共查询到20条相似文献,搜索用时 15 毫秒
1.
Molecular characteristics of humic acids extracted from compost at increasing maturity stages 总被引:1,自引:0,他引:1
The molecular composition of humic acids (HA) extracted from compost at increasing maturity stages was determined by off-line TMAH-thermochemolysis-GC-MS, in combination with solid-state nuclear magnetic resonance (NMR) and infrared (IR) spectroscopies. While spectroscopy measurements followed the bulk changes, thermochemolysis provided a detailed molecular variation of HA composition. Both thermochemolysis and spectroscopy indicated that polysaccharides, alkyl, cyclic, and aromatic compounds were the predominant components of HA, the stable fraction of compost. NMR dipolar dephasing (DD) experiments confirmed that HA extracts contained lignin in lower amount than its oxidized degradation products. The progressive compost maturity was reflected in HA extracts by a decrease of carbohydrate content and a selective preservation of hydrophobic alkyl molecules, such as medium- and long-chain fatty acids, aliphatic alcohols, linear hydrocarbons, and plant polyester derivatives, like long-chain alkyl dicarboxylic acids, and ω-hydroxyacids. Spectroscopy results showed a concomitant entrapment in HA of biolabile compounds, such as peptidic moieties. The wide range of identified lipid components and plant biomarkers may represent useful tools to trace origin, quality, and transformation of amended compost in soil ecosystems. 相似文献
2.
The oxidation of atmospheric methane by methanotrophic bacteria residing in soils constitutes an important terrestrial methane sink with previous studies having revealed the inhibition of microbially mediated methane oxidation in the presence of salt ions. The bacteria responsible for ambient methane oxidation are not amenable to currently available methods of culturing, resulting in the need for a method of in situ analysis. A combination of phospholipid fatty acid (PLFA) analysis and stable isotopic labelling has been employed in this investigation as a means of cultivation-independent bacterial analysis. Soil samples were treated with an ammonium sulfate solution at a concentration that was known to inhibit methane oxidation or with distilled water, serving as a control, and incubated with 13C-labelled methane. PLFAs were analysed by GC/C/IRMS in order to determine their 13C content and, hence, the PLFA distribution of the methane oxidising bacteria. Ammonium sulfate treatment reduced the amount of 13C incorporated into the majority of PLFAs except the i17:0 PLFA in the presence of high concentrations of methane. These results implied a shift in the composition of the methane oxidising bacterial community in the soils treated with ammonium ions, with the treatment appearing to suppress one group of organisms more than another. 相似文献
3.
In the symbiosis between nodulated legume roots and arbuscular mycorrhizal (AM) fungi, the C and N economy can be influenced by the source of N-supply from either AM-derived NH4+ uptake or nodule-derived biological nitrogen fixation (BNF). This relationship was investigated in terms of NH4+ supply and BNF by the two symbionts. Nodulated Phaseolus vulgaris seedlings with and without AM, were hydroponically grown with either 0 N or 1 mM NH4+ supply. Plants were harvested at 30 days after emergence and measurements were taken for biomass, N2 fixation, photosynthesis, CO2 and O2 root respiration, calculated C and N economy. AM roots had higher NH4+ uptake and this was associated with the suppression of BNF and nodule growth. The higher NH4+ uptake in AM roots occurred with lower root maintenance respiration, compared to when N was derived from BNF. There was also an increase in the below-ground sink strength of NH4+ fed AM roots compared to NH4+ fed non-AM roots, as evidenced by the increases in root CO2 and O2 respiration and photosynthetic stimulation. These results indicate that although the AM root had higher total below-ground respiratory costs during NH4+ nutrition, there were lower respiratory C costs associated with N derived from AM symbionts in comparison to N from BNF. 相似文献
4.
