首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Twelve crossbred steers (351 +/- 24 kg initial BW) were used to determine effects of high-Se wheat on visceral tissue mass, intestinal cell growth, and intestinal cellularity and vascularity. Steers were allotted randomly by BW to one of two treatments consisting of 75% concentrate diets that supplied 1) adequate Se concentration (7 to 12 microg x kg x BW(-1) x d(-1)) or 2) high-Se concentration (60 to 70 microg x kg x BW(-1) x d(-1)). Diets were similar in composition, including 25% grass hay, 25% wheat, 39% corn, 5% desugared molasses, and 6% wheat middlings supplement on a DM basis. In the Se treatment, high-Se wheat (10 ppm Se, DM basis) was replaced with low-Se wheat (0.35 ppm Se, DM basis). Diets were formulated to be similar in CP and energy (14.0% CP, 2.12 Mcal of NEm/kg, and 1.26 Mcal NEg/kg of DM) and were offered daily (1500) to individual steers in an electronic feeding system. Diets were fed at 2.38% BW. After 126 d, steers were slaughtered, and individual visceral tissue weights determined. Concentrations of DNA, RNA, and protein of duodenum, ileum, and total small intestine were not affected (P > or = 0.33) by treatment. Similarly, RNA:DNA and protein:DNA ratios in duodenum, jejunum, ileum, and whole small intestine were not (P > or = 0.33) affected by feeding high-Se wheat. Conversely, jejunal weight was greater (P < 0.002) in steers fed high-Se wheat than in controls (916 vs. 1,427 +/- 84 g). Jejunal DNA was increased (P < 0.04) in steers fed high-Se wheat (2.95 vs. 3.56 +/- 0.19 mg/g), suggesting increased cell number. Concentrations of jejunal RNA and protein were not altered by treatment; however, because the jejunal weight increased in high-Se steers, DNA, RNA, and protein contents (grams) were greater than in control steers (P < 0.05). Vascularity of jejunal tissue decreased (P < 0.10) with high-Se wheat; however, because jejunal mass was greater for the high-Se wheat treatment, total microvascular volume was not affected by treatment. Percentage of jejunal crypt cell proliferation was not affected (P = 0.48) by treatment; however, total number of cells proliferating within the jejunum was increased in steers fed high-Se wheat. Data indicate that the lower jejunal vascularity in the diet high in Se (provided from wheat) may have resulted in increased jejunal mass to meet physiological nutrient demand. Therefore, negative effects of Se level used in this study on productive performance of feedlot steers are not expected.  相似文献   

2.
Pregnant Targhee ewe lambs (n = 32; BW = 45.6 +/- 2.2 kg) were allotted randomly to 1 of 4 treatments in a completely randomized design to examine the effects of level and source of dietary Se on maternal and fetal visceral organ mass, cellularity estimates, and maternal jejunal crypt cell proliferation and vascularity. Diets contained (DM basis) either no added Se (control) or supranutritional Se from high-Se wheat at 3.0 ppm Se (SW) or from sodium selenate at 3 (S3) or 15 (S15) ppm Se. Diets were similar in CP (15.5%) and ME (2.68 Mcal/kg of DM) and were fed to meet or exceed requirements. Treatments were initiated at 50 +/- 5 d of gestation. The control, SW, S3, and S15 treatment diets provided 2.5, 75, 75, and 375 microg of Se/kg of BW, respectively. On d 134 +/- 10 of gestation, ewes were necropsied, and tissues were harvested. Contrasts, including control vs. Se treatments (SW, S3, and S15), SW vs. S3, and S3 vs. S15, were used to evaluate differences among Se levels and sources. There were no differences in ewe initial and final BW. Full viscera and liver mass (g/kg of empty BW and g/kg of maternal BW) and maternal liver protein concentration (mg/g) and content (g) were greater (P < 0.04) in Se-treated compared with control ewes. Maternal liver protein concentration was greater (P = 0.01) in SW vs. S3 ewes, and content was greater (P = 0.01) in S15 compared with S3 ewes. Maternal jejunal mucosal DNA concentration (mg/g) was greater (P = 0.08) in SW compared with S3 ewes. Total number of proliferating cells in maternal jejunal mucosa was greater (P = 0.02) in Se-fed compared with control ewes. Capillary number density within maternal jejunal tissue was greater (P = 0.08) in S3 compared with SW ewes. Selenium treatment resulted in reduced fetal heart girth (P = 0.08). Fetal kidney RNA (P = 0.04) and protein concentrations (mg/g; P = 0.03) were greater in Se-treated compared with control ewes. These results indicate that supranutritional dietary Se increases cell numbers in maternal jejunal mucosa through increased crypt cell proliferation. No indications of toxicity were observed in any of the Se treatments.  相似文献   

