首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The transformation of microscopic fungi communities under the impact of contamination, the influence of environmental conditions (soil temperature and moisture) on the development of fungal communities in the course of model successions and on the copper mobility in soil, and the most favorable conditions for copper mobilization were studied in Al-Fe-humus podzols of the Kola peninsula contaminated with heavy metals (Cu and Ni). The long-term aerotechnogenic contamination affects the structure of the microbial communities; the species diversity of the communities can somewhat increase at the expense of the increasing diversity of rare, atypical, and “weed” species and decreasing numbers of dominants. The dynamics of fungal communities are less expressed in the contaminated soils as compared with the reference soils. The conditions of rather low temperature (5°C) and an increased moisture content (120% of the field water capacity) are the most favorable for mycelium growth and copper mobilization. Such conditions are typical of the soils in the studied region. Hence, there is a possibility for the soil self-purification due to gradual mobilization of the copper and its subsequent leaching.  相似文献   

2.
Current interest in biological-based management of weed seed banks in agriculture furthers the need to understand how microorganisms affect seed fate in soil. Many annual weeds produce seeds in high abundance; their dispersal presenting ready opportunity for interactions with soil-borne microorganisms. In this study, we investigated seeds of four common broadleaf weeds, velvetleaf (Abutilon theophrasti), woolly cupgrass (Eriochloa villosa), Pennsylvania smartweed (Polygonum pensylvanicum), and giant ragweed (Ambrosia trifida), for potential as sources of carbon nutrition for soil fungi. Seeds, as the major source of carbon in an agar matrix, were exposed to microbial populations derived from four different soils for 2 months. Most seeds were heavily colonized, and the predominant 18S rRNA gene sequences cloned from these assemblages were primarily affiliated with Ascomycota. Further, certain fungi corresponded to weed species, regardless of soil population. Relatives of Chaetomium globosum (98–99% sequence identity) and Cordyceps sinensis (99%) were found to be associated with seeds of woolly cupgrass and Pennsylvania smartweed, respectively. More diverse fungi were associated with velvetleaf seeds, which were highly susceptible to decay. The velvetleaf seed associations were dominated by relatives of Cephaliophora tropica (98–99%). In contrast to the other species, only few giant ragweed seeds were heavily colonized, but those that were colonized resulted in seed decay. The results showed that seeds could provide significant nutritional resources for saprophytic microbes, given the extant populations can overcome intrinsic seed defenses against microbial antagonism. Further, weed species-specific associations may occur with certain fungi, with nutritional benefits conferred to microorganisms that may not always result in seed biodeterioration.  相似文献   

3.
Salt marshes are characterized by the occurrence of combined salinity and flooding stresses. The individual and combined effects of salinity and flooding on the establishment and activity of arbuscular mycorrhizal (AM) colonization in the salt marsh halophyte Aster tripolium L. by indigenous salt marsh AM fungi were evaluated. A. tripolium plants were cultivated in a mixture of sand and salt marsh soil under different salinity concentrations (5%, 50% or 100% artificial seawater) and water regimes (non-flooding, tidal flooding and continuous flooding). Plants were harvested after 3 and 8 weeks and their growth was negatively influenced by increased salinity and water level. Increased salinity level affected the establishment of AM colonization, AM fungal growth and activity (measured as succinate dehydrogenase activity) within roots, and extraradical mycelium growth. The influence of flooding on the establishment of colonization and on intra- and extraradical AM fungal growth was dependent on the water regime. Continuous flooding reduced colonization and AM fungal growth, whereas tidal flooding did not affect these parameters unless combined with intermediate salinity level (50% seawater) at the end of the experiment. The water regime did not influence AM active colonization. The ratio of root to soil AM fungal growth increased as the water level increased. The results of this study demonstrate that the establishment and activity of AM colonization in A. tripolium is more influenced by salinity than by flooding, and suggests that the functionality of salt marsh AM fungi is not affected by flooding.  相似文献   