不同形态氮对掌叶半夏生长及块茎主要化学成分影响研究 总被引:2,自引:1,他引:2
【目的】本文利用盆栽试验,探讨了不同铵态氮、 硝态氮供应比例对掌叶半夏生长、 相关生理指标及块茎中主要活性成分含量的影响,以期为掌叶半夏的合理施肥、 科学种植提供技术依据。【方法】盆栽试验以蛭石为栽培基质,以掌叶半夏为试验材料,采用不同铵态氮、 硝态氮比例处理,分析不同铵硝比例处理下掌叶半夏叶片中抗氧化保护酶(SOD、 CAT), 叶片、 块茎中氮代谢关键酶(NR)的活性及块茎中次生代谢产物(MDA、 硝酸盐及主要活性成分)的含量变化。【结果】 1)叶片鲜重、 块茎鲜重及总叶绿素含量总体均随铵态氮比例的升高而呈逐渐增加趋势,其中在全铵营养下,块茎鲜重和总叶绿素含量均达到最高值。2)随着铵态氮比例的升高,植株叶片中SOD、 CAT酶活性呈先升高后降低趋势; 当铵硝比为50∶50时,SOD、 CAT酶活性最高,此时,叶片中NO-3-N含量也达到最高。3)在全铵营养或全硝营养下,MDA含量均高于其他处理; 当铵硝比为50∶50时,MDA累积量最低。4)在全硝营养下,叶片、 块茎中的NR活性均达到最高值,同处理水平下叶片中NR活性要高于块茎; 并且随着铵态氮比例的增加叶片中NR活性呈逐渐降低的趋势,而块茎中的NR活性则呈逐渐增加的趋势。5)块茎中主要活性成分的累积更依赖于两种氮素的配施作用,在较高的铵态氮配施处理下(75∶25时),总生物碱、 总有机酸及腺苷的积累量均取得最高值。【结论】适宜比例的铵硝配比可以促进掌叶半夏生长及产量的形成,其促进效果也显著高于全硝营养; 当铵硝比为50∶50时,其植物体内的相关酶活性也达到最高,说明适宜的铵硝配比能减轻膜质过氧化对植株细胞膜造成的损伤; 同时,较高的NH+4-N也有利于块茎中主要活性成分的积累,尤以铵硝比为75∶25时,累积效果最显著。 相似文献
6.
不同铵钾比对高铵下拟南芥地上部和根系生长的影响 总被引:1,自引:0,他引:1
钾在缓解植物铵毒害的过程中起着重要的作用。本文研究了高铵(30 mmol/L)条件下,不同铵钾比(7.5︰1和150︰1)对拟南芥(Col-0)主根、侧根以及地上部生长的影响。结果表明:30 mmol/L NH4+条件下,高铵钾比(150)处理显著加重了拟南芥铵毒害现象,地上部和根系生长所受的抑制作用更为明显并导致更严重的氧化胁迫。相比低铵钾比水平,在高铵处理下,高铵钾比使得拟南芥主根伸长量降低57.4%,侧根数量减少33.3%,而地上部鲜重减轻69.9%。DAB(3,3¢-二氨基联苯胺,3,3¢-diaminobenzidine)叶片染色结果表明,不加铵处理下,外源不同钾水平(0.2和4.0 mmol/L)对拟南芥叶片的氧化胁迫作用没有显著差异;而高铵处理下,相比低铵钾比处理,高铵钾比显著增加了叶片中过氧化氢的含量,加重了其氧化胁迫。伊文思蓝(Evans blue,EB)染色结果表明,不加铵处理下,外源不同钾水平对拟南芥地上部和根部的膜透性没有显著差异,而高铵处理下,高铵钾比显著增强了拟南芥地上部和根部的膜透性,表明其对细胞的伤害程度加重。可见,高铵抑制拟南芥根系和地上部生长,高铵钾比则会加重这种抑制,其原因除了高浓度钾能减少植物对铵的吸收外,可能与高铵钾比条件加剧了植物的氧化胁迫有关。因此,适宜的铵钾比在植物应对铵毒害的过程中发挥重要作用。 相似文献
7.
Optimal fertilizer nitrogen (N) rates result in economic yield levels and reduced pollution. A soil test for determining optimal fertilizer N rates for wheat has not been developed for Quebec, Canada, or many other parts of the world. Therefore, the objectives were to determine: 1) the relationship among soil nitrate (NO? 3)- N, soil ammonium (NH + 4)- N and N fertilizer on wheat yields; and 2) the soil sampling times and depths most highly correlated with yield response to soil NO? 3-N and NH + 4-N. In a three year research work, wet and dried soil samples of 0- to 30- and 30- to 60-cm depths from 20 wheat fields that received four rates of N fertilizer at seeding and postseeding (plants 15 cm tall) were analyzed for NH + 4-N and NO? 3 -N using a quick-test (N-Trak) and a standard laboratory method. Wheat yield response to N fertilizer was limited, but strong to soil NO? 3-N. 相似文献
8.