3.
A study was conducted to determine the efficacy of organic (Se-yeast, SelenoSource AF, Diamond V Mills Inc., Cedar Rapids, IA) and inorganic sources of Se on growth performance, tissue Se accretion, and carcass characteristics of growing-finishing pigs fed diets with high endogenous Se content. A total of 180 pigs at 34.4 +/- 0.06 kg of BW were allotted to 1 of 5 dietary treatments: a negative control without added Se (NC); 3 treatment diets with 0.1, 0.2, or 0.3 mg/kg of added Se from an organic source; and a diet with 0.3 mg/kg of added Se as sodium selenite. Each treatment had 6 pens, with 6 pigs per pen-replicate. Experimental diets were changed twice at 66.1 +/- 0.5 kg and 99.0 +/- 0.9 kg of BW, and were fed until the pigs reached market weight. Growth performance was measured at the end of each phase. Upon reaching 129.9 +/- 1.4 kg of BW, the pigs were transported to a local abattoir (Seaboard Foods, Guymon, OK), where carcass, loin, and liver samples were obtained. Hair and blood samples were obtained at the beginning and end of the study for Se analysis. Growth performance did not differ (P > 0.05) among treatments. Percent drip loss of the NC pigs was greater (2.41 vs. 1.75, P = 0.011) compared with pigs supplemented with Se. Pigs fed diets with added Se had greater Se concentrations in the liver (0.397 vs. 0.323 ppm, P = 0.015), loin (0.236 vs. 0.132 ppm, P < 0.001), serum (0.087 vs. 0.062 ppm, P = 0.047), and hair (0.377 vs. 0.247 ppm, P = 0.003) compared with the NC pigs. Percentage drip loss was linearly reduced [percent drip loss = 2.305 - (2.398 x Se), r2 = 0.29, P = 0.007] as dietary organic Se concentration increased. The Se concentration (ppm) in the liver [liver Se = 0.323 + (0.291 x Se), r2 = 0.33, P = 0.003], loin [loin Se = 0.122 + (0.511 x Se), r2 = 0.57, P < 0.001], serum [serum Se = 0.060 + (0.113 x Se), r2 = 0.33, P = 0.004] and hair [hair Se = 0.237 + (0.638 x Se), r2 = 0.56, P < 0.001] increased linearly as dietary organic Se concentration increased. Slope ratio analysis indicated that the relative bioavailability of organic Se for percent drip loss and loin and hair Se response was 306, 192, and 197% of that for inorganic Se, respectively. The results of the study show a potential advantage of organic Se supplementation in reducing drip loss even when the basal diet contains an endogenously high Se concentration of 0.181 ppm.  相似文献   

4.
The objective of these studies was to evaluate the effects of dietary restriction and Se on maternal and fetal metabolic hormones. In Exp. 1, pregnant ewe lambs (n = 32; BW = 45.6 +/- 2.3 kg) were allotted randomly to 1 of 4 treatments. Diets contained (DM basis) either no added Se (control), or supranutritional Se added as high-Se wheat at 3.0 mg/kg (Se-wheat), or sodium selenate at 3 (Se3) and 15 (Se15) mg/kg of Se. Diets (DM basis) were similar in CP (15.5%) and ME (2.68 Mcal/kg). Treatments were initiated at 50 +/- 5 d of gestation. The control, Se-wheat, Se3, and Se15 treatments provided 2.5, 75, 75, and 375 microg/kg of BW of Se, respectively. Ewe jugular blood samples were collected at 50, 64, 78, 92, 106, 120, and 134 d of gestation. Fetal serum samples were collected at necropsy on d 134. In Exp. 2, pregnant ewe lambs (n = 36; BW 53.8 +/- 1.3 kg) were allotted randomly to treatments in a 2 x 2 factorial arrangement. Factors were nutrition (control, 100% of requirements vs. restricted nutrition, 60% of control) and dietary Se (adequate Se, 6 microg/kg of BW vs. high Se, 80 microg/kg of BW). Selenium treatments were initiated 21 d before breeding, and nutritional treatments were initiated on d 64 of gestation. Diets were 16% CP and 2.12 Mcal/kg of ME (DM basis). Blood samples were collected from the ewes at 62, 76, 90, 104, 118, 132, and 135 d of gestation. Fetal blood was collected at necropsy on d 135. In Exp.1, dietary Se source and concentration had no effect (P > 0.17) on maternal and fetal serum IGF-I, triiodothyronine (T(3)), or thyroxine (T(4)) concentrations. Selenium supplementation increased (P = 0.06) the T(4):T(3) ratio vs. controls. In Exp. 2, dietary Se had no impact (P > 0.33) on main effect means for maternal and fetal serum IGF-I, T(3), or T(4) concentrations from d 62 to 132; however, at d 135, high-Se ewes had lower (P = 0.01) serum T(4) concentrations than adequate-Se ewes. A nutrition by Se interaction (P = 0.06) was detected for the T(4):T(3) ratios; ewes fed restricted and adequate-Se diets had greater (P = 0.10) T(4):T(3) ratios compared with the other treatments. Nutrient-restricted ewes had lower (P < 0.05) serum IGF-I, T(3), and T(4) concentrations. Fetal serum IGF-I concentrations were lower (P = 0.01) in restricted-vs. control-fed ewes; however, fetal T(3) and T(4) concentrations were unaffected (P > 0.13) by dietary Se or maternal plane of nutrition. These data indicate that dietary Se may alter maternal T(4):T(3) ratios. In addition, nutrient restriction during gestation reduces maternal IGF-I, T(3), and T(4) and fetal IGF-I concentrations.  相似文献   

5.
To examine effects of nutrient restriction and dietary Se on maternal and fetal visceral tissues, 36 pregnant Targhee-cross ewe lambs were allotted randomly to 1 of 4 treatments in a 2 x 2 factorial arrangement. Treatments were plane of nutrition [control, 100% of requirements vs. restricted, 60% of controls] and dietary Se [adequate Se, ASe (6 microg/kg of BW) vs. high Se, HSe (80 microg/kg of BW)] from Se-enriched yeast. Selenium treatments were initiated 21 d before breeding and dietary restriction began on d 64 of gestation. Diets contained 16% CP and 2.12 Mcal/kg of ME (DM basis) and differing amounts were fed to control and restricted groups. On d 135 +/- 5 (mean +/- range) of gestation, ewes were slaughtered and visceral tissues were harvested. There was a nutrition x Se interaction (P = 0.02) for maternal jejunal RNA:DNA; no other interactions were detected for maternal measurements. Maternal BW, stomach complex, small intestine, large intestine, liver, and kidney mass were less (P < or = 0.01) in restricted than control ewes. Lung mass (g/kg of empty BW) was greater (P = 0.09) in restricted than control ewes and for HSe compared with ASe ewes. Maternal jejunal protein content and protein:DNA were less (P < or = 0.002) in restricted than control ewes. Maternal jejunal DNA and RNA concentrations and total proliferating jejunal cells were not affected (P > or = 0.11) by treatment. Total jejunal and mucosal vascularity (mL) were less (P < or = 0.01) in restricted than control ewes. Fetuses from restricted ewes had less BW (P = 0.06), empty carcass weight (P = 0.06), crown-rump length (P = 0.03), liver (P = 0.01), pancreas (P = 0.07), perirenal fat (P = 0.02), small intestine (P = 0.007), and spleen weights (P = 0.03) compared with controls. Fetuses from HSe ewes had heavier (P < or = 0.09) BW, and empty carcass, heart, lung, spleen, total viscera, and large intestine weights compared with ASe ewes. Nutrient restriction resulted in less protein content (mg, P = 0.01) and protein:DNA (P = 0.06) in fetal jejunum. Fetal muscle DNA (nutrition by Se interaction, P = 0.04) concentration was greater (P < 0.05) in restricted ewes fed HSe compared with other treatments. Fetal muscle RNA concentration (P = 0.01) and heart RNA content (P = 0.04) were greater in HSe vs. ASe ewes. These data indicate that maternal dietary Se may alter fetal responses, as noted by greater fetal heart, lung, spleen, and BW.  相似文献   

