首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
To address the commercial nurseries problem of obtaining enough zooplankton of adequate species composition and size when fish larvae start to feed, a simulation of the effects of predation intensity on zooplankton composition in freshwater nursery ponds was carried out in an experimental system of twelve 130-liter containers. Treatments consisted of two densities (1 or 2 larvae l−1) of common carp stocked on the 4th day after filling the containers and a control without fish. Zooplankton–environment relationships were explored using factor analysis. Several groups of zooplankters that respond in different ways to fish larvae predation pressure were identified. The first factor was a general measurement of zooplankton abundance that mainly reflects allochthonous rotifer species that entered the system with the filling water, replaced in time by autochthonous species that hatched from resting eggs in the sediment. The second factor identified the direct effects of size selective fish predation, and the third showed indirect effects of high fish density. Larvae growth rate matched the plankton availability: high just after stocking, when they fed on the abundant but declining numbers of allochthonous rotifers; then decreased drastically and increased again when hatching of resting eggs of autochthonous rotifers and the availability of the crustacean preys preferred by the fish, increased. It was concluded that in commercial nurseries increased larvae production can be achieved just by stocking fish earlier than the 4th day after pond filling, to match the rotifer peak.  相似文献   

2.
Large‐scale commercial nurseries face problems in obtaining enough zooplankton of adequate species composition and size when fish larvae start to feed. To address these problems a simulation of the effects of timing of fish larvae stocking after pond filling on zooplankton composition was carried out. The experimental system consisted of twelve 130‐L containers, in which zooplankton populations were exclusively autochthonous (hatched from resting eggs in the sediments, not entering with the filling water). Treatments consisted of stocking 2‐d‐old common carp larvae on the fourth and sixth days after water filling and a control without fish. The effects of timing of stocking on fish larvae growth and on zooplankton composition were explored using factor analysis. This enabled the identification of several groups of zooplankters that respond in different ways to predation by fish larvae. FACTOR1 was a general measurement of small rotifer abundance. It showed earlier increase in response to the exposure to fish predation, and toward the end of the experiment indicated that fish also preyed on them. FACTOR2 identified the direct effects of size‐selective fish predation on zooplankton that differed according to timing of fish larvae stocking. FACTOR3 identified benthic rotifers, whose density in the plankton increased as a result of fish disturbance of the bottom sediment and decreased as a result of fish predation, also according to timing of fish larvae stocking. In the studied system no rotifers were present in the filling water and the zooplankton peak of autochthonous populations took a while to develop. Under this zooplankton succession pattern, stocking fish larvae before the rotifer concentration started to increase (Day 4) greatly affected their own food resources. The strong predation pressure exerted on the emergent resource retarded the zooplankton increase for 4 d. It also changed the composition toward smaller species and forced fish to feed on less preferred resources, which resulted in reduced fish growth rate. Stocking fish larvae after the rotifer concentration had started to increase (Day 6) allowed the fish to come across increasing amounts of zooplankton of large‐size species, not requiring the exploitation of small benthic rotifers. This resulted in better fish growth rates. Thus, increased larvae production in commercial nurseries can be achieved by matching fish stocking with the increasing phase of the zooplankton peak.  相似文献   

