首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Concentrations of CH4, a potent greenhouse gas, have been increasing in the atmosphere at the rate of 1% per year. The objective of these laboratory studies was to measure the effect of different forms of inorganic N and various N-transformation inhibitors on CH4 oxidation in soil. NH 4 + oxidation was also measured in the presence of the inhibitors to determine whether they had differential activity with respect to CH4 and NH 4 + oxidation. The addition of NH4Cl at 25 g N g-1 soil strongly inhibited (78–89%) CH4 oxidation in the surface layer (0–15 cm) of a fine sandy loam and a sandy clay loam (native shortgrass prairie soils). The nitrification inhibitor nitrapyrin (5 g g-1 soil) inhibited CH4 oxidation as effectively as did NH4Cl in the fine sandy loam (82–89%), but less effectively in the sandy clay loam (52–66%). Acetylene (5 mol mol-1 in soil headspace) had a strong (76–100%) inhibitory effect on CH4 consumption in both soils. The phosphoroamide (urease inhibitor) N-(n-butyl) thiophosphoric triamide (NBPT) showed strong inhibition of CH4 consumption at 25 g g-1 soil in the fine sandy loam (83%) in the sandy clay loam (60%), but NH 4 + oxidation inhibition was weak in both soils (13–17%). The discovery that the urease inhibitor NBPT inhibits CH4 oxidation was unexpected, and the mechanism involved is unknown.  相似文献   

2.
Abstract

When a soil is flooded, iron (Fe) reduction and methane (CH4) production occurred in sequence as predicted by thermodynamics. The dissolution and precipitation of Fe reflected both soil pH and soil redox potential (Eh). The objective of our experiment was to determine both CH4 production and Fe reduction as measured by Fe in solution in a flooded paddy soil over a wide range of closely controlled pH and Eh conditions. The greatest release of CH4 gas occurred at neutral soil pH in combination with low soil redox potential (‐250 mV). Production of CH4 decreased when soil pH was lowered in combination with an increase in the soil redox potential above ‐250 mV. Highest concentration of ferrous‐iron (Fe2+) under reducing conditions occurred when soil pH was lowered. Thus Fe reduction influenced CH4 formation in the flooded paddy soil. Results indicated that CH4 production was inhibited by the process of ferric‐iron (Fe3+) reduction.  相似文献   

3.
Agricultural factors affecting methane oxidation in arable soil   总被引:9,自引:0,他引:9  
CH4 oxidation activity in a sandy soil (Ardoyen) and agricultural practices affecting this oxidation were studied under laboratory conditions. CH4 oxidation in the soil proved to be a biological process. The instantaneous rate of CH4 consumption was in the order of 800 mol CH4 kg–1 day–1 (13 mg CH4 kg–1 day–1) provided the soil was treated with ca. 4.0 mmol CH4 kg–1 soil. Upon repeated supplies of a higher dose of CH4, the oxidation was accelerated to a rate of at least 198 mg CH4 kg–1 day–1. Addition of the plant-growth promoting rhizopseudomonad strains Pseudomonas aeruginosa 7NSK2 and Pseudomonas fluorescens ANP15 significantly decreased the CH4 oxidation by 20 to 30% during a 5-day incubation. However, with further incubation this suppression was no longer detectable. Growing maize plants prevented the suppression of CH4 oxidation. The numbers of methanotrophic bacteria and fungi increased significantly after the addition of CH4, but there were no significant shifts in the population of total bacteria and fluorescent pseudomonads. Drying and rewetting of soil for at least 1 day significantly reduced the activity of the indigenous methanotrophs. Upon rewetting, their activity was regained after a lag phase of about 3 days. The herbicide dichlorophenoxy acetic acid (2,4-D) had a strong negative effect on CH4 oxidation. The application of 5 ppm increased the time for CH4 removal; at concentrations above 25 ppm 2,4-D CH4–oxidizing activity was completely hampered. After 3 days of delay, only the treatments with below 25 ppm 2,4-D showed recovery of CH4–oxidizing activity. This finding suggests that it can be important to include a CH4–removal bioassay in ecotoxicology studies of the side effects of pesticides. Changes in the native soil pH also affected the CH4–oxidizing capacity. Permanent inhibition occurred when the soil pH was altered by 2 pH units, and partial inhibition by 1 pH unit change. A rather narrow pH range (5.9–7.7) appeared to allow CH4 oxidation. Soils pre-incubated with NH 4 + had a lower CH4–removal capacity. Moreover, the nitrification inhibitor 2-chloro-6-trichloromethyl pyridine (nitrapyrin) strongly inhibited CH4 oxidation. Probably methanotrophs rather than nitrifying microorganisms are mainly responsible for CH4 removal in the soil studied. It appears that the causal methanotrophs are remarkably sensitive to soil environmental disturbances.  相似文献   