6.
The composition of carcass and noncarcass tissue growth was quantified by serial slaughter of 26 Angus x Hereford crossbred steers (initial age and weight 289 +/- 4 d and 245 +/- 4 kg) during continuous growth (CON) or compensatory growth (CG) after a period of growth restriction (.4 kg/d) from 245 to 325 kg BW. All steers were fed a 70% concentrate diet at ad libitum or restricted levels. Homogenized samples of 9-10-11th rib and noncarcass tissues were analyzed for nitrogen, fat, ash, and moisture. Growth rate from 325 to 500 kg BW was 1.54 and 1.16 kg/d for CG and CON steers. The weight of gut fill in CG steers was 10.8 kg less (P less than .05) before realimentation and 8.8 kg more (P less than .10) at 500 kg BW than in CON steers. The allometric accretive rates for carcass chemical components relative to the empty body were not affected by treatment. However, the accretive rates for CG steers were greater (P less than .01) for noncarcass protein (.821 vs .265), noncarcass water (.861 vs .507), and empty-body protein (.835 vs. .601) than for CON steers. Final empty-body fat was lower (P less than .001; 24.2 vs 32.4%) and empty-body protein higher (P less than .001; 16.6 vs 14.8%) in CG steers than in CON steers. Consequently, net energy requirements for growth (NEg) were approximately 18% lower for CG steers. We conclude that reduced NEg requirements and changes in gut fill accounted for most of the compensatory growth response exhibited in these steers.  相似文献   

7.
Two experiments were conducted to evaluate the effects of feeding different levels of wet corn gluten feed (WCGF) and dietary roughage on performance, carcass characteristics, and feeding behavior of feedlot cattle fed diets based on steam-flaked corn (SFC). In Exp. 1, crossbred steers (n = 200; BW = 314 kg) were fed 4 dietary treatments (DM basis): a standard SFC-based diet containing 9% roughage (CON) and 3 SFC-based diets containing 40% WCGF, with either 9, 4.5, or 0% roughage. A linear (P = 0.04) increase in final BW and DMI (P < 0.01) was observed in diets containing WCGF as dietary roughage increased. Steers fed WCGF and higher levels of roughage had greater (P = 0.01) ADG than steers fed lower levels of roughage. Steers fed the CON diet had lower (P = 0.04) daily DMI and greater (P = 0.03) G:F than those fed WCGF. Most carcass characteristics of steers fed CON did not differ (P > 0.10) from those of steers fed WCGF. Based on feed disappearance and visual scan data, consumption rate did not differ (P > 0.10) among treatments; however, feeding intensity (animals present at the bunk after feeding) was greater for steers fed CON (P < 0.01) than for steers fed WCGF. In Exp. 2, yearling crossbred steers (n = 1,983; BW = 339 kg) were fed 4 dietary treatments (DM basis): a standard SFC-based control diet that contained 9% roughage (CON) and 3 SFC-based diets containing either 20% WCGF and 9% roughage or 40% WCGF with 9 or 4.5% roughage. Steers fed the CON diet tended to have lower final BW (P = 0.14), ADG (P = 0.01), and DMI (P < 0.01) than steers fed diets containing WCGF. Steers fed the 20% WCGF diet had greater (P = 0.08) G:F than steers fed the 40% WCGF diets. With 40% WCGF, increasing roughage from 4.5 to 9% decreased (P < 0.01) G:F and increased (P = 0.06) DMI. Gain efficiency was improved (P < 0.01) for steers fed CON vs. those fed diets containing WCGF, whereas HCW (P = 0.02) and dressing percentage (P < 0.01) were greater for steers fed WCGF. Percentage of cattle grading USDA Choice was greater (P = 0.02) for cattle fed WCGF. Results suggest that replacing SFC with up to 40% WCGF increased ADG and decreased G:F when 4.5 to 9.0% roughage was supplied. More CON steers were present at the feed bunk during the first hour after feeding than WCGF steers, suggesting that including WCGF at 40% of the diet affected feeding behavior.  相似文献   