3.
The effect of stocking density on the survival and growth of pikeperch, Sander lucioperca (L.), larvae was examined in two consecutive experiments. In experiment I, 4-day-old larvae [body wet weight (BW): 0.5 mg; total body length (TL): 5.6 mm] were reared in 200-l cylindro-conical tanks in a closed, recirculating system (20 ± 0.5°C) at three stocking densities (25, 50 and 100 larvae l−1) and fed a mixed feed (Artemia nauplii and Lansy A2 artificial feed) for 14 consecutive days. At densities of 25 and 100 larvae l−1, growth rate and survival ranged from 2.7 to 1.9 mg day−1 and from 79.2 to 72.3%, and fish biomass gain ranged from 0.6 to 2.0 g l−1, respectively. There were two periods of increased larval mortality: the first was at beginning of exogenous feeding and the second during swim bladder inflation. In experiment II, 18-day-old larvae (BW: 35 mg; TL: 15.6 mm) obtained from experiment I were reared under culture conditions similar to those of experiment I, but at lower stocking densities (6, 10 and 15 larvae l−1). The fish were fed exclusively with artificial feed (trout starter) for 21 consecutive days. At densities of 6 and 15 larvae l−1, the growth rate and fish biomass gain ranged from 28.8 to 23.1 mg day−1 and from 2.0 to 3.3 g l−1, respectively. The highest survival (56.5%) was achieved at a density of 6 larvae l−1. Mortality at all densities was mainly caused by cannibalism II type behaviour (27–35% of total). In both experiments, growth and survival were negatively correlated and fish biomass gain positively correlated with stocking densities. The present study suggests that the initial stocking density of pikeperch larvae reared in a recirculating system can be 100 individuals l−1 for the 4- to 18-day period post-hatch and 15 individuals l−1 for the post-19-day period.  相似文献   

4.
The success of rapidly growing aquaculture industry depends on the steady supply of fish seeds. Appropriate food for initial larval stages is critical for mass scale fish seed production. Live food found better over artificial food for fish larvae culture. Rotifers have been found to be the best live food for feeding fish larvae in early life stage. Attempts have been made to develop viable techniques for the production of rotifer through batch, continuous, and semi-continuous culture methods. In order to feed increased number of fish larvae, rotifer need to be cultured under high-density method. Various efforts have been made for increasing culture density of rotifer. In Japan, stable high-density culture of rotifer has been developed in commercial scale at a rate of 20,000–30,000 ind. ml?1. Later on, ultra-high-density rotifer culture (160,000 ind. ml?1) was found successful, which can fulfill the increased demand for rotifer as fish larval food. Furthermore, a scope of alternative use of rotifer can be explored. The development of the high-density rotifer culture method in Japan has been reviewed. The considerations of the associated nutritional requirements, microbial aspects, and prospects of high-density culture have been discussed.  相似文献   

5.
The growth, survival, food selection and consumption of pompano larvae under different rotifer densities as well as their colour preference during the rotifer feeding stage were examined in this study. Growth and survival of fish larvae were not significantly affected when rotifer density was between 10 and 20 mL?1. Fish larvae grew slower at 1 and 40 rotifers mL?1 than at 10 and 20 rotifers mL?1, and higher fish survival was achieved when fish larvae were exposed to 10 and 20 rotifers mL?1. The rotifer density of 1 mL?1 not only reduced food ingestion during the early stage, but also delayed diet switch from rotifer to copepod nauplii. On 5 days post hatching (DPH), larval pompano ingested more rotifers in dark‐coloured tanks and ingested more rotifers when prey colour was green. Based on the results obtained in the present study, the culture of larval pompano larvae is recommended using dark wall tanks with a feeding density of 10–20 rotifers mL?1 during the initial feeding stage. This study proposes a management protocol to use appropriate type and quantity of live food to feed pompano larvae in a hatchery rearing condition, which could be applicable to the culture of fish larvae in other marine fish species.  相似文献   