4.
After removal of the above-ground plant debris three different soil layers were taken from a typical coniferous forest and its adjacent orchard in Numata City, Japan. The potentials of soil CH4 uptake at two initial CH4 concentrations were studied under aerobic conditions in the laboratory, along with inhibition of soil CH4 oxidation by urea-N or KNO3-N addition. Due to long-term N inputs, the CH4 uptake of the upper mineral layer of the orchard soil was 25.4% and 87.7% lower than that of the surface forest soil at 2.4 and 12.6 l l–1 CH4, respectively. Methane uptake of the forest soil decreased with increasing soil depths at two CH4 levels. However, maximal CH4-consuming activity occurred in the 9- to 23-cm depth of the orchard soil at 12.6 l l–1 methane. Nitrogen additions in the form of KNO3 or urea at the rate of 200 g N g–1 soil substantially reduced soil CH4 uptake in the upper and sub-surface mineral layers at both sites, except that the addition of KNO3-N had no apparent inhibitory effect on the CH4 uptake in the 9- to 23-cm depth of the orchard soil. A strong inhibitory effect of NO3 addition on the CH4 uptake, in contrast to NH4+, occurred in the surface forest soil. The use of KNO3-N, as compared to urea or urea plus a nitrification inhibitor (dicyandiamide), resulted in a lower potential to cause inhibition of CH4 oxidation in the 0- to 23-cm depth of the orchard soil.  相似文献   

5.
In the central highlands of Mexico, mesquite (Prosopis laevigata) and huisache (Acacia schaffneri), N2-fixing trees or shrubs, dominate the vegetation and are currently used in a reforestation program to prevent erosion. We investigated how natural vegetation or cultivation of soil affected oxidation of CH4, and production of N2O. Soil was sampled under the canopy of mesquite (MES treatment) and huisache trees (HUI treatment), outside their canopy (OUT treatment) and from fields cultivated with maize (ARA treatment) at three different sites while production of CO2, and dynamics of CH4, N2O and inorganic N (NH4+, and NO3) were monitored in an aerobic incubation. The production of CO2 was 2.3 times higher and significantly greater in the OUT treatment, 3.0 times higher in the MES treatment and 4.0 times higher in the HUI treatment compared to the ARA treatment. There was no significant difference in oxidation of CH4 between the treatments, which ranged from 0.019 g CH4–C kg–1 day–1 for the HUI treatment to 0.033 CH4–C kg–1 day–1 for the MES treatment. The production of N2O was 30 g N2O–N kg–1 day–1 in the MES treatment and >8 times higher compared to the other treatments. The average concentration of NO3 was 2 times higher and significantly greater in the MES treatment than in the HUI treatment, 3 times greater than in the OUT treatment and 10 times greater than in the ARA treatment. It was found that cultivation of soil decreased soil organic matter content, C and N mineralization, but not oxidation of CH4 or production of N2O.  相似文献   

6.
Anaerobic reoxidation of reduced products in paddy soils was investigated. Ferrous iron (Fe2+) and monosulfide ion (S2–) added to the soil chemically reduced MnO2 to Mn2+, and MnO2 and Fe(OH)3 to Mn2+ and Fe2+, respectively, where Fe2+ and S2– were considered to be oxidized to Fe3+ and S0. Elemental sulfur was oxidized to sulfate by anaerobic incubation with NO3 MnO2 and Fe(OH)3. A new conceptual model for the reduction processes in submerged paddy soil including the reoxidation processes of reduced products, in which soil heterogeneity in paddy fields was taken into consideration, was proposed based on the results. Received: 20 October 1996  相似文献   