8.
Forty-eight bulls (335 +/- 8.6 kg of initial BW) were randomly assigned to 4 glycerin levels (0, 4, 8, and 12% of concentrate DM) with the objective of evaluating the effects of glycerin supplementation on performance, ruminal fermentation, metabolism, and carcass and meat quality in Holstein bulls fed high-concentrate diets. Concentrates were formulated to be isonitrogenous and isocaloric (assuming a glycerin ME content of 3.47 Mcal/kg of DM). Concentrate and straw were fed for ad libitum intake. Bull BW and feed consumption were recorded monthly. Additionally, rumen and blood samples were collected every month. Bulls were slaughtered after 91 d of study (460 +/- 11 kg of final BW). Hot carcass weight, carcass backfat, and conformation were recorded. The area, Warner-Bratzler shear force, and intramuscular fat content of LM were determined. Glycerin level did not affect daily concentrate intake (6.89 +/- 0.34 kg/d of DM), straw intake (1.38 +/- 0.069 kg/d of DM), total DMI (8.27 +/- 0.32 kg/d of DM), ADG (1.36 +/- 0.087 kg/d), or G:F (0.17 +/- 0.009). Similarly, rumen molar proportions of propionic, acetic, and butyric acids, and rumen liquid osmolality were unaffected by treatment. However, a decreased rumen pH (P < 0.05), and greater rumen total VFA concentration (P = 0.09), serum insulin concentration (P < 0.05), and insulin to glucose ratio (P < 0.05) were observed in bulls fed 8% glycerin in concentrate compared with those receiving 0, 4, or 12%. No changes were observed in carcass and meat quality. The ME content of glycerin (86% glycerol) can be assumed to be 3.47 Mcal/kg of DM in Holstein bulls fed high-concentrate diets. In addition, feeding concentrate containing up to 12.1% of glycerin does not lead to detrimental effects on performance, ruminal fermentation, metabolism, and carcass and meat quality variables.  相似文献   

9.
Crossbred wethers (n = 36; BW = 36.0 kg; SD = 3.4) were used to assess the time-dependent influence of supranutritional organically bound Se on Se accumulation. Four wethers were slaughtered before the trial began (d 0). The remaining wethers were fed diets containing adequate (0.2 microg of Se/g of DM) or supranutritional Se (2.9 microg of Se/g of DM; in the form of high-Se wheat grain) for 14, 28, 42, or 56 d before slaughter (four wethers per Se treatment at each slaughter day). The DMI was set at 3.1% of BW and adjusted weekly based on a targeted ADG of 150 g. Daily Se intake by wethers fed the adequate and supra-nutritional Se diets ranged from 5.3 to 5.9, and 79.0 to 95.0 microg of Se/kg of BW, respectively, and did not differ (P = 0.84 to 0.99) between slaughter day groups within Se treatment. Neither Se treatment nor Se treatment x slaughter day interactions were significant for BW, G:F, or liver, kidneys, and spleen weights (P = 0.06 to 0.84). Within the supranutritional Se treatment, Se contents of most organs and tissues from wethers slaughtered on d 14, 28, 42, and 56 were nearly twice the concentrations (P < 0.01) of wethers slaughtered on d 0. When regressed against the number of days the wethers were fed supranutritional Se, Se concentrations increased (P < 0.001) cubically in kidneys and plasma, quadratically in duodenum, lung, liver, and spleen, and linearly in heart, muscle, and wool. For total Se in kidneys, liver, and spleen, the response was quadratic (P < 0.03). Excluding skeletal muscle, heart, and wool, Se in other organs and tissues reached apparent steady-state concentrations 14 to 28 d after commencement of supranutritional Se diets. Selenium concentrations in skeletal muscle accumulated in a linear manner (P < 0.001) throughout the 56-d feeding period. High-Se grains can be used strategically to deliver supranutritional Se and rapidly enhance Se depots in sheep, a task that does not seem attainable with Se salts. Furthermore, a 100-g portion of uncooked loin (LM) from the wethers fed supranutritional Se contained 196 to 250% of the recommended Se requirement for humans.  相似文献   

10.
Although Brahman crosses constitute a large portion of US beef cattle, little information is available on their response to diverse feed resources compared with Bos taurus steers. Thus, the objectives were to evaluate genotype and diet effects on steer performance during the growing period and subsequent response to a high grain diet during the finishing period. Fifty-one steers [0 (15), 1/4 (20), 1/2 (7), and 3/4 Brahman (9), with the remaining proportion being MARC III] were allotted to 8 pens. Beginning on December 2, steers were individually fed chopped bromegrass hay (n = 26; DM = 85%, CP = 9.5%, ME = 2.19 Mcal/kg) or a corn silage-based diet (n = 25; DM = 51%, CP = 11.9%, ME = 2.75 Mcal/kg) for 119 d. All steers were then fed a high corn diet (DM = 79%, CP = 11.7%, ME = 3.08 Mcal/kg) to a target BW of 560 kg (176 d). Data were analyzed by ANOVA, with genotype, growing diet, and the 2-way interaction included. The interaction was not significant (P > 0.25). The MARC III and 1/2 Brahman steers weighed more (P < 0.01) than 1/4 or 3/4 Brahman steers initially and at the end of the growing period. Weight of bromegrass-fed (325 kg) steers was less than that of corn silage-fed (384 kg) steers at the end of the growing period. Steer ADG and intake of DM, CP, and ME were less (P = 0.087 to 0.001) for 1/4 and 3/4 Brahman than for 0 or 1/2 Brahman steers during growing, finishing, and total, but efficiency of gain did not differ (P > 0.10). Carcass weight, marbling score, quality grade (P < 0.05), and kidney fat (P = 0.06) differed among genotypes. Daily DMI (6.91 vs. 7.06 kg) was similar, but CP (0.66 vs. 0.84 kg) and ME (15.2 vs. 19.4 Mcal) intake of bromegrass fed was less (P = 0.001) than those of corn silage-fed steers. Values for DMI/gain (22.3 vs. 7.43 kg/kg), CP intake/gain (2.13 vs. 0.88 kg/kg), and ME intake/gain (48.8 vs. 20.4 Mcal/kg) were greater (P < 0.001) in bromegrass-fed than corn silage-fed steers. Over the total study, ADG was lower (0.96 vs. 1.01 kg), and DMI (7.82 vs. 7.19 kg), DMI/gain (8.21 vs. 7.10 kg/kg), and ME intake/gain (22.6 vs. 20.9 Mcal/kg) were greater (P < 0.05) in bromegrass-fed than in corn silage-fed steers. Carcass weight, dressing percent, adjusted backfat, and yield grade (P < 0.05) were greater for corn silage-fed than for bromegrass-fed steers. Feed intake and performance, but not efficiency, differed among these genotypes. Compensatory performance during finishing was insufficient to overcome reduced performance during the growing period.  相似文献   