6.
In two 120-day experiments, performed in the laboratory at 22°C, the effects of stocking density on the survival and growth of juvenile tench (Tinca tinca L.) were evaluated. Fish were kept in fibreglass tanks, supplied throughout with flow of artesian water, and fed a dry diet for salmonids, in excess, supplemented with restricted amounts of Artemia nauplii. In the first experiment four-month-old juveniles (0.31 ± 0.04 g and 32.00 ± 1.17 mm TL) were stocked at four densities—0.18, 0.88, 1.05, and 2.10 g l−1. Survival was high (>89%) for all treatments. Final densities ranged between 1.10 g l−1 (significantly lowest) and 10.46 g l−1 (significantly highest). The density increase was significantly higher (611%) for fish stocked at the lowest initial density (0.18 g l−1) than for fish stocked at 0.88, 1.05, and 2.10 g l−1, for which the density increase averaged 457%. In the second experiment, 4.5-month-old juveniles (0.58 ± 0.17 g and 39.54 ± 0.83 mm TL) were stocked at three densities—1.05, 3.00, and 4.00 g l−1. Survival was high (>96%) for all treatments. Final densities ranged between 4.08 and 16.53 g l−1 and were significantly higher for greater initial densities. The density increase was greatest (413%) for fish stocked at the highest density (4 g l−1) and was not significantly different for fish stocked at 1.05 and 3 g l−1. Considering all the densities in the two experiments, for stocking at 4 g l−1 the final density was 15 times higher than that reached after stocking at 0.18 g l−1, without harmful effects on survival and growth. This final density (equivalent to 16.53 kg m−3) is in the range recommended for other fish species in this period under intensive conditions.  相似文献   

7.
Copepod nauplii are a nutritious food item for first-feeding marine fish larvae. Unfortunately, mass culture techniques for producing copepod nauplii are not well established. Copepod nauplii can be collected from wild zooplankton populations or specially prepared ponds and transferred to larval fish tanks for feeding. This study evaluated the use of two trapping methods for harvesting zooplankton, particularly copepod nauplii, from fertilized ponds and the impact on the zooplankton population. Nine, 0.11 ha brackish-water (~2-7 ppt salinity) ponds were filled and fertilized with organic and inorganic fertilizers. The change in zooplankton abundance, mainly rotifers, nauplii and adult copepods, was monitored in the ponds for 22 d following initial pond filling. Beginning on day 8, three ponds were trapped with a large plankton net (Trap I), three with a pump and bag trap method (Trap II), and three ponds were not trapped. The ponds were trapped with the corresponding method for 1 h per day, for 15 d. The two trapping methods were similar in their efficiency to harvest nauplii, averaging 8,383,400 ± 2,508,378/h and 6,695,822 ± 433,533/h for Traps I and II, respectively. The zooplankton harvested by Trap I was not correlated to the densities in the ponds. However, the number of rotifers and nauplii harvested by Trap II was correlated to the rotifer and nauplii densities in the ponds. Both trapping methods were similar in terms of labor requirements and ease of use. Both methods were effective in collecting zooplankton without negatively impacting pond abundance.  相似文献   

8.
太湖贡湖湾大型浮游动物群落结构的季节变化   总被引:2,自引:0,他引:2  
2006年7月至2007年6月对太湖贡湖湾浮游动物群落结构的季节变化进行了研究。整个研究期间,贡湖湾共鉴定出浮游动物35种;浮游动物年平均密度为467 ind.•L-1,年平均生物量为1.726 mg•L-1。贡湖湾浮游动物优势种为针簇多肢轮虫 (Polyarthra trigla) 和萼花臂尾轮虫 (Brachionus Calyciflorus),其中针簇多肢轮虫年平均密度为99 ind.•L-1,占浮游动物总数量的22 %,萼花臂尾轮虫年平均密度为49 ind.•L-1,占浮游动物总数量的11%。相关分析表明,轮虫数量与颗粒悬浮物浓度和桡足类生物量显著负相关;枝角类数量与轮虫生物量显著负相关;桡足类数量与水温和总磷呈显著正相关性,与枝角类生物量极显著正相关。  相似文献   