Ammonium fixation and the effects of soil moisture and application methods on fertilizer N recovery were investigatedin two soils of Shaanxi Province, China, a Luvisol and an Entisol, through two experiments performed in the laboratoryand in a glass shelter, respectively, by using ammonium bicarbonate (NH4HCO3). The laboratory closed incubationbox experiment was conducted using the Luvisol to study NH fixation rate at soil moisture levels of 10.1%, 22.7% and 35.3% water filled pore space (WFPS). The fixed NH -N increased dramatically to 51% and 66%, 67% and 74%,and 82% and 85% 1, 2 and 36 h after fertilizer incorporation at moisture levels of 10.1% and 22.7% WFPS and 35.3% WFPS, respectively. The rapid NH fixation rates at all moisture levels could help prevent NH losses from ammonia volatilization. In the glass shelter pot experiment, N fertilizer was applied by either banding (in a concentrated strip)or incorporating (thoroughly mixing) with the Entisol and the Luvisol. An average of 74.2% of the added N fertilizerwas recovered 26 days after application to the Luvisol, while only 61.4% could be recovered from the Entisol, due tohigher NH fixation capacity of the Luvisol. The amount of fixed NH decreased with increasing WFPS. The amountof fixed NH in the incorporated fertilizer treatment was, oll average, 10% higher than that in the banded treatment.Higher NH fixation rates could prevent N loss and thus increase N recovery. The results from the Luvisol showed lowernitrogen recovery as soil moisture level increased, which could be explained by the fact that most of the fixed NH wasstill not released when the soil moisture level was low. When the fertilizer was incorporated into the soil, the recovery ofN increased, compared with the banded treatment, by an average of 26.2% in the Luvisol and 11.2% in the Entisol, whichimplied that when farmers applied fertilizer, it would be best to mix it well with the soil. 相似文献
9.
Ammonium and nitrate are the major forms of nitrogen (N) present in tropical soils. An experiment was conducted to assess the influence of nitrate and ammonium forms (NO3?, NH4+, and mix of NO3? + NH4+), and levels (1.5–12.0 mM) of N on the growth and nutrition of cacao (Theobroma cacao L). Growth parameters were significantly influenced by N forms, and nitrogen supplied as NH4+ proved better for the growth of cacao compared with NO3? form and mixtures of these two forms. Irrespective of the forms of N, levels of N had no significant effect on plant growth parameters. Nutrient efficiency ratios (NERs) (shoot dry matter produced per unit of nutrient uptake) for macronutrients were sulfur>phosphorus>calcium>magnesium>nitrogen>potassium (S>P>Ca>Mg>N>K) and for micronutrients NERs were in the order of copper>boron>zinc>iron>manganese (Cu>B>Zn>Fe>Mn). 相似文献
10.
《Journal of plant nutrition》2013,36(6):1277-1286
Abstract Male and female leaf discs of Jojoba [Simmondsia chinensis (Link) Schneider] were cultured on Murashige and Skoog (MS) media supplemented with various nitrate:ammonium ratio and phytohormones concentrations. For the optimum callus growth, hormonal concentrations were remained equal for both male and female leaf tissues i.e., 0.4 mg L?1 2,4‐dichlorophenoxyaceticacid, 1.25 mg L?1 6‐benzyladenine and 0.5 mgL?1 kinetin. However, a statistically significant difference was observed when Murashige and Skoog media was supplemented with an additional nitrogen source. In female leaf tissue, maximum fresh and dry weights were recorded in Murashige and Skoog media supplemented with an additional source of NO3 ?:NH4 + (60 mM) whereas in male leaf tissue this addition was inhibitory. This study suggests that nitrogen requirement may be different for optimum callus growth in both male and female leaf tissues. 相似文献
11.
Increased above‐ground dry matter and grain yields were found for two hydroponically grown maize hybrids (Pioneer‐3925 and Pioneer‐3949) when plants were supplied with an NH4 +‐enhanced nutrient solution (31 percent of total N) compared with a control (4 percent of total N as NH4 +). The major difference in yield developed between silking and 2 weeks post‐silking and silking and 4 weeks post‐silking for the P‐3925 and P‐3949 respectively. The reduced nitrogen content of the stover (leaves plus stalk) was consistently higher on the NH4 +‐enhanced nutrient solution. The decreased production of the control treatment may have resulted from a reduced photsynthetic capacity. 相似文献
12.