11.
Two experiments with a randomized complete block design were conducted to determine the effects of phase feeding of CP on performance, blood urea nitrogen (BUN), manure N:P ratio, and carcass characteristics of steers fed in a feedlot. In Exp. 1, 45 crossbred steers (initial BW = 423 +/- 3.3 kg) were individually fed a diet formulated to contain 13.0% CP (DM basis) for 62 d. On d 63, the dietary CP was maintained at 13.0% or formulated to contain 11.5 or 10.0% CP until slaughter. Actual CP values were 12.8, 11.8, and 9.9%, respectively. Reducing the CP concentration of the diet did not affect ADG of steers from d 62 to 109 (P = 0.54) or over the 109-d feeding period (1.45, 1.50, and 1.49 kg/d for 13.0, 11.5, and 10.0% CP, respectively; P = 0.85). No differences (P > 0.12) among treatments were detected for BUN concentrations on d 0, 62, or 109. Gain:feed, DMI, and carcass characteristics did not differ among treatments (P > 0.10). In Exp. 2, 2 trials were conducted using 184 (initial BW = 406 +/- 2.6 kg) and 162 (initial BW = 342 +/- 1.9 kg) crossbred steers. Data from the 2 trials were pooled for statistical analysis, and trial effect was added to the statistical model. Steers were fed a diet formulated to contain 13.0% CP until reaching approximately 477 kg. When the average BW of the pen was 477 kg, diets were maintained at 13.0% CP or reduced to contain 11.5 or 10.0% CP. Actual CP values were 12.4, 11.5, and 9.3% CP for treatments 13.0, 11.5, and 10.0% CP, respectively. Reducing the CP content of the diet did not affect ADG after the diet changed (P = 0.16) or throughout the finishing period (P = 0.14). Immediately before slaughter, steers fed the 13.0% CP diet had greater (P < 0.001) BUN concentrations than steers fed the 11.5 and 10.0% CP diets. Carcasses from cattle fed the 11.5% CP diet had greater (P = 0.02) fat thickness than the 13.0 and 10.0% CP treatments, whereas carcasses from cattle fed 13.0% CP had greater (P = 0.004) marbling scores than steers fed the 11.5 or 10.0% CP diets. Other carcass characteristics, DMI, and G:F did not differ (P > 0.10) among treatments. The N:P ratio was increased with the 10.0% CP diet (P = 0.02) compared with the 11.5 or 13.5% CP treatments; however, manure composition did not differ (P > 0.10) among treatments. These results indicate that reduced CP concentration during the finishing period does not affect feedlot performance but can improve the N and P relationship in the manure.  相似文献   

12.
Twelve 0.81-ha crabgrass (Digitaria ciliaris [Retz.] Koel.) hay fields were harvested at 21, 35, and 49 d of regrowth (average phonological growth stage of 30, 51, and 56, respectively). Increased harvest interval exhibited a linear decrease (P < 0.01) in CP (14.1, 13.7, and 10.6% of DM, respectively) and increase (P < 0.01) in NDF (65.3, 70.6, and 70.2% of DM, respectively) and ADF (35.7, 38.9, and 42.7% of DM, respectively). Hays were incorporated into 3 diets that contained 20% (DM basis) crabgrass hay, ground corn (33%), and soybean hulls (32%). Diets contained 14.4, 14.4, and 13.6% CP; 1.83, 1.72, and 1.81 Mcal of NE(m)/kg; and 1.21, 1.10, and 1.17 Mcal of NE(g)/kg; respectively. Diets were fed to beef calves in 12 pens at a rate of 2.3% (DM basis) of BW in 1 experiment (n = 120, initial BW 210 +/- 4.4 kg) and ad libitum in another experiment (n = 60, initial BW 207 +/- 4.4 kg). To measure passage rate of the hay and concentrate portions of the diets, 12 heifer calves (BW = 145 +/- 4.5 kg) were individually fed at 2.3% of BW for 14 d and dosed with Dy-labeled soybean hulls and Yb-labeled hay. In situ DM digestibility of the hays and diets were determined using 3 ruminally cannulated steers (BW = 584 +/- 10.4 kg). Harvest interval did not affect (P > or = 0.11) ADG of limit-fed calves during the diet acclimation or growing phases (average 0.32 and 0.80 kg, respectively) or ADG of calves fed ad libitum (average 1.21 kg). Dry matter intake of calves fed ad libitum averaged 7.9 kg/d (3.28% of BW) and was not affected (P > or = 0.22) by harvest interval. Gain:feed was not affected (P > or = 0.20) by harvest interval (0.13 and 0.15 for limit-fed and ad libitum-fed calves, respectively). Increased harvest interval linearly increased (P < 0.01) ruminal retention time of the hay and tended (P = 0.06) to linearly increase ruminal retention time of the concentrate portions of the diet. Harvest interval linearly decreased (P < or = 0.05) the extent of degradability and effective degradability of DM and NDF of hays, but DM disappearance of the total diet did not differ (P > or = 0.35). In the conditions of this study, increasing harvest interval of crabgrass hay from 21 to 49 d had no deleterious impact on animal performance or efficiency of gain when fed to growing calves in a high-concentrate mixture.  相似文献   