9.
Size-dependent predation rates on marine fish larvae by the ctenophore Mnemiopsis leidyi , scyphomedusa Chrysaora quinquecirrha , and planktivorous fish Anchoa mitchilli were estimated via experiments in 3.2 m3 me-socosms. Predation rates on larvae of the goby Gobio-soma bosci were estimated in relation to 1) length of larval prey, 2) presence or absence of alternative < 1 mm zooplankton prey, and 3) a predator-prey interaction between the scyphomedusa and ctenophore. The consumption rate of larvae by the three predators generally declined as larval length increased. The ctenophore ate fewer (1.0 d-1 per predator) larvae than did the medusa (7.8 d -1 per predator) or bay anchovy (4.0 d -1 per predator), but it consumed larvae in all size classes tested (3.0–9.5 mm SL). Predation by bay anchovy and the medusa was more size-dependent: 3.0–5.0 mm larvae were most vulnerable. Fewer larvae were eaten by the ctenophore and bay anchovy when zooplankton alternative prey was available, but predation on larvae by the medusa was not influenced by alternative zooplankton prey. Consumption rate of fish larvae by the medusa was reduced 20–25% when the ctenophore was present as its alternative prey. An encounter-rate model was developed and its parameters estimated from the experimental results. Model simulations indicated that the relationship between larval size and vulnerability is dependent on size, swimming speed, and behavior of both predators and larvae, and that bigger or faster-growing fish larvae are not always less vulnerable to predation.  相似文献   

10.
Diazinon 60 EC (chemical insecticide, organophosphate, active substance diazinon at a concentration of 600 g l−1) is used in fish-farming in well-founded cases as a biocide to suppress excessive propagation of coarse Daphnia zooplankton. At the concentration of 10 μg l−1 (i.e., 100 g per 1 ha at a mean depth of the pond of 1 m), Diazinon 60 EC can highly selectively eliminate Daphnia zooplankton, causes no harm to fish, and relatively quickly decomposes in the aquatic environment. This has been corroborated by results of acute toxicity tests in fish: the 96 h LC50 is 3 mg l−1 for the guppy (Poecilia reticulata) and 10–25 mg l−1 for the common carp (Cyprinus carpio). As demonstrated by embryonic and larval tests of toxicity for the common carp (C. carpio), Diazinon 60 EC at the concentration of 10 μg l−1 causes no harm to the tested, individuals even in these sensitive (critical) stages of ontogeny.  相似文献   

11.
An experiment was conducted for 80 days at La Salada de Monasterio Lake (Buenos Aires, Argentina) to assess the effect of stocking density and natural food availability on the growth and production of zooplanktivorous juveniles of pejerrey (Odontesthes bonariensis) in extensive cage culture. Ten cages were installed and stocked with 33‐day‐old fish, at three density treatments: 25, 50 and 75 ind. m?3. Zooplankton was analysed in terms of abundance, biomass and diversity considering three size classes. Caged pejerrey diet was assessed regularly. The pejerrey gut contents composition was clearly different from cage zooplankton, showing a trend to contain bigger components. Reared fish exhibited a tendency to diversification of the diet and to change the mean prey size depending on fish length and stocking density. Regression models showed a positive and direct effect of the bigger zooplankton biomass on fish growth rates, which were also inversely affected by the availability of smaller zooplankton. The results demonstrate that stocking density and available zooplankton, in both quantity and quality, are key factors in regulating extensive cage culture of pejerrey. Handling stocking densities in a dynamic way it is possible to maximize fish growth, biomass harvest or fish number according to the goals of production.  相似文献   

