量呈先增加后降低的变化趋势;土壤微生物群落以细菌占绝对优势(70.72%),真菌最少(0.18%),微生物总数量和微生物生物量均大于撂荒地,且5年生苜蓿地微生物总数最多,是其他各种植年限的1.58~6.17倍,且微生物生物量碳、氮与细菌、放线菌数量呈极显著正相关。微生物生物量及数量表现出明显的季节动态,除土壤真菌数量最大值出现在9月份之外,其余指标最大值均出现在7月份,最小值在4月份。  相似文献   

3.
通过分析呼伦贝尔地区人工草地及天然草地生长季土壤微生物(细菌、真菌、放线菌、固氮菌)的数量变化,比较人工草地与天然草地的差异性,揭示人工草地土壤微生物的变化规律。结果表明:土壤细菌数量在2012年生长季可能由于降水量的迅速减少而呈下降趋势;真菌、放线菌和固氮菌数量在生长季均呈上升趋势。人工草地土壤细菌数量在生长季基本高于天然草地,真菌数量基本为苜蓿(Medicagao sativa)人工草地>天然草地>无芒雀麦(Bromus inermis)人工草地,放线菌数量多为苜蓿人工草地>天然草地>无芒雀麦人工草地,固氮菌数量在生长季初期无芒雀麦人工草地稍高,生长季后期苜蓿人工草地和天然草地稍高。从整体上看,呼伦贝尔地区人工草地在生长季0~10 cm土壤微生物数量基本高于10~20 cm,部分月份表现出差异性。  相似文献   

4.
林芝地区不同草地土壤微生物区系分析   总被引:1,自引:0,他引:1  
通过对林芝地区3种不同类型草地(高寒草甸草地、沼泽草地和栽培草地)土壤微生物进行研究,利用稀释平板法对3种草地土壤中的细菌、真菌和放线菌进行分离。结果显示,该地区不同草地中的微生物均以细菌占优势,占微生物总数的91.2%以上,放线菌数量最少,仅占3.79%。不同类型草地微生物总数有明显差异,栽培草地>沼泽草地>高寒草甸草地;同一类型草地不同土层深度垂直动态明显,0~10 cm土层数量较多,且与10~20 cm土层微生物数量有显著差异。不同草地土壤含水量差异较大,低湿条件有利于放线菌的生长,但不利于真菌的生长。  相似文献   

5.
宁夏典型草原土壤微生物特征对不同管理方式的响应   总被引:1,自引:0,他引:1  
草地土壤微生物是土壤养分循环的推动力,可灵敏反映草地生态环境变化,常被用来评价草地土壤质量。本研究以宁夏典型草原为对象,研究了封育、放牧和水平沟改良管理方式下土壤微生物特征及其与土壤有机质的相关性。结果表明,试验区0~40 cm土层土壤微生物数量表现为细菌>放线菌>真菌;细菌和放线菌数量随封育年限增加呈增加趋势,真菌以封育5年草地最高;微生物总数量和微生物量碳、氮含量均表现为随封育年限增加而增加,放牧草地最低;水平沟改良草地微生物特征未表现出明显的优越性;土壤微生物数量表现为5~15 cm土层最高,25~40 cm土层最低;土壤微生物数量与有机质含量之间存在极显著正相关关系。  相似文献   

6.
研究了不同土壤管理模式下梨园土壤主要微生物类群(细菌、真菌、放线菌)分布和数量,结果表明:0~20cm处土层土壤微生物数量显著高于20~40cm处土层,细菌数量明显多于真菌和放线菌的数量,生草梨园的土壤微生物类群(细菌、真菌、放线菌)数量均多于种养结合的梨园,而种养结合梨园的土壤微生物类群(细菌、真菌、放线菌)数量又高于清耕模式梨园。  相似文献   

7.
不同治理措施对退化草原土壤可培养微生物区系的影响   总被引:1,自引:0,他引:1  
利用纯培养技术,对退化草原四项不同治理措施(浅耕翻、耙地、播种羊草、围栏封育)处理后的土壤微生物进行研究.结果表明,四项治理措施中,各类群土壤微生物均显著高于对照区.0~10 cm土层,微生物各类群的数量均依次为浅耕翻>耙地>播种羊草>围栏封育>对照;四项治理措施细菌数量依次比对照区增高了91.95%、89.66、87.36%和73.56%;真菌数量增高了53.06%、50.34%、50.34%和23.81%;放线菌数量增高了41.27%、38.89%、24.47%和22.63%.10~30 cm土层,细菌和放线菌的数量均依次为浅耕翻>耙地>播种羊草>围栏封育>对照;四项治理措施细菌数量依次比对照区增高了43.59%、43.59%、41.03%和33.33%;放线菌数量分别比对照区增高了34.19%、31.15%、29.74%和5.39%;而该土层真菌数最则依次为围栏封育>播种羊草>浅耕翻>耙地>对照,四项治理措施分别比对照增高了221.74%、191.30%、162.86%和161.43%.采取不同治理措施后,微生物各类群的数量增高幅度各不相同,其中0~l0cm土层细菌数量增高幅度最高,真菌次之,放线菌最低.而l0~30cm土层真菌数最增高幅度最高,细菌次之,放线菌最低.四项治理措施土壤微生物与对照均有显著性差异.  相似文献   

