首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Conjugated mycotoxins, in which the toxin is usually bound to a more polar substance like glucose, are referred to as masked mycotoxins, as these substances escape routine detection methods but can release their toxic precursors after hydrolysis. This is the first report on the natural occurrence of a glucoside of deoxynivalenol (DON) in Fusarium-infected wheat and maize. To obtain appropriate standards, we chemically synthesized deoxynivalenol-3-beta-D-glucopyranoside (DON-3-glucoside) and deoxynivalenol-15-beta-D-glucopyranoside (DON-15-glucoside). The synthesis products were characterized by liquid chromatography-tandem mass spectrometry. The DON-glucosides showed different collision-induced dissociation (CID) fragmentation behaviors and could therefore be distinguished. Wheat plants were either treated with DON (n = 52) or with Fusarium spp. (n = 4) at anthesis, and after harvest, wheat ears were analyzed for DON and DON-glucosides. All 56 treated wheat samples contained DON and a DON-glucoside with the same retention time, molecular mass, and CID fragmentation behavior as the synthetic DON-3-glucoside. Moreover, the DON-glucoside was also found in two out of three analyzed naturally DON-contaminated maize and in five out of five naturally contaminated wheat samples, in a range from 4 to 12% of the DON concentration. To further confirm the identity of the DON-glucoside, the compound was isolated from wheat extracts and characterized as DON-3-glucoside with NMR. The results of this study indicate the importance to consider both DON and DON-3-glucoside with regard to food and feed safety.  相似文献   

2.
麦麸酚基木聚糖对发酵面团特性和馒头品质的影响   总被引:3,自引:1,他引:3  
王晓曦  范玲  马森  王瑞  陈成 《农业工程学报》2015,31(17):302-307
为了提高麦麸的附加值、馒头的品质以及增强馒头的营养价值,该试验以小麦粉为原料,采用2个分子量的麦麸酚基木聚糖(820、581 kD),研究不同添加量(0.25%、0.5%、1.0%、2.0%)对发酵面团特性以及馒头品质的影响。结果表明:随着麦麸酚基木聚糖添加量的增加,发酵面团的弹性模量、质子密度A22先增加后下降,黏性模量、质子密度A23增加,弛豫时间T22下降;馒头的亮度下降,红度和黄度增加,比容、黏聚性、回复性先增加后下降,硬度、咀嚼性先下降后上升,黏附性下降,馒头的感官得分先上升后下降。高分子量的麦麸酚基木聚糖,其发酵面团的弹性模量和黏性模量变幅较大,弛豫时间T22、T23较大、质子密度A21较小,低分子量的麦麸酚基木聚糖,其馒头比容和弹性较大,但馒头硬度和咀嚼性相对也较大。麦麸酚基木聚糖添加量在0.5%时,对发酵面团以及馒头品质改善效果最好。添加量在1.0%内,发酵面团特性以及馒头品质均可接受。高分子量的酚基木聚糖对发酵面团以及馒头品质改善效果高于低分子量的酚基木聚糖。研究结果为麦麸酚基木聚糖广泛应用于馒头中,提高馒头品质及营养价值提供理论依据。  相似文献   

3.
《Cereal Chemistry》2017,94(6):922-927
The degradation of inositol hexakisphosphate (IP6) was evaluated in whole meal wheat dough fermented with baker's yeast without phytase activity, different strains of Saccharomyces cerevisiae (L1.12 or L6.06), or Pichia kudriavzevii with extracellular phytase activity to see if the degradation of IP6 in whole meal dough and the corresponding bread could be increased by fermentation with phytase‐active yeasts. The IP6 degradation was measured after the dough was mixed for 19 min, after the completion of fermentation, and in bread after baking. Around 60–70% of the initial value of IP6 in the flour (10.02 mg/g) was reduced in the dough already after mixing, and additionally 10–20% was reduced after fermentation. The highest degradation of IP6 was seen in dough fermented with the phytase‐active yeast strains S. cerevisiae L1.12 and P. kudriavzevii L3.04. Activity of wheat phytase in whole meal wheat dough seems to be the primary source of phytate degradation, and the degradation is considerably higher in this study with a mixing time of 19 min compared with earlier studies. The additional degradation of IP6 by phytase‐active yeasts was not related to their extracellular phytase activities, suggesting that phytases from the yeasts are inhibited differently. Therefore, the highest degradation of IP6 and expected highest mineral bioavailability in whole meal wheat bread can be achieved by use of a phytase‐active yeast strain with less inhibition. The strain S. cerevisiae L1.12 is suitable for this because it was the most effective yeast strain in reducing the amount of IP6 in dough during a short fermentation time.  相似文献   