12.
Live food supply is a key factor contributing to the success of larval fish rearing. However, live food densities vary greatly between fish species and management protocols across fish hatcheries. The growth, survival, food selection and consumption of yellowtail kingfish larvae were examined at different regimes of live food supply in an attempt to identify a suitable live food feeding protocol for larval rearing in marine fish. This study was divided into two feeding phases: rotifer phase from 3 to 14 DPH (phase I) and Artemia nauplii phase from 15 to 22 DPH (phase II). In phase I, four rotifer densities (1, 10, 20 and 40 mL−1) were used. In phase II, Artemia started at 0.8 nauplii mL−1 on 15 DPH, and then the density of Artemia was daily incremented by 50%, 70%, 90% and 110%, respectively, in four treatments from 15 to 22 DPH. In phase I, rotifer density significantly affected larval growth, but not survival. By 7 DPH, the number of rotifers consumed by fish larvae reached 170–260 individuals, but did not significantly differ between rotifer densities. During cofeeding, fish larvae selected against Artemia nauplii by 10 DPH, but by 14 DPH Artemia nauplii became the preferred prey item by fish larvae exposed to the 10, 20 and 40 rotifers mL−1. In phase II, both fish growth and survival were affected by Artemia densities. Fish daily consumption on Artemia by 20 DPH reached 500–600 individuals but did not significantly differ between prey densities. The result suggests that rotifer densities be offered at 20–40 mL−1 before 6 DPH and 10–20 mL−1 afterwards to support larval fish growth and survival. Likewise, Artemia is recommended at a daily increment of 90–110% of 0.8 mL−1 from 15 to 22 DPH. This study proposes a management protocol to use appropriate type and quantity of live food to feed yellowtail kingfish larvae, which could be applicable to larval culture of other similar marine fish species.  相似文献   

13.
In the present study, the effects of the anti-estrogen ZM 189,156 and the aromatase inhibitor fadrozole were evaluated in a 40-day juvenile assay developed for screening of endocrine disrupting chemicals. Juvenile zebrafish were exposed from 20 to 60 days post hatch (dph) to ZM 189, 154 (100 μg l−1 and 200 μg l−1) and fadrozole (10, 32, and 100 μg l−1). VTG concentrations were measured at 38 dph by the use of a direct non-competitive sandwich ELISA and sex ratios were determined at 60 dph by histological examination of the gonads. A small but significant increase in VTG concentrations was observed in fish exposed to ZM 189, 156 (100 and 200 μg l−1) and fadrozole (10 and 100 μg l−1) compared to control groups. In fish exposed to ZM 189, 156 and fadrozole, the percentage of females declined and the number of undifferentiated fish increased. These findings show that exposure of juvenile zebrafish to an aromatase inhibitor or an anti-estrogen during early development inhibits differentiation and development of female gonads. The data presented, furthermore, show that the 40-day juvenile assay may be suitable for screening endocrine disrupting chemicals acting as anti-estrogens and aromatase inhibitors.  相似文献   

14.
We used 12 land-based experimental enclosures (6 m × 5 m) in a saline–alkaline pond of shrimp (Penaeus vannamei) to determine the impact of net-isolated polyculture of tilapia (Oreochromis niloticus) on plankton communities for 40 days. Tilapias were stocked in net cages suspended in enclosures, in polyculture ponds including tilapia and shrimp. Four tilapia biomass were tested: 0, 39, 115 and 227 g m−2. Shrimp stocking biomass were 0.7 g m−2 in all treatments. There were three replicates in each treatment. Our results showed that the presence of tilapia significantly reduced phytoplankton biomass directly through predation and indirectly through top-down effect. The stocking of tilapia reduced zooplankton biomass, particularly rotifer biomass. However, copepod biomass was not been significantly affected. So, net-isolated polyculture of tilapia can thus have a strong impact on phytoplankton allowing the co-existence of large numbers of copepods with planktivorous fish and improving the water quality of shrimp ponds.  相似文献   