13.
Twenty-eight Angus (289 +/- 3.8 kg) steers were used in a completely randomized design to evaluate the effect of isocaloric supplementation of 2 different energy sources to steers rotationally grazing tall fescue pastures for 197 d in comparison to positive and negative controls. Steers were supplemented with either corn grain (0.52% BW on a DM basis; PC) or soybean hulls plus corn oil (0.45% BW on a DM basis + 0.10% BW on an as-fed basis; PO) using Calan gates for individual intake measurement. Negative, pasture only (PA), and positive, high-concentrate control diets (85% concentrate:15% roughage on DM basis; C) were also included in the study. Steers on PC, PO, and PA treatments were managed together under a rotational grazing system, whereas C steers were fed a high-concentrate diet for the final 113 d using Calan gates. Forage DMI and apparent DM and NDF digestibility for the grazing treatments were evaluated using Cr(2)O(5) and indigestible NDF as digesta markers. Energy supplementation decreased (P = 0.02) forage DMI (% of BW) with respect to PA, but not (P = 0.58) total DMI. There were no differences (P = 0.53) among grazing treatments on apparent total DM digestibility. However, NDF digestibility was less (P < or = 0.05) in PC than in PO and PA; the latter 2 treatments did not differ (P > 0.05). Overall ADG was greater (P < 0.01) in supplemented, regardless of type, than in nonsupplemented grazing treatments. During the final 113 d, ADG was greater (P < 0.01) in C than in the grazing treatments. Overall supplement conversion did not differ (P = 0.73) between supplement types and was less (P = 0.006) than C. Carcass traits did not differ (P > 0.05) between energy sources. Dressing percentage and HCW were greater (P < 0.01) in supplemented cattle than in PA. Fat thickness and KPH percentage for PA were less (P < 0.05) than for PO but did not differ (P > 0.14) from PC. Marbling score, LM area, and quality grade did not differ (P > 0.05) between grazing treatments. Hot carcass weight for C was heavier (P < 0.001) than for pastured cattle. Quality and yield grades of C carcasses were also greater (P < 0.001) than carcasses from pastured steers. Energy supplementation, regardless of source, to grazing steers increased ADG, dressing percentage, and carcass weight compared with PA steers; however, supplemented steers had less ADG, efficiency, dressing percentage, and carcass weight compared with high-concentrate finished steers.  相似文献   

14.
Eighteen Angus steers (438 +/- 4 kg of BW) were supplemented with varying levels of corn oil (0 g/kg of BW, none; 0.75 g/kg of BW, MED; or 1.5 g/kg of BW, HI) on rotationally stocked, endophyte-free tall fescue to determine the effect of supplemental oil level on in vivo digestibility, intake, performance, and carcass traits. Pelleted cottonseed hulls were used as a carrier for the oil supplements, and all supplements were offered to steers using Calan gate feeders for individual intake determination. On d 49, each steer was dosed with a controlled-release capsule containing chromium sesquioxide, and fecal samples were obtained 12 d later over a 7-d period to estimate fecal output that, with forage, supplement, and fecal indigestible NDF concentration, was used to estimate DMI and in vivo total diet digestibility. Steers were slaughtered at the end of the 116-d grazing period, and carcass data were collected at 24 h postmortem. Total fatty acid intake linearly increased with corn oil supplementation, and forage DMI, total DMI, and total DE intake were linearly decreased (P < 0.01). The decrease in total DMI was reflected in forage substitution rates greater (P < or = 0.01) than 1, with a trend (P = 0.09) for a greater substitution rate in HI than in MED. In vivo DM, OM, and NDF digestibility were linearly decreased (P < 0.01) by corn oil supplementation. Average daily gain and final BW tended (P = 0.09) to increase linearly in response to oil level. Oil conversion (0.36 kg of BW gain/kg of corn oil) was greater (P < or = 0.05) than zero and did not differ (P = 0.15) between MED and HI. Dressing percent (P = 0.09), carcass weight (P = 0.01), and carcass backfat thickness (P = 0.01) increased linearly with oil supplementation. No treatment effect was observed for carcass LM area, KPH percentage, marbling score, or yield grade (P > 0.10). Oil supplementation to grazing steers linearly reduced forage DMI intake; however, animal performance was maintained and tended to be greater for oil-supplemented cattle. Oil supplementation increased carcass fat thickness and weight without altering other carcass quality parameters.  相似文献   

15.
A 2-yr study was conducted using a 3 × 2 factorial arrangement of treatments to evaluate the effects of feeding dried distillers grains throughout a beef production system on performance, carcass characteristics, and fatty acid profile of beef. Factors were wheat pasture supplement [no supplement (CON), dry-rolled corn (DRC), and dried distillers grains (DDG)] fed at 0.5% BW daily and finishing diet [steam-flaked corn based diet containing 0 (SFC) or 35% (35DDG) DDG]. Each year, 60 preconditioned Hereford steers (initial BW = 198 kg ± 3) grazed winter wheat pasture with or without supplement. Body weight gain was 8% greater for steers consuming DDG supplement compared with CON and DRC steers (P < 0.01). After the grazing period, pastures within supplement treatment were randomly assigned to SFC or 35DDG. There was no supplement by finishing diet interaction for any performance or carcass variable of interest (P ≥ 0.41). Previous supplementation on winter wheat affected BW at feedlot entry and adjusted G:F (P ≤ 0.05) but had no effect on finishing ADG or carcass traits (P ≥ 0.12). On a carcass-adjusted basis, steers consuming 35DDG had reduced final BW, ADG, G:F, and total BW gain throughout the system (P ≤ 0.04) compared with SFC. Additionally, steers consuming 35DDG had reduced HCW, dressing percent, and fat thickness (P ≤ 0.03) compared with SFC. There was a supplement by finishing diet interaction (P = 0.02) for 18:0, in which cattle supplemented with DRC and fed the SFC finishing diet had the lowest concentration of 18:0 but DRC supplemented steers fed the 35DDG diet had the greatest concentration. The interaction was not significant (P ≥ 0.18) for other fatty acids. Main effects of supplement and finishing diet affected (P ≤ 0.05) several other fatty acids of interest, particularly 18:2, which is associated with reduced flavor-stability of beef. The use of DDG as a supplement to wheat pasture resulted in greater ADG during wheat grazing and heavier BW at feedlot entry, but final BW was not different from CON or DRC groups. Feeding DDG at 35% DM in steam-flaked corn-based finishing diets reduced ADG, G:F, and HCW, and affected the fatty acid composition of beef.  相似文献   