4.
The influence of baking conditions and dough supplements on the amounts of the antioxidant and Phase II-Enzyme modulating, protein-bound 2,4-dihydroxy-2,5-dimethyl-1-(5-acetamino-5-methoxycarbonyl-pentyl)-3-oxo-2H-pyrrol (pronyl-L-lysine) in bakery products was investigated in quantitative studies. These studies revealed high amounts of the antioxidant in bread crust, only low amounts in the crumb, and the absence of this compound in untreated flour. The amounts of pronyl-L-lysine were found to be strongly influenced by the intensity of the thermal treatment. For example, increasing the baking time from 70 to 210 min or increasing the baking temperature from 220 to 260 degrees C led to a 5- or 3-fold increase in the concentrations of this antioxidant in the crust, respectively. In addition, modifications in the recipe showed to have a major impact on pronyl-L-lysine formation. For example, substituting 5% of the flour with the lysine-rich protein casein or with 10% of glucose increased the amounts of the antioxidant by more than 200%. Quantitative analyses of commercial bread samples collected from German bakeries revealed the highest amount of 43 mg/kg for a full grain bread, followed by a rye/wheat bread, both of which have been sourdough fermented. A mixed-grain bread as well as pale wheat bread, both prepared without sourdough fermentation, contained significantly lower amounts of pronyl-L-lysine, and German pretzels, which are treated with a dilute sodium hydroxide solution prior to baking, contained only trace amounts of pronyl-L-lysine (e.g., less than 5 mg/kg were detectable in pretzels). Systematic studies revealed that the decrease of the pH value induced by microbial acid formation during sourdough fermentation is the clue for producing high amounts of pronyl-L-lysine in baking products. These data clearly demonstrate for the first time that the amounts of the antioxidant and chemopreventive compound pronyl-L-lysine in bakery products is strongly dependent on the manufacturing conditions as well as the recipe.  相似文献   

5.
Flour qualities of polished wheat flours of three fractions, C‐1 (100–90%), C‐5 (60–50%), and C‐8 (30–0%), obtained from hard‐type wheat grain were used for the evaluation of four kinds of baking methods: optimized straight (OSM), long fermentation (LFM), sponge‐dough (SDM) and no‐time (NTM) methods. The dough stability of C‐5 in farinograph mixing was excellent and the maturity of polished flour doughs during storage in extensigraph was more improved than those of the commercial wheat flour (CW). There were no significant differences in the viscoelastic properties of CW dough after mixing, regardless of the baking method, while those of polished flour doughs were changed by the baking method; this tendency became clear after fermentation. The polished flours could make a better gluten structure in the dough samples after mixing or fermentation using LFM and SDM, as compared with other baking methods. Baking qualities such as specific volume and storage properties of breads from all polished flours made with SDM increased more than with other methods. In addition, viscoelastic properties of C‐5 and C‐8 doughs fermented by SDM were similar to those of CW, and the C‐5 breadcrumb showed softness similar to that of the CW. Also, SDM could make C‐5 bread with significantly higher elasticity and cohesiveness after storage for five days when compared with CW bread. Therefore, SDM with long fermentation, as compared with other baking methods, was considered suitable for use with polished flours to give better effects on dough properties during fermentation, resulting in more favorable bread qualities.  相似文献   

6.
Variations in physical and compositional bran characteristics among different sources and classes of wheat and their association with bread‐baking quality of whole grain wheat flour (WWF) were investigated with bran obtained from Quadrumat milling of 12 U.S. wheat varieties and Bühler milling of six Korean wheat varieties. Bran was characterized for composition including protein, fat, ash, dietary fiber, phenolics, and phytate. U.S. soft and club wheat brans were lower in insoluble dietary fiber (IDF) and phytate content (40.7–44.7% and 10.3–17.1 mg of phytate/g of bran, respectively) compared with U.S. hard wheat bran (46.0–51.3% and 16.5–22.2 mg of phytate/g of bran, respectively). Bran of various wheat varieties was blended with a hard red spring wheat flour at a ratio of 1:4 to prepare WWFs for determination of dough properties and bread‐baking quality. WWFs with U.S. hard wheat bran generally exhibited higher dough water absorption and longer dough mixing time, and they produced smaller loaf volume of bread than WWFs of U.S. soft and club wheat bran. WWFs of two U.S. hard wheat varieties (ID3735 and Scarlet) produced much smaller loaves of bread (<573 mL) than those of other U.S. hard wheat varieties (>625 mL). IDF content, phytate content, and water retention capacity of bran exhibited significant relationships with loaf volume of WWF bread, whereas no relationship was observed between protein content of bran and loaf volume of bread. It appears that U.S. soft and club wheat bran, probably owing to relatively low IDF and phytate contents, has smaller negative effects on mixing properties of WWF dough and loaf volume of bread than U.S. hard wheat bran.  相似文献   