15.
The assemblage composition, biomass and dynamics of zooplankton and epibenthos were examined in a commercial shrimp (penaeid prawn) pond in subtropical Australia. Physicochemical characteristics of the pond water were measured concurrently. Numbers and biomass of zooplankton in the surface tows (140 μm mesh) varied from 111.7 ind. L?1 (324 μg L?1) to 8.3 ind. L?1 (44.2 μg L?1). Immediately after the ponds were stocked with shrimp postlarvae there was a rapid decline in zooplankton numbers, particularly the dominant larger copepods. We attributed this to predation by the shrimp postlarvae. Subsequent peaks in zooplankton numbers were principally due to barnacle nauplii. Changes in abundance and biomass of the zooplankton assemblage were not correlated with physicochemical characteristics. Epibenthic faunal abundance in the beam trawls (1 mm mesh) peaked at 14 ind. m?2 and the biomass at 0.8 g m?2. Unlike zooplankton, the peaks in abundance of epibenthos did not correspond to the peaks in biomass. This was due to the large differences in the size of the dominant taxa across the season. Sergestids (Acetes sibogae) and amphipods were the most abundant taxa in beam trawl samples, with amphipods abundance increasing towards the end of the growout. Negative correlations were found between epibenthos abundance and pH and temperature. These relationships were strongly influenced by the high abundances of amphipods and may reflect an effect on the growth of macroalgae in the pond rather than a direct effect on the epibenthos. No correlations were found between epibenthic fauna biomass and physicochemical parameters. Abundances of epibenthic fauna were not related to zooplankton densities, indicating that this source of food was not likely to be a limiting factor. Neither the pond water exchange regime nor moon phase could explain changes in abundances of zooplankton or epibenthos assemblages. Zooplankton clearly contribute to the nutrition of shrimp postlarvae immediately after stocking. The establishment of an abundant assemblage of zooplankton before stocking shrimp postlarvae would appear to be beneficial, if not essential. Later in the season, zooplankton and epibenthos apparently contribute little to shrimp biomass. Owing to their relatively low biomass, the consumption of shrimp feeds by epibenthos is likely to be insignificant compared with that of the shrimp.  相似文献   

16.
Light intensity has been shown to influence the foraging success of larval fish. However, the effect of light intensity on larval foraging is likely variable and influenced by both the density and characteristics of planktonic prey. In this study we examined the influence of light intensity of 0.1, 2.0, and 60 μmol·s?1·m?2 Photosynthetically Active Radiation (PAR) on foraging of yellow perch (Perca flavescens) larvae at two prey densities. We fed them with a mixture of zooplankton taxa common to lakes inhabited by yellow perch. In addition to light intensity and prey density, the effect of larval yellow perch size was examined by using fish ranging from 9 to 15 mm. The results of our study indicated that yellow perch larvae are well adapted to feed at a wide range of light intensities, as there was no difference in foraging success at investigated light intensities. Increasing prey density from 25 to 150 (zooplankton·l?1) significantly improved the foraging success of larval yellow perch. However, the influence of prey density on foraging success was dependent on fish length. Improved foraging success at increased prey densities occurred only for individuals with a total length >10 mm. Overall, prey selection by fish larvae was influenced by light intensity, prey density, and fish length. However, the factors that influenced selection for specific prey types differed. Our study, combined with evidence from other field and laboratory work, highlight the need for a better understanding of the influence of prey density on foraging throughout ontogeny.  相似文献   

17.
以南亚热带地区2010年3座不同养殖密度的和龙水库、百花林水库、芙蓉嶂水库为对象,研究了浮游动物群落的结构特征,分析和探讨滤食性鱼类捕食对浮游动物群落结构的影响.3座水库浮游动物生物量均较低,不超过1.0 mg/L.高养殖密度、富营养水平的和龙水库浮游动物生物量显著低于其它2座水库,中等养殖密度、富营养水平的百花林水库则高于低养殖密度、贫-中营养水平的芙蓉嶂水库.和龙水库浮游动物全年以轮虫为主要优势类群,优势种为前节晶囊轮虫(Asplanchna priodonta);芙蓉嶂水库和百花林水库3月和12月浮游动物以枝角类为优势类群,优势种为长额象鼻溞(Bosmina longirostris)、颈沟基合溞(Bosminopsis deitersi)、模糊秀体潘(Di-aphanosoma dubium),8月为桡足类,优势种为舌状叶镖水蚤(Phyllodiaptomus tunguidus).3座水库年均浮游动物与浮游植物生物量比值均小于0.1,与年渔获量呈显著负相关关系.高强度的滤食性鱼类捕食使得下行效应比上行效应更强烈,浮游动物表现出低生物量和小个体种类占优势的特征.  相似文献   