7.
The effects of wheat straw and different forms of N on denitrification and N immobilization were studied in an anaerobic water-sediment system. The water-sediment system was supplemented with various combinations of wheat straw and 15N-labelled and unlabelled (NH4)2SO4 or KNO3, and incubated anaerobically at 30°C for 10 days. 15N-labelled and unlabelled NO inf3 sup- , NO inf2 sup- , NH inf4 sup+ , and organic N were determined in the water-sediment system. The gases evolved (N2, CO2, N2O, and CH4) were analyzed by gas chromatography at regular intervals. Larger quantities of 15N2–N and organic 15N were formed in wheat straw-amended systems than in non-amended systems. Trends in CO2 production were similar to those of N2–N evolution. The evolution of N2O and CH4 was negligible. Denitrification processes accounted for about 22 and 71% of the added 15NO inf3 sup- –N in the absence and presence of wheat straw, respectively. The corresponding denitrification rates were 3.4 and 12.4 g 15Ng-1 dry sediment day-1. In systems amended with 15NO inf3 sup- –N and 15NO inf3 sup- +NH inf4 sup+ –N without wheat straw, 1.82 and 1.58%, respectively, of the added 15NH inf3 sup- –N was immobilized. The corresponding figures for the same systems supplemented with wheat straw were 5.08 and 4.10%, respectively. Immobilization of 15NO inf4 sup+ –N was higher than that of 15NO inf3 sup- –N. The presence of NO inf3 sup- –N did not stimulate NH inf4 sup+ –N immobilization.  相似文献   

8.
Abstract

Microbial metabolism in reduction process of waterlogged paddy soils has been studied by Takai, Koyama, and Kamura (1, 2, 3, 4, 5, 6), Koyama (7, 8, 9, 10, 11, 12), and others. The results indicated that microbial metabolism in waterlogged soils takes place according to the following steps: (1) In the early stage of the incubation period, dissolved O2, is consumed and the redox potential drops rapidly. (2) NO2? and NO2? are reduced to N2. (3) Mn4+ is reduced to Mn2+. (4) Fe3+ is reduced to Fe2+. (5) SO4 2? is reduced to S2?. (6) H2 and CH4 are produced. Takai and Chiang (13) reported that NH4+ and PO4 3+ in waterlogged paddy soils increase with the incubation period. Chiang and Takai (14) indicated that carbohydrates in the soil solutions almost remain constant throughout the incubation period, however, organic acids change similarly to those reported previously (5, 6).  相似文献   

9.
Field evolution of CH4 and CO2 from soils under four dominant land uses in the Mardi watershed, western Nepal, were monitored at 15-day intervals for 1 year using closed chamber techniques. The CH4 oxidation rate (mean±SE, g CH4 m–2 h–1) in the forest (22.8±6) was significantly higher than under grazing land (14±2) and an upland rainfed maize and millet system (Bari) (2.6±0.9). Irrigated rice fields (Khet) showed an oxidation rate of 6±0.8 g CH4 m–2 h–1 in the dry season (December–May) but emitted a mean rate of 131 g CH4 m–2 h–1 in the rainy season and autumn (June–October). The evolution of CO2 ranged from 10 mg CO2 m–2 h–1 in the Bari in January to 1,610 mg CO2 m–2 h–1 in the forest in July. Higher evolution of CO2 (mean±SE, mg CO2 m–2 h–1) was observed in the Bari (399±39) and forest (357±36) compared to Khet (246±25) and grazing (206±20) lands. The annual emission of CO2 evolution varied from 86.6 to 1,836 g CO2 m–2 year–1. The activation energy for CH4 and CO2 varied between 16–283 and 80–117 kJ mol–1, respectively. The estimated temperature coefficient for CO2 emission varied from 2.5 to 5.0. Temperature explained 46–51% of the variation in CO2 evolution, whereas it explained only 4–36% of the variation in CH4 evolution.  相似文献   