7.
Cross-reactivity of antibodies in AGRAQUANT, DON EIA, VERATOX, ROSA LF-DONQ, and MYCONTROLDON designed for deoxynivalenol (DON) determination in food and feedstuffs was evaluated against nivalenol, 3-acetylDON, 15-acetylDON, de-epoxy metabolite 1 of DON, DON-3β-glucoside, T2-toxin, HT2-toxin, fusarenone X, diacetoxyscirpenol, verrucarol, and zearalenone. Cross-reactivity measurements were run in water using the 50% reduction of absorbance of the blank for ELISA kits or through direct DON determination upon using the standards of mycotoxins via ROSA LF-DONQ or MYCONTROLDON. For the tested toxin concentrations, all DON kits have low cross-reactivity toward diacetoxyscirpenol, T2-toxin, HT2-toxin, verrucarol, and zearalenone and moderate cross-reactivity toward 15-AcetylDON and fusarenone X. AGRAQUANT, DON EIA, and VERATOX kits showed high cross-reactivity in various ranking orders against DON-3-Glc, DOM-1, and 3AcDON. DON EIA showed also high cross-reactivity against nivalenol and fusarenone X. These mycotoxins could coexist in food or feedstuffs, and analytical results can be wrongly interpreted. Cross-reactivity does not allow checking the compliance with the legal norms, but it does allow an overall risk assessment for the consumers. Updating regularly the cross-reactivity evaluation of the produced batches is recommended for 3-acetylDON, nivalenol, DON-3-Glc, de-epoxy metabolite 1, and fusarenone X.  相似文献   

8.
The effect of baking and digestion on the allergenicity of wheat flour proteins has been studied. Pooled sera of patients suffering from food allergy to wheat products were tested for IgE binding to the proteins of the wheat dough and of the bread crumb and crust, before and after being in vitro digested. During in vitro digestion, the IgE binding protein components of the unheated dough tended to disappear, whereas a permanence of IgE recognition was evident for both the bread crumb and crust. This indicates that the baking process increases the resistance of the potential allergens of the wheat flour to proteolytic digestion, allowing them to reach the gastrointestinal tract, where they can elicit the immunological response. Therefore, the effects of baking must be carefully considered in studying food allergies to wheat products.  相似文献   

9.
不同种类大豆蛋白粉对面包加工特性的影响   总被引:8,自引:2,他引:6  
为探索大豆蛋白作为营养补充剂在面包中应用时,对面团物理特性和焙烤特性产生的影响,该文考察了不同种类的大豆蛋白制品,包括大豆分离蛋白、灭酶全脂粉、活性全脂粉、活性脱脂粉、灭酶脱脂粉对面团粉质特性、拉伸特性和焙烤特性的影响。结果表明,面粉的吸水率与大豆蛋白粉氮溶解指数显著相关,面团的抗拉阻力受大豆蛋白添加量的影响明显。大豆蛋白粉的加入,对面包比体积产生不利影响,下降趋势与大豆蛋白粉对面团拉伸特性的影响显著相关。大豆蛋白粉有软化面包质地的作用,活性全脂粉表现最为明显。大豆蛋白粉的加入量占面粉质量分数的3%时,对面包口感影响不明显,当加入量超过面粉质量分数的7%时,容易出现发粘和豆腥味等现象。  相似文献   