4.
Arbuscular mycorrhizal (AM) fungi are root symbionts that enhance plant growth and improve soil fertility and soil structure in drylands. Even though AM fungi are obligate biotrophs, organic matter (OM) can stimulate their growth, but the mechanisms behind this are still unknown. Here, we compared the effect of nutrient patches of different OM sources to intrinsic components of OM such as inorganic nutrient supply and an improved soil water-holding capacity (WHC; via application of hydrophilic polymers), on AM fungal growth. Fatty acids extracted from in-growth mesh bags incubated in the field were used as biomarkers for AM fungi and other soil microbes. We found an enhancement of AM fungal growth in certain nutrient patches. Two out of three OM types stimulated AM fungal growth strongly, and also the addition of inorganic nutrients enhanced AM fungi, though to a lesser extent than OM. Enhanced soil WHC, on the other hand, did not influence AM fungal growth. AMF were more strongly enhanced by the mineral nutrients relative to other soil organisms. Intrinsic nutrients might be an important factor for AMF growth stimulation in OM additions, but there was no evidence that nutrients alone can explain this phenomenon.  相似文献   

5.
Mycelia of cord-forming fungi show remarkable patterns of reallocation of biomass and nutrients indicating an important role of these, often extensive, organisms in the spatial translocation of energy and nutrients in forest soils. Despite the rich tradition of interaction studies between soil microarthropods and fungi, the spatial implications of these interactions, due to the potential growth responses of the fungi and to the translocation of energy and nutrients within the mycelial network, have been largely ignored. In this paper we analyse fungal growth responses in two-dimensional model systems composed of compressed soil, the cord-forming fungus Hypholoma fasciculare and three fungivorous Collembolan species. We hypothesised that (i) the highly co-ordinated nature of cord-forming fungi would lead to growth responses following collembolan grazing, and that, (ii) such changes are dependent on grazing intensity, and (iii) changes are dependent on the species grazing. Mycelial extent and hyphal cover decreased with increasing grazing density; at highest grazing density also the fractal dimension of the mycelial border decreased, indicating a less branched foraging front due to the regression of fine hyphae and the development of mycelial cords. Effects differed greatly between collembolan species although they exerted comparable grazing pressure (the smaller species were added in larger numbers according to their allometric size-metabolic rate relationships): while grazing by Folsomia candida resulted in less mycelial extension and hyphal cover, these variables were not affected when Proisotoma minuta and Hypogastrura cf. tullbergi grazed. The effects of a species mix suggested an additive effect of the component species. This shows that fungal mycelia may suffer from damage caused by few but large collembolans, affecting extension as well as coverage of the mycelium, but that fungi may compensate for the biomass loss caused by more but slightly smaller collembolans. In about 20% of the model systems H. fasciculare switched from a growth pattern with a broad contiguous foraging front and uniform growth in all directions to a pattern with fast growing sectors while other sectors stopped growth completely. The switch occurred in grazed systems exclusively; thus we interpret this observation as a fugitive response and as a strategy for quickly escaping from places where grazing pressure is experienced.  相似文献   

6.
Soil communities dominated by fungi such as those of no-tillage (NT) agroecosystems are often associated with greater soil organic matter (SOM) storage. This has been attributed in part to fungi having a higher growth yield efficiency (GYE) compared to bacteria. That is, for each unit of substrate C utilized, fungi invest a greater proportion into biomass and metabolite production than do bacteria. The assumption of higher fungal efficiency may be unfounded because results from studies in which fungal and bacterial efficiencies have been characterized are equivocal and because few studies have measured microbial GYE directly. In this study, we measured microbial GYE in agricultural soils by following 13C-labeled glucose loss, total CO2-C, and 13CO2-C evolution at 2 h intervals for 20 h in two experiments (differing in N amendment levels) in which the fungal:bacterial biomass ratios (F:B) were manipulated. No differences in efficiency were observed for communities with high versus low F:B in soils with or without added inorganic N. When calculated using 13CO2-C (in contrast to total CO2-C) evolution, growth yield efficiencies of soils having high and low F:B were 0.69±0.01 and 0.70±0.01, respectively. When soils were amended with N, soils with high and low F:B had growth yield efficiencies of 0.78±0.01 and 0.76±0.01, respectively. Our experiments do not support the widely held assumption that soil fungi have greater growth efficiency than soil bacteria. Thus, claims of greater fungal efficiency may be unsubstantiated and should be evoked cautiously when explaining the mechanisms underlying greater C storage and slower C turnover in fungal-dominated soils.  相似文献   