18.
Strategies for Development of Rotifers as Larval Fish Food in Ponds   总被引:1,自引:0,他引:1  
Strategies to sustain rotifer peak biomass, distribution of rotifer resting eggs in the sediment, and relationship between rotifers and larval fish growth were studied in a series of pond experiments. After the ponds were filled with water, herbivorous rotifers (e.g., Brachionus calyciflorus ) developed first, but were gradually replaced by predatory rotifers (e.g., Asplanchna ). Subsequently, herbivorous cladocerans (e.g., Moina sp) eventually replaced rotifers and dominated the zooplankton community. The occurrence of Asplanchna and Moina indicated the decline of B. calyciflorus . Peak rotifer biomass developed 8–10 d after the ponds were filled with water at 20–25 C, 10–15 d at 17–20 C, 15–20 d at 15–17 C, 20–30 d at 10–15 C, and >30 d at < 10 C. The abundance of resting eggs in the top 5-cm sediment varied from 6 to 83/cm2. About 25% of resting eggs were buried in the top 5-cm sediment but the number of resting eggs decreased with increased sediment depth. Optimum rotifer biomass for silver carp Hypophthalmichthys molitrix larvae stocked at 1,500,000/ha was 20–40 m/gL. High rotifer biomass (>20 mg/L) usually lasted 3–5 d, but could be prolonged by pond fertilization or cladoceran controls. A weekly application of dipterex at 0.05 mg/L reduced cladoceran biomass but enhanced rotifer biomass. Our results indicate with a careful management plan it is possible to synchronize the rotifer development with larval fish stocking.  相似文献   

19.
In mass culture of Pacific bluefin tuna Thunnus orientalis, a marked growth variation is observed after they start feeding at 6–7 mm in body length (BL) on yolk‐sac larvae of other species, and the growth variation in tuna larvae is a factor leading to the prevalence of cannibalism. To examine the relationship between prey utilization and growth variation, nitrogen stable isotope ratios (δ15N) of individual larvae were analysed. A prey switch experiment was conducted under two different feeding regimes: a group fed rotifers (rotifer fed group), and a group fed yolk‐sac larvae of spangled emperor, Lethrinus nebulosus (fish fed group) from 15 days after hatching (6.87 mm BL). The fish fed group showed significantly higher growth than the rotifer fed group. Changes in the δ15N of the fish fed group were expressed as an exponential model and showed different patterns from those of the rotifer fed group. The δ15N of fast‐growing tuna larvae collected in an actual mass culture tank after the feeding of yolk‐sac larvae was significantly higher than those of the slow‐growing larvae, indicating that slow glowing larvae depended largely on rotifers rather than the yolk‐sac larvae.  相似文献   

20.
A short synthesis of the present state of the ctenophore, Mnemiopsis leidyi , invasion in the Black Sea is given, together with a brief review of its status in other areas of the Mediterranean basin. The impact of M. leidyi on the main components of the pelagic community, mesozooplankton, ichthyoplankton and fish resources, based on published data and new field studies (1992–1997) are analysed. This assessment showed sharp fluctuations in the interannual abundance of M. leidyi . The main factors controlling the spatial distribution of M. leidyi were temperature and, to a lesser degree, salinity, whereas its abundance was controlled by food availability. An analysis of the main constituents of the pelagic ecosystem of the Black Sea before the M. leidyi outbreak showed that a reduction in numbers of planktivorous fishes, the main competitors of M. leidyi, could be a possible reason for the upsurge in abundance of M. leidyi. Following the increase of M. leidyi , there was a decline in the abundance and species diversity of ichthyoplankton and mesozooplankton. An assessment of data collected during the period 1992–1997 showed that the number of fish eggs and larvae and of zooplankton was negatively related to M. leidyi abundance. After the recent decrease of M. leidyi in the period 1995–1997, there has been an increase in abundance and diversity of fish eggs, fish larvae, and zooplankton, which together with an increased catch of planktivorous fish indicates that there has been a recovery of the ecosystem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号