10.
The dough properties and baking qualities of a novel high‐amylose wheat flour (HAWF) and a waxy wheat flour (WWF) (both Triticum aestivum L.) were investigated by comparing them with common wheat flours. HAWF and WWF had more dietary fiber than Chinese Spring flour (CSF), a nonwaxy wheat flour. Also, HAWF contained larger amounts of lipids and proteins than WWF and CSF. There were significant differences in the amylose and amylopectin contents among all samples tested. Farinograph data showed water absorptions of HAWF and WWF were significantly higher than that of CSF, and both flours showed poorer flour qualities than CSF. The dough of WWF was weaker and less stable than that of CSF, whereas HAWF produced a harder and more viscous dough than CSF. Differential scanning calorimetry data showed that starch in HAWF dough gelatinized at a lower temperature in the baking process than the starches in doughs of WWF and CSF. The starch in a WWF suspension had a larger enthalpy of gelatinization than those in HAWF and CSF suspensions. Amylograph data showed that the WWF starch gelatinized faster and had a higher viscosity than that in CSF. The loaves made from WWF and CSF were significantly larger than the loaves made from HAWF. However, the appearance of bread baked with WWF and HAWF was inferior to the appearance of bread baked with CSF. Bread made with WWF became softer than the bread made with CSF after storage, and reheating was more effective in refreshing WWF bread than CSF bread. Moreover, clear differences in dough and bread samples were revealed by scanning electron microscopy. These differences might have some effect on dough and baking qualities.  相似文献   

11.
The amino acid release was determined in wheat doughs supplied with salt, acid, dithiothreitol, or starter cultures to evaluate the relevance of the amino acid concentration on bread flavor. Wheat flour proteinases almost linearly released amino acids and the highest activity of wheat flour proteinases was found in acidified and reduced doughs. The effects of starter cultures on amino acid concentrations depended on their composition. Yeasts exhibited a high demand for amino acids, however, the total amino acid concentrations were not markedly affected by lactic acid bacteria. The individual amino acid contents were determined by the pH during fermentation and microbial metabolism. The formation of proline was favored by values higher than pH 5.5, whereas release of phenylalanine, leucine and cysteine mainly occurred at lower pH. Ornithine was found only in doughs fermented with Lactobacillus pontis. To determine effects of the amino acid concentration on bread aroma, fermented doughs were evaluated in baking experiments. An increased intensity of bread flavor was obtained by preferments prepared with lactic acid bacteria. The roasty note of wheat bread crust could be markedly enhanced by L. pontis. This results support the assumption that flavor of wheat bread is enhanced by increasing the concentration of free amino acids and especially ornithine in dough.  相似文献   

12.
Phytochemical profile (phenolic acids, carotenoids, and tocopherols) and antiproliferative properties of bread processing fractions, including the dough, crumb, and upper crust made from refined wheat and whole wheat flours were analyzed for two wheat cultivars. Ferulic acid, lutein, and α‐tocopherol were the predominant phenolic acid, carotenoid, and tocopherol, respectively, extracted from all fractions. The levels of all phytochemicals in whole wheat samples were over eightfold higher than their corresponding refined wheat samples. The concentrations of total phenolic acids (soluble and insoluble bound) were higher in the upper crust of refined (∼60–90%) and whole wheat (∼15–40%) breads than their corresponding dough fractions. However, the dough of whole wheat had higher levels of tocopherols and carotenoids compared with the crumb and upper crust, suggesting that phenolic acids were relatively stable during baking, whereas tocopherols (∼25–80%) and carotenoids (∼20–80%), were partially degraded. The antiproliferative activity of whole wheat bread extracts against HT‐29 cancer cells was weakly correlated with total phenolic acids but showed no correlations with total carotenoid and total tocopherol contents.  相似文献   

13.
The total plant sterol contents (free sterols and covalently bound structures) of the main cereals cultivated in Finland were determined. Furthermore, sterol contents were determined for different flour and bran fractions in the milling process of wheat and rye, as well as plant sterol contents in various milling and retail bakery products. The sample preparation procedure included acid and alkaline hydrolysis to liberate sterols from their glycosides and esters, respectively. Free sterols were extracted and, after recovery using solid‐phase extraction, derivatized to trimethylsilyl ethers for gas chromatography (GC) analysis. We used GC with a mass spectrometer (MS) for identification. When two cultivars of rye, wheat, barley, and oats grown in the same year were compared, the highest plant sterol content was observed in rye (mean content 95.5 mg/100 g, wb), whereas the total sterol contents (mg/100 g, wb) of wheat, barley, and oats were 69.0, 76.1, and 44.7, respectively. In addition, the 10 rye cultivars and breeding lines compared had total sterol contents of 70.7–85.6 mg/100 g. In the milling process of rye and wheat, the plant sterols fractionated according to the ash content of the corresponding milling product. In all cereal grain and milling product samples, sitosterol was the main sterol. The level of stanols differed in the different milling process samples; it was lower in the most refined rye and wheat flours (≈15%) than in the bran fractions (≈30% in the bran with 4% ash content). Rye bread with whole meal rye flour as the main or only ingredient was a good source of sterols. Sterol content was higher than that of wheat bread, whereas plant sterol content of other bakery products was affected by the type and amount of fat used in baking.  相似文献   