7.
Effects of diverse agricultural land management practices on soil and on root colonizing fungal communities were determined through a PCR-based molecular method and a culture-dependent method, respectively, in a field location with uniform soil type. Initiated in July 2000, the management systems were: conventional tomato production, frequent tillage (disk fallow), undisturbed weed fallow, bahiagrass pasture (Paspalum notatum var. notatum ‘Argentine’), and an organically managed system including cover crops and annual applications of poultry manure and urban plant debris. Culture-dependent colony counting was used to identify and enumerate communities of root colonizing fungi and length heterogeneity polymerase chain reaction (LH-PCR) analysis of internal transcribed spacer-1 (ITS-1) profiles to characterize phylotypes in soil fungal communities. Three years after initiation of land management treatments and midway through tomato cultivation, both methods detected a high degree of similarity in fungal community composition between weed fallow and bahiagrass plots. Soil fungal communities in organically managed plots were similar to each other and distinct from communities in other land management systems while the composition of root colonizing fungal communities in organic plots was divergent. The results demonstrate that the soil fungal communities and root colonizing fungal communities were affected differently depending on land and crop management practices. Fusarium oxysporum was a dominant species in all soil and root colonizing fungal communities except those subjected to organic management practices.  相似文献   

8.
We investigated the functions and ecological traits of seven individual ectomycorrhizal (ECM) fungal species derived from a Pinus thunbergii-dominated (nitrogen-poor) and a Robinia pseudoacacia-dominated (nitrogen-rich) area. P. thunbergii seedlings were inoculated with seven individual ECM fungal species and cultured under high nitrogen (nitrogen group) and low nitrogen (control group) conditions. Control seedlings were not inoculated with any ECM fungus. Seedlings harvested were examined for the numbers of non-mycorrhizal and ECM root tips, growth, nutrient status (nitrogen, phosphorus and carbon) and the activity of dehydrogenase and phosphomonoesterase in the root tips. The relationships among the growth, nutrient status and the enzymatic activity in the seedlings inoculated with each ECM fungal species were also analyzed by canonical discriminants. As the results, inoculation of ECM fungi made the plant growth significantly higher than those of non-inoculated seedlings. Plant growth significantly correlated with the phosphorus content, N:P ratio and phosphomonoesterase activity, especially in the nitrogen group. Dehydrogenase and phosphomonoesterase activities in the seedlings were higher when the ECM fungi from a nitrogen-rich area were inoculated than when those from a nitrogen-poor area were inoculated. The canonical discriminant analyses separated seedlings by inocula: no fungus, ECM fungi from a nitrogen-poor area, and those from a nitrogen-rich area. These results suggested the possibility that nitrogen deposition caused P shortage and the P absorbing ability was higher in the ECM fungi in nitrogen-rich forests than those in nitrogen-poor forests.  相似文献   