16.
Twenty-four beef steers (predominantly Angus x Hereford, 14 to 18 mo of age, 403 +/- 3 kg of BW), were housed and fed in individual pens for about 122 d. Twelve steers came from a herd that had been selected for growth (high growth; HG) and the other 12 from a herd with no selection program (low growth; LG). Another 6 steers (3 from each group) were slaughtered at the beginning to obtain the initial composition. All steers were fed the same corn-based diet (3.06 Mcal of ME/kg of DM, 13.6% CP) on an ad libitum basis. Two weeks before slaughter, total urine was collected for 5 d for estimation of 3-methylhistidine excretion and myofibrillar protein breakdown rates. Compared with LG steers, HG steers had less initial BW but greater final BW, DMI (7.52 vs. 6.37 kg/d), ADG (1.33 vs. 0.853 kg/d), G:F (0.176 vs. 0.133 kg/kg), ME intake (0.233 vs. 0.201 Mcal x kg of BW(0.75) x d(-1)), and retained energy (RE; 0.0711 vs. 0.0558 Mcal x kg of BW(0.75) x d(-1)); gained more fat (676 vs. 475 g/d); and tended to gain more whole body protein (100 vs. 72 g/d), with no difference in residual feed intake (RFI). Estimated net energetic efficiency of gain (k(g)) and ME for maintenance (ME(m)) did not differ between the 2 groups, averaging 0.62 and 0.114, respectively. The HG steers had greater HCW (350 vs. 329 kg), backfat (16.1 vs. 11.6 mm), and yield grades (3.53 vs. 2.80), with a similar dressing percent, KPH fat, LM area, and marbling score. Skeletal muscle protein gain (70.2 vs. 57.6 g/d) and fractional protein accretion rate (0.242 vs. 0.197%/d) tended to be greater in HG than in LG steers. Steers were classified into low (-0.367 kg/d) and high (0.380 kg/d) RFI classes. Compared with the high RFI steers, low RFI steers consumed less DM (6.61 vs. 7.52 kg/d) and ME (0.206 vs. 0.234 Mcal x kg of BW(0.75) x d(-1)) and tended to gain less fat (494 vs. 719 g/d), but were similar for initial and final BW, ADG, G:F, protein gain, HCW, dressing percent, backfat, KPH fat, LM area, marbling score, and yield grade, as well as for all observations related to myofibrillar protein metabolism. Residual feed intake may be positively [corrected] correlated with ME for maintenance. The maintenance energy requirement increased by 0.0166 Mcal x kg(-0.75) x d(-1) for each percentage increase in fractional protein degradation rate, confirming the importance of this process in the energy economy of the animal.  相似文献   

17.
One hundred forty-three Angus x Simmental crossbred steers (initial BW = 155.1 +/- 4.5 kg) were used in a 2-yr study (yr 1, n = 67; yr 2, n = 76) to determine the effects of weaning age, implant regimen, and the weaning age x implant regimen interaction on steer growth and performance, organ mass, carcass characteristics, and cooked beef palatability. Steers were early-weaned at an average age of 108 d (EW) or normally weaned at an average age of 202 d (NW) and allotted by weight to an aggressive or nonaggressive implant regimen. On their respective weaning dates, EW and NW steers were penned individually and fed a grain-based diet until they were slaughtered at a final BW of 546 kg. A subsample of steers (n = 2 per treatment) were slaughtered at 254 kg. At 254 kg, EW steers implanted with the aggressive implant regimen had 64% greater backfat depth than those implanted with the nonaggressive implant regimen; conversely, NW steers implanted with the aggressive implant regimen had 52% lower backfat depth than those implanted with the nonaggressive implant regimen (weaning status x implant regimen interaction; P < 0.01). A similar interaction was observed for empty visceral organ weights. Early-weaned steers were younger (354.7 vs 372.4 d; P < 0.01) at final slaughter but were in the feedlot longer (246.5 vs 169.6 d; P < 0.01) than NW steers, whereas the aggressive implant regimen decreased days fed (203.3 vs 212.7; P < 0.07) compared to the nonaggressive implant regimen. Overall ADG was greater for EW than for NW steers (1.61 vs 1.50 kg/d; P < 0.01) and for the aggressive compared with the nonaggressive implant regimen (1.59 vs 1.52 kg/d; P < 0.02). Early-weaned steers consumed less DM per day (7.4 vs 8.5 kg/d; P < 0.01) and were more efficient (0.217 vs 0.208 kg/kg; P < 0.02) but consumed more total DM (1,817 vs 1,429 kg; P < 0.01) than NW steers while in the feedlot. Implant regimen did not affect DMI (P > 0.37) or feed efficiency (P > 0.15). Weaning status did not affect carcass characteristics (P > 0.14), final empty body composition (P > 0.25), or final longissimus muscle composition (P > 0.18); however, steaks from EW steers had higher (P < 0.05) taste panel tenderness and juiciness ratings than steaks from NW steers. The aggressive implant regimen decreased yield grade (P < 0.02), but did not affect quality grade (P > 0.86) compared to the nonaggressive implant regimen. Placing early-weaned steers on an aggressive implant regimen is a viable management option.  相似文献   

18.
To compare the effects of time of daily protein supplementation on grazing behavior, forage intake, digesta kinetics, ruminal fermentation, and serum hormones and metabolites, 12 ruminally cannulated Holstein steers (449 and 378 kg average initial and final BW, respectively) were allotted to three groups. Treatments consisted of CON = no supplement, AM = cottonseed meal (.25% of BW) at 0600, and PM = cottonseed meal (.25% of BW) at 1200. Steers grazed a dormant (1.1% N) intermediate wheatgrass (Thinopyrum intermedium Host) pasture. Sampling trials occurred in December, January, and February. Supplementation altered (P = .01) time spent grazing; CON steers grazed approximately 1.5 h longer than supplemented steers. Supplemented steers lost less (P = .02) BW (-40 kg) than CON steers (-75 kg) did. Supplementation did not alter (P greater than .15) forage OM intake; however, total OM intake was greater (P = .01) for supplemented steers (22.3 g/kg of BW) than for CON (18.4 g/kg of BW) steers. Supplementation did not affect (P greater than .15) digesta kinetics. Extent of in situ NDF (96 h) and rate (%/h) of disappearance for supplemented steers was greater (P = .01) than for CON steers. Across all periods, ruminal NH3 N and total VFA concentrations were lower (P = .01) for CON steers than for supplemented steers. Serum insulin (ng/mL) concentration was lower (P = .03) and concentration of serum growth hormone (ng/mL) was higher (P = .02) for CON steers than for supplemented steers. Cottonseed meal supplementation enhanced utilization of intermediate wheatgrass; however, supplementation time had minimal effects on the variables measured.  相似文献   