14.
Deoxynivalenol (DON) is a toxic secondary metabolite produced by molds of the Fusarium genus, which are able to infect cereal crops in the field. Concerning its rate of occurrence and mean concentration, DON is one of the most important mycotoxins in cereal commodities. Its toxic effects range from causing diarrhea, vomiting, and gastro-intestinal inflammation to noncompetitive inhibition of the biosynthesis of proteins in eukaryotic cells. To study the stability of DON under food-processing conditions such as cooking or baking, we performed model heating experiments and screened the residue for degradation products. Heating of DON and 3-acetyldeoxynivalenol (3-AcDON), especially under alkaline conditions, gave a mixture of compounds, which were isolated and structurally elucidated by NMR and MS experiments. Three of these compounds were already known (norDON A, norDON B, and norDON C), while four were new and named 9-hydroxymethyl DON lactone, norDON D, norDON E, and norDON F. The significance of the DON degradation products was checked by analyzing commercially available food samples. norDON A, B, and C were detected in 29-66% of the samples in mean concentrations ranging from 3 to 15 microg/kg. Furthermore, cell culture experiments using IHKE cells showed that the compounds that were detected in food samples are less cytotoxic in the formazan dye cytotoxicity assay compared to DON. Whereas DON revealed a median effective concentration (EC50) at 1.1 micromol/L, all other compounds did not show any significant effect up to 100 micromol/L. These findings indicate that the degradation of DON under thermal treatment might reduce the toxicity of DON contaminated food.  相似文献   

15.
Freezing and prolonged frozen storage of dough results in constant deterioration in the overall quality of the final product. In this study the effect of wheat bran and wheat aleurone as sources of arabinoxylan (AX) on the quality of bread baked from yeasted frozen dough was investigated. Wheat fiber sources were milled to pass through a 0.5 mm screen, prehydrated for 15 min, and incorporated into refined wheat flour at 15% replacement level. Dough products were prepared from refined flour (control A), whole wheat flour (control B), aleurone composite flour (composite flour A), and bran composite flour (composite flour B) and stored at –18°C for 28 weeks. Dough samples were evaluated for breadmaking quality at zero time, 14 weeks, and 28 weeks of storage. Quality parameters evaluated were loaf weight, loaf specific volume, and crumb firmness. Composite flour bread samples showed the most resistance to freeze damage (less reduction in the overall product quality), indicating a possible role of some fiber components (e.g., AX) in minimizing water redistribution in the dough system and therefore lessening adverse modifications to the gluten structure. The data suggest that the shelf life of frozen dough and quality of obtained bread can be improved with the addition of an AX source.  相似文献   

16.
In situ enrichment of bread with arabinoxylan‐oligosaccharides (AXOS) through enzymic degradation of wheat flour arabinoxylan (AX) by the hyperthermophilic xylanase B from Thermotoga maritima (rXTMB) was studied. The xylanolytic activity of rXTMB during breadmaking was essentially restricted to the baking phase. This prevented problems with dough processability and bread quality that generally are associated with thorough hydrolysis of the flour AX during dough mixing and fermentation. rXTMB action did not affect loaf volume. Bread with a dry matter AXOS content of 1.5% was obtained. Further increase in bread AXOS levels was achieved by combining rXTMB with xylanases from Pseudoalteromonas haloplanktis or Bacillus subtilis. Remarkably, such a combination synergistically increased the specific bread loaf volume. Assuming an average daily consumption of 180 g of fresh bread, the bread AXOS levels suffice to provide a substantial part of the AXOS intake leading to desired physiological effects in humans.  相似文献   