9.
The family Tylenchidae is a large group of soil nematodes but their feeding habits are not fully known. We studied the fungal-feeding abilities of nematodes in the genus Filenchus. We measured population growth rates (PGRs) of six nematode isolates, representing three Filenchus species, when feeding on seven fungal species on two types of culture media. On Potato Dextrose Agar (PDA) Filenchus misellus, Filenchus discrepans and an unidentified Filenchus sp. generally showed moderate to large PGRs on saprophytic fungi (Rhizoctonia solani, Chaetomium globosum, Coprinus cinereus, Flammulina velutipes) and low PGRs on plant-pathogenic fungi (Fusarium oxysporum, Pythium ultimum). In soil medium amended with chopped soybean plant material or wheat bran, the status of most of the fungi as food for the nematodes was similar to that on PDA, although PGRs tended to be lower in the soil medium. However, C. globosum, a good food on PDA, only supported low PGR in soil for each of the three nematodes. The PGRs of F. misellus on C. globosum in soil were still low even when types and amounts of organic matter amendments were varied. A nematophagous fungus, Pleurotus ostreatus (oyster mushroom), was determined to be a food for Filenchus on PDA or in soil, based on PGR measurements corrected for extraction efficiency. To determine whether fungal species and culture media affected nematode extraction efficiencies and, consequently, the apparent PGRs, we compared efficiencies between R. solani, C. globosum and C. cinereus, and between PDA and soil. The relatively low extraction efficiencies across fungal species in soil seemed responsible for the lower nematode PGRs in soil than on PDA. On PDA generally, fungal species did not affect the assessment. In soil, effects of fungal species on extraction were significant, but not consistent, across nematode species. Nevertheless, the extraction efficiency differences in soil were considered not to affect assessment of the three fungi as food for the nematodes. The confirmation that three Filenchus species reproduce by feeding on fungi in soil suggests that fungal-feeding is not an unusual habit in the field, in this genus. We believe that in community studies, nematodes in the genus Filenchus should be considered fungal feeders or root and fungal feeders, rather than only plant feeders. Our confirmation of fungal-feeding habits in the genus Filenchus supports the hypotheses that plant-feeding nematodes evolved from those feeding on fungi.  相似文献   

10.
Abstract

Calcium seems to be required by higher plants (and in parts of higher plants) in variable concentrations and much confusion exists about plant requirements of it. When most heavy metal concentrations are low, the calcium requirement in plants can also be low. Levels of calcium of 800 or less and up to 2000 ppm of dry weight are adequate under some conditions. Even though the requirement may be low, these levels are not much above critical concentrations and deficiency problems are easily encountered. Some calcium deficiency problems seem to be related to this phenomenon.  相似文献   

11.
The toxic effect of Ni, Cu, Ag, Cd, and Zn adsorbed to clay minerals on six fungal species was studied. In some cases the ions adsorbed to the clay were more effective as growth inhibitors than those in solution. This phenomenon was especially prominent with Cu and Ag. Though Ca was found to be non-toxic to the fungi, Ca-clay complexes inhibited fungal growth. It is postulated that clay may inhibit fungi through: (1) adsorptive effects when the cation is non toxic; and (2) direct heavy metal toxicity.  相似文献   

12.
The roles of ectomycorrhizal fungi and bacteria associated with corresponding fungal species in distribution of heavy metals within roots and shoots of inoculated pine (Pinus sylvestris L.) seedlings were determined in this study. The mycorrhizal fungi forming different morphotypes were identified by PCR-RFLP using respective primers for an internal spacer transcribed region (ITS) of fungal rDNA. Amongst five fungal species detected, three were identified as Scleroderma citrinum, Amanita muscaria and Lactarius rufus. These fungi used for inoculation of pine seedlings significantly reduced translocation of Zn(II), Cd(II) or Pb(II) from roots to shoots, and the pattern of metal-accumulation was dependent on the fungal species. Ectomycorrhizae-associated bacteria identified as Pseudomonas were used as an additional component of the pine inoculation. These dual root inoculations resulted in higher accumulation of the metals, especially Zn(II), in the roots compared to the inoculation with fungal species alone. Consequently, dual inoculation of pine seedlings could be a suitable approach for plant protection against heavy metals and successful planting of metal-polluted soils.  相似文献   