19.
A study was conducted to evaluate feed intake, ADG, carcass quality, eating behavior, and blood metabolites in feedlot beef steers fed diets that varied in proportion of wheat dried distillers grains with solubles (DDGS) replacing barley grain or barley silage. Two hundred crossbred steers (BW = 489 ± 30 kg) were blocked by BW and randomly allotted to 20 pens (5 pens per treatment). Steers were fed 1 of 4 diets: control without DDGS (CON), 25% (25DDGS), 30% (30DDGS), or 35% (35DDGS) wheat DDGS (DM basis). The CON diet consisted of 15% barley silage and 85% barley-based concentrate; the 3 wheat DDGS diets were formulated by substituting 20% barley grain and 5, 10, or 15% silage, respectively, with 25, 30, or 35% wheat DDGS so that the 35DDGS diet contained no silage. The diets were formulated such that wheat DDGS was substituted for both barley grain and barley silage to evaluate whether wheat DDGS can be fed as a source of both energy and fiber in feedlot finishing diets. Dry matter intake of steers fed 25DDGS was greater (P < 0.01), but final BW, ADG, and G:F were not different compared with steers fed CON diet. Carcass characteristics and liver abscess score were not different between CON and 25DDGS. Steers fed 25DDGS had longer eating time (min/d; P < 0.01), greater meal frequency (P < 0.04), but a slower eating rate (P < 0.04). Replacing barley silage with increasing amounts of wheat DDGS (from 25DDGS to 35DDGS) linearly reduced (P < 0.01) DMI. Final BW, ADG, and G:F were not affected by increasing amounts of wheat DDGS. Carcass traits were not different, whereas liver abscess scores linearly (P < 0.01) increased as more barley silage was replaced by wheat DDGS. Eating time (min/d) and duration of each meal linearly (P < 0.02) decreased, whereas eating rate (min/g of DM) linearly (P < 0.01) increased with increasing replacement of barley silage. Blood urea N was doubled (P < 0.01) compared with CON by inclusion of wheat DDGS. Results indicate that wheat DDGS can be used effectively in feedlot diets, decreasing the need for barley grain or silage without negatively affecting growth performance and carcass characteristics. A reduction in the amount of roughage required to maintain growth performance is a potential advantage in feedlot operations because forage is costly and often of limited availability. Thus, DDGS can be a possible alternative as long as they are available and cost effective; however, increased incidence of liver abscess and increased N content of manure need to be considered when greater amounts of wheat DDGS are included in finishing diets.  相似文献   

20.
In Exp. 1, 240 beef steers (initial BW = 332.8 kg) were used to determine the effects of Lactobacillus acidophilus (LA) plus Propionibacterium freudenreichii (PF) on performance, carcass, and intestinal characteristics; serum IgA concentrations; and the prevalence of Escherichia coli O157 (EC). Cattle were fed a steam-flaked corn-based, 92% concentrate diet, and the four direct-fed microbial (DFM) treatments (12 pens/treatment) included in a randomized complete block design were as follows: 1) control, lactose carrier only (CON); 2) 1 x 10(9) cfu of LA NP51 plus 1 x 10(6) cfu of LA NP45 plus 1 x 10(9) cfu of PF NP24 per animal daily (LA45-51H); 3) 1 x 10(9) cfu of LA NP51 plus 1 x 10(9) cfu of PF NP24 per animal daily (LA51); and 4) 1 x 10(6) cfu of LA NP51 plus 1 x 10(6) cfu of LA NP45 plus 1 x 10(9) cfu of PF NP24 per animal daily (LA45-51L). No differences (P > 0.10) were detected for pen-based performance data. The average lamina propria thickness for LA51 and LA45-51H steers was less (P = 0.02) than the average for CON and LA45-51L steers. Moreover, LA51 and LA45-51H steers had a lower (P = 0.06) prevalence of EC shedding than CON and LA45-51L steers. In Exp. 2, 660 steers fed 91% concentrate, steam-flaked corn-based diets were used to determine the effects of the following DFM treatments (10 pens/treatment) on performance, carcass, and intestinal characteristics: 1) control, lactose carrier only (CON); 2) 5 x 10(6) cfu of LA NP51 plus 5 x 10(6) cfu of LA NP45 plus 1 x 10(9) cfu of PF NP24 per animal daily (LA45-51L); and 3) 1 x 10(9) cfu of LA NP51 plus 5 x 10(6) cfu of LA NP45 plus 1 x 10(9) cfu of PF NP24 per animal daily (LA45-51H). Steers were from two weight groups (WG). One group (SDOF; BW at arrival = 351.5 kg) had grazed before arrival, and the other group (LDOF; BW at arrival = 314 kg) had been in a grower yard. A split plot was used with WG as the whole-plot factor and DFM in the split plot. There was an interaction of WG and DFM for ADG (P = 0.05) and for carcass-adjusted ADG (P = 0.08). The simple-effect ADG and carcass-adjusted ADG means for DFM treatments differed (P < or = 0.01) between WG classifications. Within SDOF, ADG for CON and LA45-51L did not differ (P = 0.70), but both were less (P < or = 0.08) than for LA45-51H. Overall, these data indicate that live cultures of LA plus PF did not greatly affect feedlot performance and carcass characteristics. Some of the DFM used decreased fecal EC shedding, which might be related to the results for ileal lamina propria thickness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号