8.
本试验旨在研究两种种植年限紫花苜蓿人工草地对土壤含水量及容重的影响。栽培五年的紫花苜蓿地在0~50cm土层内对土壤容重有较好的降低效果。与一年生苜蓿地相比,五年生苜蓿地可以显著地增加0~30cm土层含水量,并显著地降低0~30cm的土壤容重。  相似文献   

9.
连续2年对青海玉树高寒草甸的3种不同利用草地(天然草地、灭鼠草地、灭鼠+围封草地)的微生物类群及微生物量碳、氮、磷空间含量及变化特征进行了研究,分析不同利用方式下土壤微生物特征及其变化规律.以探讨不同利用措施对玉树退化草地土壤微生物的影响.结果表明:同一利用方式下,不同土壤层(0~5, 5~10和10~15 cm)土壤各微生物类群主要分布在土壤表层,且数量均随着土壤深度增加而减少.不同利用方式下,同一土壤层内,灭鼠和灭鼠+围封草地对土壤细菌、真菌与放线菌和微生物各氮素类群数量有一定的促进作用;微生物量碳、氮和磷含量均表现为灭鼠和灭鼠+围封草地显著高于天然草地;各草地类型中微生物数量是细菌>放线菌>真菌.表明天然草地经灭鼠和围封处理利用时均有利于草地土壤中微生物的活动,有利于草地的自然更新和保护物种多样性.  相似文献   

10.
不同生长年限紫花苜蓿根系及其土壤微生物的分布   总被引:8,自引:4,他引:4  
采用分层取样法,对不同生长年限紫花苜蓿Medicago sativa根系及根际微生物的分布进行了研究.结果表明:在0~40 cm土层内,5年生紫花苜蓿的主根干质量、侧根干质量和侧根发生数分别是2年生紫花苜蓿的1.98、1.44和1.29倍,紫花苜蓿根系的重心随生长年限的增加而下移;根瘤数、根瘤体积和根瘤干质量5年生紫花苜蓿分别是2年生紫花苜蓿的1.85、2.81和1.43倍,二者相差倍数随着土层深度的增加而增加;细菌和放线菌的数量5年生紫花苜蓿地均相应高于2年生紫花苜蓿地,而真菌的数量相差不大;各土层的呼吸强度5年生紫花苜蓿地均相应高于2年生紫花苜蓿地.  相似文献   

11.
黄土高原云雾山草地土壤有机碳、全氮分布特征   总被引:5,自引:1,他引:4  
2007年11月28日-12月1日对云雾山4类天然草地,以及不同生长年限的人工紫花苜蓿(Medicago stativa L.)草地、沙棘(Hippophae rhamnoides Linn.)灌木、农田进行土壤有机碳、全氮分布分析,以期为该地区的草地生态系统的合理利用和减排温室气体提供科学依据。结果表明:土壤有机碳、全氮含量的排序为:天然草地(人工草地(灌木(农田。对0~40 cm土壤每10 cm土层土壤有机碳、全氮含量测定发现:除9年生人工苜蓿草地在20~30 cm土层的有机碳含量相对10~20 cm无降低外,其他均表现为随土层深度的增加而依次降低。有机碳、全氮含量天然草地10~20,20~30,30~40 cm,以及5年、7年、9年人工草地土层之间差异水平基本达到显著水平。天然草地和人工草地土壤有机质含量与其全氮含量呈极显著线性相关(P<0.01)。人工草地土壤有机碳,全氮含量随种植年限增长而增加,全氮含量增加程度大于有机碳。因此,云雾山天然草地有机碳、全氮含量最高,人工草地随着生长年限的延长也是碳氮积累的过程,农田含量最低,天然草地在碳氮储存方面发挥着更积极的作用。土壤有机碳、全氮在土壤表层(0~10 cm)含量最高,在云雾山地区通过退耕还草,加强植被恢复管理,有利草地生态系统的健康发展。  相似文献   

12.
人工恢复沙化草地的土壤微生物和酶活性的研究   总被引:1,自引:1,他引:1  
对不同恢复程度的4种沙化草地的植被、土壤微生物以及土壤酶活性的恢复状况、变化规律和相互关系的研究结果表明,各样地微生物的组成中,细菌占微生物总数的90%以上,其次,放线菌,真菌数量最少;人工恢复时间相同而植被类型不同的样地中的微生物数量有差异;退化草地随着恢复年限的增长,沙化草地三大微生物数量随之增加;土壤酶活性中,恢...  相似文献   