Muhammad Ashraf Sher Muhammad Shahzad Muhammad Imtiaz Muhammad Shahid Rizwan 《Journal of plant nutrition》2018,41(8):1065-1081
Nitrogen (N) metabolism is of great economic importance because it provides proteins and nucleic acids which in turn control many cellular activities in plants. Salinity affects different steps of N metabolism including N uptake, NO3? reduction, and NH4+ assimilation, leading to a severe decline in crop yield. Major mechanisms of salinity effects on N metabolism are salinity-induced reductions in water availability and absorption, disruption of root membrane integrity, an inhibition of NO3? uptake by Cl?, low NO3? loading into root xylem, alteration in the activities of N assimilating enzymes, decrease in transpiration, and reduction in relative growth rate which results in a lower N demand. However, the effects of salinity on N metabolism are multifaceted and may vary depending on many plant and soil factors. The present review deals with salinity effects on N metabolism in plants, emphasizing on the activities of N metabolizing enzymes in a saline environment. 相似文献
13.
Abstract In a lysimeter study it was found that moderate rates of ammonium nitrate increased utilization percentages in spring wheat, and the leaching was 10% or less of added N. Over-optimal rates reduced utilization percentages and increased leaching to almost 50% of the highest doses. Late split application of calcium nitrate increased the percentage of N in grain. Furthermore, leaching of N was not reduced, but occurred somewhat later in the fall and winter seasons. Leaching of Cl? was more rapid and that of SO4 2- was delayed relative to the leaching of NO3 ?. Rather large negative N balances were obtained, also after over-optimal application rates, and total N content of the soil was reduced. Compared with the N0 treatment, differences in soil N residues amounted to 15–25% of added N in seven years. Gaseous losses had apparently taken place both from the added N and from soil N according to the total-N analysis. 相似文献
14.
Xu Zhao 《Soil biology & biochemistry》2009,41(12):2584-2587
The effects on nitrification and acidification in three subtropical soils to which (NH4)2SO4 or urea had been added at rate of 250 mg N kg−1 was studied using laboratory-based incubations. The results indicated that NH4+ input did not stimulate nitrification in a red forest soil, nor was there any soil acidification. Unlike red forest soil, (NH4)2SO4 enhanced nitrification of an upland soil, whilst urea was more effective in stimulating nitrification, and here the soil was slightly acidified. For another upland soil, NH4+ input greatly enhanced nitrification and as a result, this soil was significantly acidified. We conclude that the effects of NH4+ addition on nitrification and acidification in cultivated soils would be quite different from in forest soils. During the incubation, N isotope fractionation was closely related to the nitrifying capacity of the soils. 相似文献
15.
减氮配施有机物质对土壤氮素淋失的调控作用 总被引:1,自引:1,他引:1
采用室内土柱模拟试验方法,研究不同氮肥施用下1m土体中氮素的分布和移动特征,揭示土壤氮素动态变化规律。结果表明:FN(农民习惯施无机氮用量)、RN(根据土壤养分供应和作物需求确定的推荐无机氮用量)显著增加了土壤上层NH_4^+-N和NO_3^--N向下层淋失。RN+HA(与推荐无机氮纯养分相等的锌腐酸尿素)和RN40%+OMB(推荐无机氮肥减60%基础上配施自制有机调理物质)可延长上层土壤NH_4^+-N峰值出现时间,降低下层NH_4^+-N。淋溶结束后,等氮量下增施HA较RN降低60cm以下NH_4^+-N残留29.7%~54.2%;降低60—80cm NO_3^--N累积17.4%。RN40%+OMB处理无机氮肥用量最小,0—20cm的NH_4^+-N最高,40—100cm稳定在2.0mg/kg左右;0—20,20—40cm土层NO_3^--N较RN+HA增加12.3%和2.0%,显著降低40cm以下NO_3^--N残留。RN+HA和RN40%+OMB较RN的土壤总无机氮残留分别减少7.4%和20.2%,降低表观淋失率。因此,RN40%+OMB可较好地抑制氮素下移,降低氮素淋失风险,为减少氮素淋失、明确合理氮肥施用方式提供科学依据。 相似文献
16.
祁连山东段青海云杉林土壤有效氮研究 总被引:3,自引:0,他引:3
通过野外取样和实验室分析,对祁连山东段青海云杉林的土壤有效氮状况进行了研究。结果表明:(1)青海云杉林0—40 cm土层土壤总有效氮(铵态氮+硝态氮)的变化范围为17.26~20.76 mg/kg,铵态氮是土壤有效氮的主要存在形态,其含量占到总有效氮的66.72%以上;(2)土壤铵态氮含量随土层深度的增加而较少,硝态氮则无明显的变化规律,而且土壤硝态氮较土壤铵态氮对土壤微环境敏感;(3)土壤铵态氮与有机质相关关系显著(p<0.05),土壤硝态氮与有机质无显著相关性。研究区铵态氮为土壤有效氮的主要赋存形式,它在很大程度上取决于该区土壤pH中性值,较低温度和较高的水分含量。 相似文献
17.