13.
三种土壤上六种丛枝菌根真菌生长特征和接种效应   总被引:6,自引:3,他引:6  
以分离于华北、华中和华南3个生态区及法国引进的丛枝菌根真菌为试验菌株,采用三室根箱培养的方法,研究了它们在华北、华中和华南3种典型土壤褐土、棕壤和红壤上的菌根形成、接种效应、磷吸收贡献和根外菌物量情况。结果表明,6种菌株在上述指标上存在显著的种间或生态型差异,土壤与菌株间存在显著的交互作用。6种菌株在3种土壤上都能与玉米形成菌根,在褐土和棕壤上大多数菌株在分离地所在地区土壤类型上的菌根侵染率较高,说明其对该土壤条件的适应性较强;在红壤强酸性土壤条件抑制了菌根真菌的侵染。菌株BEG168、BEG167、BEG151、BEG221和BEG141在褐土上,BEG151和BEG221在棕壤上,BEG168和BEG150在红壤上显著提高了玉米的生物量。在褐土和棕壤上,除BEG150外,BEG168、BEG167、BEG151、BEG221和BEG141能显著促进宿主吸磷;而在红壤上,BEG168和BEG141显著促进了宿主吸磷。若以真菌的根外菌物量作为衡量AM真菌菌株土壤生态适应性的指标,BEG141和BEG167是生态适应性强的菌株,为广幅生态型菌株;菌株BEG168和BEG151次之,前者在棕壤上适应性高,后者在红壤上适应性高。BEG150和BEG221生态适应性较窄,仅适应红壤或褐土,为窄幅生态型菌株。Glomus.etunicatum的两个生态型BEG168和BEG221在土壤生态适应性上差异很大,前者在两种土壤上收集到菌物量,而后者只在褐土上收集到菌物量。土壤条件可以决定丛枝菌根真菌的生长状况和功能。  相似文献   

14.
抗真菌转基因水稻根际土壤真菌群落结构的动态变化   总被引:2,自引:0,他引:2  
以非转基因水稻"七丝软粘"为对照,采用传统平板计数法和变性梯度凝胶电泳技术,研究了抗真菌转基因水稻"转品1"和"转品8"生长周期内对根际土壤中可培养真菌数和真菌群落结构的影响。结果显示,相同生育期转基因水稻根际土壤可培养真菌数量与其非转基因对照水稻相比较无显著性差异,表明转基因水稻的种植没有对根际土壤真菌数量产生明显影响;18S rRNA真菌群落DGGE图谱分析显示,相同生育期转基因水稻与其非转基因对照水稻的根际土壤真菌DGGE条带数量和条带位置均无显著性差异,表明转基因水稻的种植没有对根际土壤真菌群落结构产生明显影响。进一步分析相同生育期转基因水稻与其非转基因对照水稻的根际土壤真菌群落香农多样性指数(Shannon diversity index)和均匀度指数(Evenness index)的动态变化,发现两者均没有显著性差异。以上研究结果表明,外源抗真菌基因的导入对水稻根际土壤中真菌群落数量和群落结构均没有明显影响。此外,将不同位置的真菌DGGE条带切胶回收,克隆、测序后,进行系统进化树分析,结果表明根际土壤真菌群落主要归属为子囊菌门(Ascomycota)、担子菌门(Basidiomycota)、壶菌门(Chytridiomycota)、接合菌门(Zygomycota)和未知真菌(unknown fungi)5个类群。  相似文献   

15.
Arbuscular mycorrhizal (AM) fungi have a key role for plant nutrition in organic farming systems where crop protection relies on biopesticides. Although these are considered safe, their effects on non-target organisms, such as AM fungi, are not known and should be evaluated. A pot and a field experiment were employed to investigate the impact of biological pesticides (azadirachtin, spinosad, pyrethrum and terpens) on exogenous AM fungal inoculum (pots) and on indigenous AM fungi (field). The synthetic fungicide carbendazim and non-pesticide treated controls with or without mycorrhizal inoculation were also included. Plant growth and root colonization were measured 20 and 40 days post inoculation (dpi) in the pot experiment, or 40 and 90 dpi in the field study. Pesticide effects on the structure of the intraradical AM fungal community were determined via DGGE and cloning. Spinosad, pyrethrum and terpenes did not affect the colonization ability and the structure of the AM fungal community. On the contrary, pot application of azadirachtin resulted in a selective inhibition of the Glomus etunicatum strain of the inoculum. DGGE analysis showed that the field application of azadirachtin induced significant and persistent shifts in the AM fungal community. Carbendazim completely hampered mycorrhizal colonization in pots, compared to its field application which had a transitory effect on the colonization ability and the community structure of indigenous AM fungi. Our study provides first evidence for the effects of biological pesticides on the diversity of AM fungi.  相似文献   