13.
黄土高原坡地退耕恢复草地的土壤水分动态   总被引:4,自引:0,他引:4  
易彩琼  王胜  樊军 《草地学报》2015,23(6):1182-1189
为了解黄土高原水蚀风蚀区坡地退耕还草后的土壤水分消耗与补充过程,利用2003年开始的野外坡面径流小区定位观测土壤剖面水分,分析坡地退耕还草多年后的土壤水分动态变化及丰水年的恢复状况。结果表明:坡地退耕还草后,土壤水分含量降低,多年以后,苜蓿地显著低于坡耕地,含水量已接近或者达到萎蔫含水量。撂荒草地土壤水分含量稍低于坡耕地,尽管坡耕地有较多的径流,但是土壤水分含量保持在较高水平。2010年初3个处理土壤剖面平均含水量分别为7.4%,12.6%,12.5%,丰水年降水可以不同程度的补充土壤剖面水分,补充深度较一般年份深110 cm左右,苜蓿地、撂荒地、坡耕地土壤水分分别恢复到10.0%,14.5%,15.5%,分别增加了35.1%,15.1%,24.0%。因此,坡耕地退耕种植紫花苜蓿(Medicago sativa)导致土壤水分含量显著降低,只有在丰水年土壤水分含量才有较明显的恢复。  相似文献   

14.
黄土高原水蚀风蚀交错区植被恢复中土壤水分变化   总被引:2,自引:0,他引:2  
王亚飞  樊军  贾沐霖 《草地学报》2016,24(2):344-350
针对黄土高原生态恢复与重建过程中水资源短缺问题,本文采用空间代替时间序列的方法对地处黄土高原水蚀风蚀交错区的六道沟小流域在植被恢复过程中的土壤储水量和土壤垂直剖面含水量特征进行了研究,分析了紫花苜蓿地(12,15,17,21,26,41 a)、荒草地(15,32,41 a)、弃耕地(12,21,41 a)、杏树地(14 a)的土壤储水量和土壤垂直剖面含水量特征。结果表明:4种植被恢复方式下,土壤储水量的大小顺序为弃耕地 > 荒草地 > 杏树地 > 苜蓿地;苜蓿地、弃耕地0~200 cm储水量随着生长年限的延长先快速增加后缓慢减少,而荒草地的储水量随着生长年限的延长却持续减少。水蚀风蚀交错区植被恢复过程中,植被恢复方式是该地区土壤水分变化的主要影响因素,生长年限对土壤水分动态变化影响不明显。  相似文献   

15.
紫花苜蓿人工草地土壤养分及土壤微生物特性   总被引:1,自引:1,他引:0  
徐丽君  王波  辛晓平 《草地学报》2011,19(3):406-411
以不同生长年限的紫花苜蓿(Medicago sativa L.)人工草地为研究对象,于2008年分别测定了生长1~5年的紫花苜蓿人工草地土壤的微生物生物量碳和微生物氮、土壤养分和微生物数量。结果表明:不同生长年限的紫花苜蓿人工草地土壤微生物特性及其养分含量存在差异,其中以生长4年的各项指标为最高;土壤表层微生物碳、氮含量高于土层10~20 cm中的含量,土壤养分存在"表聚"现象;表层土壤微生物数量高于10~20 cm土层,固氮菌占优势,真菌的数量较少;土壤有机质含量影响土壤微生物碳、氮含量,微生物碳与土壤速效钾(P<0.05,r=0.916)、微生物氮与速效磷均存在显著正相关(P<0.05,r=0.995)。  相似文献   

16.
对青海湖农场退耕还林草地以及耕地和天然草地的土壤有机碳(SOC)、全氮(TN)含量及储量、无机氮(Ninorg)含量、土壤pH等基础理化指标进行了测定分析。结果表明:退耕(还林草)地与耕地和天然草地土壤均偏碱性;退耕地及天然草地土壤容重及Ninorg含量均低于耕地;退耕地和天然草地0~5 cm土层C/N显著高于耕地;退耕地和耕地0~5,5~10,10~20 cm土层的SOC和TN含量低于天然草地;退耕还林草9年后各土层SOC和TN含量与耕地相比差异不显著,说明青海湖区持续耕作60多年后,要恢复土壤肥力仍需较长时间;对于0~30 cm土层的SOC及TN储量,退耕地和天然草地与耕地无显著差异,而退耕地与天然草地之间差异显著(P<0.05);耕地、退耕地以及天然草地0~20 cm土壤SOC含量分别占0~30 cm土层SOC储量的68.7%,72.9%和78.6%;0~20 cm土层TN含量分别占0~30 cm土层TN储量的68.7%,72.7%和78.2%;与天然草地相比,按耕地开垦60年计算,0~30 cm耕层内,C的损失率为0.11 t C·a-1·hm-2,N的损失率为0.015 t N·a-1·hm-2;土壤C和N含量与容重共同决定C和N储量的大小,因此土壤容重是影响土壤质量的重要因素之一。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号