18.
Pratap SRIVASTAVA Rishikesh SINGH Sachchidan TRIPATHI Pardeep SINGH Shikha SINGH Hema SINGH Akhilesh Singh RAGHUBANSHI Pradeep Kumar MISHRA 《土壤圈》2017,27(5):792-806
It is globally accepted that soil carbon (C) dynamics are at the core of interlinked environmental problems,deteriorating soil quality and changing climate.Its management remains a complex enigma for the scientific community due to its intricate relationship with soil nitrogen (N) availability and moisture-temperature interactions.This article reviews the management aspects of soil C dynamics in light of recent advances,particularly in relation to the availability of inorganic N pools and associated microbial processes under changing climate.Globally,drastic alterations in soil C dynamics under changing land use and management practices have been primarily attributed to the variation in soil N availability,resulting in a higher decomposition rate and a considerable decline in soil organic C (SOC) levels due to increased soil CO2 emissions,degraded soil quality,and increased atmospheric CO2 concentrations,leading to climate warming.Predicted climate warming is proposed to enhance SOC decomposition,which may further increase soil N availability,leading to higher soil CO2 efflux.However,a literature survey revealed that soil may also act as a potential C sink,if we could manage soil inorganic N pools and link microbial processes properly.Studies also indicated that the relative,rather than the absolute,availability of inorganic N pools might be of key importance under changing climate,as these N pools are variably affected by moisture-temperature interactions,and they have variable impacts on SOC turnover.Therefore,multi-factorial studies are required to understand how the relative availability of inorganic N pools and associated microbial processes may determine SOC dynamics for improved soil C management. 相似文献
19.
《Communications in Soil Science and Plant Analysis》2012,43(1):50-65
Corn requires high nitrogen (N) fertilizer use, but no soil N test for fertilizer N requirement is yet available in Quebec. Objectives of this research were (1) to determine the effects of soil nitrate (NO3 ?)-N, soil ammonium (NH4 +)-N, and N fertilizer rates on corn yields and (2) to determine soil sampling times and depths most highly correlated with yields and fertilizer N response under Quebec conditions. Soil samples were taken from 0- to 30-cm and 30- to 60-cm depths at seeding and postseeding (when corn height reached 20 cm) to determine soil NH4 + and NO3 ? in 44 continuous corn sites fertilized with four rates of N in two replications using a quick test (N-Trak) and a laboratory method. The N-Trak method overestimated soil NO3 ?-N in comparison with the laboratory method. Greater coefficients of determination were observed for soil NO3 ?-N analyses at postseeding compared with seeding. 相似文献
20.
Michael Stemmer Andrea Watzinger Karl Blochberger Martin H. Gerzabek 《Soil biology & biochemistry》2007,39(12):3177-3186
A 13C natural abundance experiment including GC-c-IRMS analysis of phospholipid fatty acids (PLFAs) was conducted to assess the temporal dynamics of the soil microbial community and carbon incorporation during the mineralization of plant residues under the impact of heavy metals and acid rain. Maize straw was incorporated into (i) control soil, (ii) soil irrigated with acid rain, (iii) soil amended with heavy metal-polluted filter dust and (iv) soil with both, heavy metal and acid rain treatment, over a period of 74 weeks. The mineralization of maize straw carbon was significantly reduced by heavy metal impact. Reduced mineralization rate of the added carbon likely resulted from a reduction of the microbial biomass due to heavy metal stress, while the efficiency of 13C incorporation into microbial PLFAs was hardly affected. Since acid rain did not significantly change soil pH, little impact on soil microorganisms and mineralization rate was found. Temporal dynamics of labelling of microbial PLFAs were different between bacterial and fungal PLFA biomarkers. Utilization of maize straw by bacterial PLFAs peaked immediately after the application (2 weeks), while labelling of the fungal biomarker 18:2ω6,9 was most pronounced 5 weeks after the application. In general, 13C labelling of microbial PLFAs was closely linked to the amounts of maize carbon present in the soil. The distinct higher labelling of microbial PLFAs in the heavy metal-polluted soils 74 weeks after application indicated a large fraction of available maize straw carbon still present in the soil. 相似文献