10.
Denitrification and fermentation in plant-residue-amended soil   总被引:1,自引:0,他引:1  
Summary Nitrous oxide production (denitrification) during anaerobic incubation of ground-alfalfa-, red-clover-, wheat-straw-, and cornstover-amended soil was positively related to the initial water-soluble C content of the residue- amended soil. The water-soluble C concentration decreased in all treatments during the first 2 days, then increased in the alfalfa-, red-clover-, and wheat-straw-amended soil until the end of the experiment at 15 days. An accumulation of acetate, propionate, and butyrate was partly responsible for the increased water-soluble C concentration. Denitrification rates were much higher in the alfalfa-and red-clover-amended soil, but NO 3 was not fully recovered as N2O in these treatments. Supported by earlier experiments in our laboratory, we conclude that some of the NO 3 was reduced to NH 4 + through fermentative NO 3 reduction, otherwise known as dissimilatory NO 3 reduction to NH 4 + . Acetate, the primary product of anaerobic fermentation, accumulated in the alfalfa- and red-clover-amended soil in the presence of NO 3 , supporting previous observations that the processes of denitrification and fermentation occur simultaneously in C-amended soil. The partitioning of NO 3 between denitrification and fermentative NO 3 reduction to NH 4 + depends on the activity of the denitrifying and fermentative bacterial populations. NO2 concentration may be a key in the partitioning of NO 3 between these two processes.  相似文献   

11.
The methanogenic populations able to use H2–CO2, methanol, and acetate were investigated in paddy field soil in situ under double cropping conditions [rice (Oryza sativa L.) as a summer crop under flooded conditions and wheat (Triticum aestivum L.) as an upland winter crop] over 2 years approximately bimonthly by the most probable number method. Three fields, one without fertilizer, one treated with inorganic fertilizer (mixed fertilizer including urea, ammonium phosphate, and potassium sulfate), and one treated with wheat straw plus inorganic fertilizer, were examined. The population of H2–CO2, methanol, and acetate utilizers in the paddy field soil at a depth of 1–6 cm was 103–104, 104–105, and 104–105 g-1 dry soil, respectively. These values were almost constant during the 2 years irrespective of moisture regime (flooded or nonflooded), crop (rice or wheat), fertilizer treatment, and soil depth (0–1, 1–10, and 10–20 cm).  相似文献   

12.
Summary A study was undertaken to measure the sulphate-S in some representative soils cropped to cocoa (Theobroma cacao) and coffee (Coffea canephora var. robusta) in Ghana using five extraction methods at two soil-extractant ratios. The least extracting power was shown by 0.1 N HCL. A soil-extractant ratio of 1:10 extracted higher amounts of SO 4 2– –S than a 1:5 ratio. There were highly significant differences among the extractants and among the soils. From the 15 soil samples, the highest amount of SO 4 2– –S was extracted at the 1:5 ratio and at the 1:10 ratio by H2O and the KH2PO4– extracting solution, respectively. There was no correlation between arylsulphatase activity and the various amounts of extractable SO4/2– –S, and therefore soil arylsulphatase activity seems less appropriate as an indicator of plant-available inorganic SO 4 2– –S. In the three soil profiles analysed, the amounts of H2O-extractable SO 4 2– –S decreased with depth while those extracted by sodium acetate buffer increased with depth. The possibility of large amounts of extractable SO 4 2– –S in the subsoils should be considered along with the SO 4 2– –S in the surface samples if an estimation is made of the available –S status of cocoa and coffee rooting zones.  相似文献   

13.
In field studies, forest soils in the Atlantic Lowlands of Costa Rica emitted greater amounts of nitric oxide (NO) than soils from pastures that had been actively grazed for over 20 years following their conversion from forest. We measured NO production from intact soil cores from these land uses. Laboratory tests using ammonium(NH 4 + ), nitrate (NO 3 ), nitrite (NO 2 ), water, and acetylene (C2H2) additions demonstrate a response consistent with field studies.Forest soil cores produced more NO than pasture cores regardless of treatment. In forest soil the response toNH 4 + solution was significantly greater than response to water or an ambient moisture control. Addition of 10 kPa C2H2 caused a marked decrease in NO production in forest soil cores. These responses suggest a nitrification-linked control over NO production. Large and rapid responses toNO 2 additions suggest that chemical decomposition of this ion may contribute to NO production. Pasture soil cores did not show a significant response to any of the treatments including NO 2 . Low porosity in the pasture soils may restrict emission of NO produced therein.  相似文献   