17.
Trials with tannic acid in three concentrations (0.1, 0.2, and 0.3%) in a wheat flour dough were run to test its property to preserve the ascorbic acid degradation during baking and its performance in the dough viscoelasticity measured by its extensigraphic properties. The addition of tannic acid to the dough in the cited concentrations increased its resistance to extension (RE) and consequently reduced its extensibility (E) in the same way that ascorbic acid performed but using concentrations 10× smaller. In a dough containing ascorbic acid 0.02% and tannic acid 0.3%, the ascorbic acid retention after 10 days of storage was 34.8%, which represents 154% of the recommended daily intake of vitamin C by FAO/WHO (2002) for an adult (19–65 years old). The addition of tannic acid to the dough also increased the bread specific volume.  相似文献   

18.
Thermostable mutant α‐amylases (21B, M111, and M77) with various degrees of thermostability were purified from Bacillus amyloliquefaciens F and used as improvers for breadmaking. Test baking with the mutant enzymes was conducted using the long fermentation sponge‐dough method. Addition of an appropriate amount of mutant α‐amylases to the ingredients distinctly increased the specific volume of the bread and improved the softness of breadcrumb as compared with the addition of Novamyl (NM), an exo‐type α‐amylase. M77 was the most effective in retarding the staleness of breadcrumb. The softness of breadcrumb during storage, however, was not correlated with the thermostability. All mutant α‐amylases weakened the mixing property of the dough, whereas they strengthened the property of fermented dough. Especially, M77 and NM had different effects on the dough properties, but their bread qualities were similar to each other. The strong tolerance of M77 dough to the long baking process might be due to the production of hydrolyzed starches, oligosaccharides in the range of maltopentaose to maltohexaose, as compared with NM. Therefore, in the light of present findings, these mutant α‐amylases are possible substitutes for NM as bread improvers.  相似文献   

19.
Introduction of high molecular weight glutenin subunits (HMW‐GS) from the Glu‐D1d locus of wheat into triticale restores the genetic constitution of high molecular weight glutenin loci to that of wheat and subsequently improves the breadmaking quality of triticale. One means of achieving such restoration of the genetic constitution is through the use of translocation lines. The aim of this study was to evaluate and compare the performance of translocations 1A.1D and 1R.1D with HMW‐GS 5+10 and 2+12 in terms of physical dough tests and baking quality using four different sets of triticale lines, GDS7, Trim, Rhino, and Rigel. In general, significantly lower milling quality (flour yield), very low mixing times with lower loaf volume were typical of all the triticales studied except 1A.1D 5+10 lines, when compared to hard wheat flour (Pegaso). Among the lines studied, significantly higher loaf volume, mixograph dough development time (MDDT), and maximum resistance to extension (Rmax) were observed with 1A.1D 5+10 lines indicating that translocation of the Glu‐D1d allele with HMW‐GS 5+10 was beneficial in terms of improving the quality attributes. Although pure triticale flour from these lines did not possess the functional characteristics for good quality bread, the translocation 1A.1D that contains HMW glutenin subunits 5+10 showed significant improvement in quality characteristics, and could reasonably be expected to yield commercially satisfactory bread loaves when combined with bread wheat flour. Significantly higher UPP, Rmax, and MDDT values along with a lower gliadin‐to‐glutenin ratio in 1A.1D 5+10 of GDS7 and Rigel sets indicate that the molecular weight distribution was shifted to higher molecular weights, resulting in greater dough strength associated with 5+10 subunits.  相似文献   

20.
The objective of this study was to evaluate how Rhyzopertha dominica infestation of stored wheat grain affects the rheological and baking properties of bread made with the milled flour. Wheat samples were infested with R. dominica and stored for up to 180 days at room temperature. Every 45 days, samples of wheat were collected and evaluated for insect population and flour yield. Flour milled from these wheat samples was evaluated for color reflectance, pH, fat acidity, and rheological properties which were measured by a farinograph. Loaves of bread were baked using a straight-dough procedure. Volume, height, and weight of the loaves were evaluated. None of the analyses performed on the control wheat flours showed any changes during the storage period, and they were similar to the initial wheat. The insect population increased during storage of the wheat up to 90 days, and the flour yield decreased with the storage up to 180 days. Flours from insect-infested wheat absorbed more water than did flours from control wheat. Dough stability and dough development times of infested flours decreased. Bread volume showed a progressive decline throughout the storage experiment. In conclusion, flour from insect-infested wheat exhibited changes in rheological properties such as dough stability, dough development times, water absorption, and mixing stability; bread had an offensive odor; and volume and loaf characteristics were negatively affected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号