16.
In an earlier study we reported the apparent stabilization of a low fungal biomass in ex-arable lands during the first decades after abandonment. It was hypothesized that the lack of increase in fungal biomass was due to constraints on development of fungi with persistent hyphae such as lignocellulolytic basidiomycetes and ericoid mycorrhizal fungi. With respect to the former group, the slow increase of the pool of lignocellulose-rich organic matter was expected to be the major constraint for their development. To study this, we enriched soil samples of one arable land, of two recently abandoned arable lands, of one older abandoned arable land and of heathland with carbon substrates that differed in composition (glucose, cellulose and sawdust). In addition, we combined the effect of carbon addition on fungal biomass development in arable and recently abandoned lands with inoculation of 1% of soil from the older abandoned site and the heathland. All treatments induced a fast increase and a subsequent rapid decline in fungal biomass in the arable and ex-arable fields. Denaturing Gradient Gel Electrophoresis (DGGE) band patterns and enzyme activities did show differences between the carbon treatments but not between the recent and older abandoned field sites, indicating a similarly responding fungal community even after three decades of land abandonment and irrespective of soil inoculation. Identification of fungi by sequencing and culturing confirmed that decomposition processes were mostly dominated by opportunistic fungi in arable and ex-arable fields. In the heathland, only a very slow increase of microbial activity was observed after addition of carbon and sequencing of DGGE bands showed that ericoid mycorrhiza (ERM) fungi were responsible for carbon decomposition. We conclude that an increase of enduringly present fungal hyphae in ex-arable land may only be possible when a separate litter layer develops and/or when suitable host plants for ERM fungi become established.  相似文献   

17.
Recycling of olive mill wastewaters (OMW) into agricultural soils is a controversial issue since benefits to soil fertility should counterbalance potential short-term toxicity effects. We investigated the short-term effects of OMW on the soil-plant system, regarding the diversity, structure and root colonization capacity of arbuscular mycorrhizal (AM) fungi and the respective growth response of Vicia faba L, commonly used as green manure in olive-tree plantations. A compartmentalized pot system was used that allowed the establishment of an AM fungal community in one compartment (feeder) and the application of three OMW dose levels in an adjacent second compartment (receiver). At 0, 10, and 30 days after OMW treatment (DAT), V. faba pre-germinated seeds were seeded in the receiver compartment. At harvest, shoot and root dry weights, AM fungal root colonization, soil hyphal length and P availability were recorded in the receiver compartment. In addition, OMW effects on AM fungal diversity in plant roots were studied by DGGE. A transient effect of OMW application was observed; plant growth and AM fungal colonization were initially inhibited, whereas soil hyphal length was stimulated, but in most cases differences were absent when seeding was performed 30 DAT. Similarly, changes induced in the structure of the root AM fungal community were of transient nature. Cloning and sequencing of all the major DGGE bands showed that roots were colonized by Glomus spp. The transient effects of OMW on the structure and function of AM fungi could be attributed to OMW-derived phytoxicity to V. faba plants or to an indirect effect via alteration of soil nutritional status. The high OMW dose significantly increased soil P availability in the presence of AM fungi, suggesting efficient involvement of AM fungi in organic-P minerilization. Overall our results indicate that soil application of OMW would cause transient changes in the AM fungal colonization of V. faba plants, which, would not impair their long-term plant growth promoting ability.  相似文献   