14.
In laboratory adsorption experiments, the comparison of podzol Bs horizons from coastal and inland moderately-impacted catchments with those from a severely-acidified inland region has demonstrated the effect of marine inputs on SO4 2– -retention. Moderate sea-salt inputs and low acid deposition leads to the retention of most of the SO4 2– and the release of soluble Mg2+; increasing the marine salt loading causes the development of a selectivity towards retention of acidic SO4 2– and the retention of Mg2+. In the highly-impacted soil, the marine input caused a decrease in SO4 2– retention in open moorland soils. The opposite occurred under forest, due to the ion-exchange of marine Mg2+ for soil Al3+, increasing soil acidity towards the pH0 (Gillman and Uehara, 1980), which is depressed below that of its moorland equivalent.  相似文献   

15.
The short-term effect of NaNO3 or (NH4)2SO4 application on CH4 oxidation was measured under laboratory conditions with sieved soils collected from the top layer (0–12 cm) of a loamy and a sandy soil. The soils were incubated in sealed flasks and the CH4 and CO2 concentrations in headspace were measured periodically. On each gas sampling date the soils were analysed for inorganic N, electro-ultrafiltration organic N, and pH. NH 4 + application to the loamy soil inhibited CH4 oxidation entirely whereas in the untreated control soils CH4 concentration decreased linearly with a rate of-41 nl CH4 l-1 h-1; NO 3 sup- application to this soil caused a small but significant reduction in CH4 uptake. The CH4-oxidizing ability of the sandy soil was low, even in the control. This was mainly a result of the disturbed soil structure after sieving. Both NH 4 + and NO 3 sup- treatments completely inhibited CH4 uptake in this ligh-textured soil. The adverse impact of NH 4 + persisted during the entire incubation, although in the loamy soil only 17% of the NH 4 + added was recovered after 168 h. The negative effect of NO 3 sup- was probably caused by an increase in osmotic potential. Immediate inhibition of CH4 oxidation after inorganic N addition was demonstrated in two arable soils, although the effect was directly related only in part to soil N transformations.  相似文献   

16.
In a field study, potassium (K) applied as muriate of potash (MOP) significantly reduced methane (CH4) emission from a flooded alluvial soil planted to rice. Cumulative emission was highest in control plots (125.34 kg CH4 ha−1), while the lowest emission was recorded in field plots receiving 30 kg K ha−1 (63.81 kg CH4 ha−1), with a 49% reduction in CH4 emission. Potassium application prevented a drop in the redox potential and reduced the contents of active reducing substances and Fe2+ content in the rhizosphere soil. Potassium amendment also inhibited methanogenic bacteria and stimulated methanotrophic bacterial population. Results suggest that, apart form producing higher plant biomass (both above- and underground) and grain yield, K amendment can effectively reduce CH4 emission from flooded soil and could be developed into an effective mitigation option, especially in K-deficient soils.  相似文献   

17.
Chemical Composition of Precipitation in Beijing Area, Northern China   总被引:1,自引:0,他引:1  
Variations of anions (SO4 2-, NO3 -,NO2 -, Cl- and F-),cations (K+,Na+, Ca2+, Mg2+ and +) and pH values in precipitation, througfall and stemflow samples collected overa four-year period (1995–1998) in Beijing (two sitesZhongguancun and Mangshan) are presented. The annualvolume-weighted range of pH values were 6.57–7.11 inprecipitation, 5.46–6.86 in thoughfall and 5.32–6.41 instemflow. The fominant anion was , while Ca+and NH4 + were the main cations in precipitation,throughfall and stemflow. Most of ion concentrations with precipitation, throughfall and stemflow volume showed negative correlation, except for some ones. Significant correlationvalues were also found between ions (SO4 2-,NO3 -, Cl-, F-, Ca2+,Mg2+ andNa+) in precipitation, throughfall and stemflow indicatedthe common sources of these ions such as coal combustion,automobile emission and fertilizers application. Compared toprecipitation, there was an increased ion concentration inthroughfall or in stemflow. Changes of ion concentrations werein Quercus liatungensis Koiz. and Pinus tabulaefornisCarr. throughfall (or stemflow) because of different crown andbark qualities of tree species.  相似文献   

18.

Purpose

Directly returning straw back to the paddy field would significantly accelerate methane (CH4) emission, although it may conserve and sustain soil productivity. The application of biochar (biomass-derived charcoal) in soil has been proposed as a sustainable technology to reduce methane (CH4) emission and increase crop yield. We compared the effects of either biochar or rice straw addition with a paddy field on CH4 emission and rice yield.

Materials and methods

A 2-year field experiment was conducted to investigate a single application of rice straw biochar (SC) and bamboo biochar (BC) (at 22.5 t ha?1) in paddy soil on CH4 emission and rice yield as compared with the successive application (6 t ha?1) of rice straw (RS). Soil chemical properties and methanogenic and CH4 oxidation activities in response to the amendment of biochar and rice straw were monitored to explain possible mechanism.

Results and discussion

SC was more efficient in reducing CH4 emission from paddy field than BC. Incorporating SC into paddy field could decrease CH4 emission during the rice growing cycle by 47.30 %–86.43 % compared with direct return of RS. This was well supported by the significant decrease of methanogenic activity in paddy field with SC. In comparison to a non-significant increase with BC or RS application, rice yield was significantly raised with SC amendment by 13.5 % in 2010 and 6.1 % in 2011. An enhancement of available K and P and an improvement in soil properties with SC amendment might be the main contributors to the increased crop yield.

Conclusions

These results indicated that conversion of RS into biochar instead of directly returning it to the paddy field would be a promising method to reduce CH4 emission and increase rice yield.  相似文献   

19.
Summary Gross rates of N mineralization, assimilation, nitrification, and NO in3 sup- reduction were determined in soil from a wet riparian fen by 1-day incubations of soil cores and slurries with 15N-labelled substrates. N mineralization transformed 0.1% of the total organic N pool daily in the soil cores, of which 25% was oxidized through autotrophic nitrification and 53%–70% was incorporated into microorganisms. N mineralization and nitrification were markedly inhibited below 5 cm in soil depth. At least 80% of the NO in3 sup- reduction in aerated cores occurred through dissimilatory processes. Dissimilatory reduction to NH in4 sup+ (DNRA) occurred only below 5 cm in depth. The results show that NH in4 sup+ oxidation was limited by available substrate and was itself a strong regulator of NO in3 sup- -reducing activity. NO in3 sup- reduction was significantly increased when the soil was suspended under anaerobiosis; adding glucose to the soil slurries increased NO in3 sup- reduction by 2.4–3.7 times. Between 3% and 9% (net) of the added NO in3 sup- was reduced through DNRA in the soil slurries. The highest percentage was observed in soil samples from deeper layers that were pre-incubated anaerobically.  相似文献   

20.
Summary NO and N2O release rates were measured in an acidic forest soil (pH 4.0) and a slightly alkaline agricultural soil (pH 7.8) after the pH was adjusted to values ranging from pH 4.0 to 7.8. The total release of NO and N2O during 20 h of incubation was determined together with the net changes in the concentrations of NH 4 + , NO 2 and NO 3 in the soil. The release of NO and N2O increased after fertilization with NH 4 + and/or NO 3 ; it strongly decreased with increasing pH in the acidic forest soil; and it increased when the pH of the alkaline agricultural soil was decreased to pH 6.5. However, there was no simple correlation between NO and N2O release or between these compounds and activities such as the NO 2 accumulation, NO 3 reduction, or NH 4 + oxidation. We suggest that soil pH exerts complex controls, e.g., on microbial populations or enzyme activities involved in nitrification and denitrification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号