18.
钙对茄子嫁接苗生长和抗冷性的影响   总被引:23,自引:0,他引:23  
研究了营养液缺Ca处理对茄子嫁接苗抗冷效应的影响。结果表明,缺Ca严重影响了植株的生长发育。在低温胁迫下,与供Ca处理相比,缺Ca处理显著降低了茄子嫁接苗和自根苗叶片总可溶性蛋白、热稳定蛋白和可溶性糖含量,细胞内可溶性Ca和结合Ca含量也显著降低。在相同的低温胁迫时间内,嫁接苗的总可溶性蛋白、热稳定蛋白、可溶性糖含量、细胞内可溶性Ca和结合Ca含量显著高于自根苗。低温胁迫下茄子嫁接苗总可溶性蛋白、热稳定蛋白、可溶性糖含量的提高是由于嫁接苗细胞内可溶性Ca和结合Ca含量的变化引起的。表明Ca含量的变化是其抗冷性强的内在原因,对增强茄子嫁接苗碳水化合物含量和提高植株抗冷性方面起着重要的作用。  相似文献   

19.
The growth of fungi isolated from a lowland temperate site (Roudsea Wood National Nature Reserve), an upland temperate moorland (Moor House National Nature Reserve) and an oceanic Antarctic island (Signy, S. Orkneys) was compared at 1, 14 and 25°C. This showed that low temperatures caused greatest retardation of growth in fungi from the warmest site (Roudsea) and least from the coldest site (Signy Island). At Moor House, fungi which were isolated most frequently in winter were able to grow better at 1°C than summer forms. The fungal flora of Signy Island was restricted and consists of cold tolerant cosmopolitan species which have been selected by or become adapted to the prevailing low temperatures. Of fungi isolated from any two of the sites, Mortierella alpina and Mucor hiemalis showed temperature adaptation correlated with prevailing site temperature, while Trichoderma viride, Penicillium thomii, and P. frequentans showed no adaptation.  相似文献   

20.
Soil tillage practices affect the soil microbial community in various ways, with possible consequences for nitrogen (N) losses, plant growth and soil organic carbon (C) sequestration. As microbes affect soil organic matter (SOM) dynamics largely through their activity, their impact may not be deduced from biomass measurements alone. Moreover, residual microbial tissue is thought to facilitate SOM stabilization, and to provide a long term integrated measure of effects on the microorganisms. In this study, we therefore compared the effect of reduced (RT) and conventional tillage (CT) on the biomass, growth rate and residues of the major microbial decomposer groups fungi and bacteria. Soil samples were collected at two depths (0-5 cm and 5-20 cm) from plots in an Irish winter wheat field that were exposed to either conventional or shallow non-inversion tillage for 7 growing seasons. Total soil fungal and bacterial biomasses were estimated using epifluorescence microscopy. To separate between biomass of saprophytic fungi and arbuscular mycorrhizae, samples were analyzed for ergosterol and phospholipid fatty acid (PLFA) biomarkers. Growth rates of saprophytic fungi were determined by [14C]acetate-in-ergosterol incorporation, whereas bacterial growth rates were determined by the incorporation of 3H-leucine in bacterial proteins. Finally, soil contents of fungal and bacterial residues were estimated by quantifying microbial derived amino sugars. Reduced tillage increased the total biomass of both bacteria and fungi in the 0-5 cm soil layer to a similar extent. Both ergosterol and PLFA analyses indicated that RT increased biomass of saprophytic fungi in the 0-5 cm soil layer. In contrast, RT increased the biomass of arbuscular mycorrhizae as well as its contribution to the total fungal biomass across the whole plough layer. Growth rates of both saprotrophic fungi and bacteria on the other hand were not affected by soil tillage, possibly indicating a decreased turnover rate of soil microbial biomass under RT. Moreover, RT did not affect the proportion of microbial residues that were derived from fungi. In summary, our results suggest that RT can promote soil C storage without increasing the role of saprophytic fungi in SOM dynamics relative to that of bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号