首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 0 毫秒
1.
The effectiveness of curing oranges and lemons at 33 degrees C for 65h followed by storage under ambient and cold-storage conditions was investigated. This treatment effectively reduced the incidence of Penicillium digitatum (Pers) Sacc and P italicum Wehmer decay on inoculated and naturally infected oranges and lemons stored at 20 degrees C for 7 days. However, it failed to control green and blue mould infections on fruits placed in long-term cold storage, except green mould on oranges, which was effectively controlled. Dipping fruits in a sodium carbonate solution (20 g litre(-1)) for 2.5 min following a curing treatment at 33 degrees C for 65 h satisfactorily reduced green and blue mould incidence during subsequent long-term storage at 4 degrees C on oranges and at 10 degrees C on lemons. The efficacy was greater on injured fruits inoculated after the combination of treatments was applied, achieving a 60-80% reduction in decay in comparison with the curing treatment alone in all cases. A significant reduction of blue mould was also observed on fruits inoculated both before the treatments and on those re-inoculated after the treatments, demonstrating both protectant and eradicant activity. Thus, combining curing at 33 degrees C for 65 h with sodium carbonate treatment effectively controlled these post-harvest diseases on artificially inoculated citrus fruits and protected against re-infection. With naturally inoculated lemons, curing followed by sodium carbonate significantly reduced both green and blue mould incidence, but was not superior to curing alone. With naturally infected oranges, curing significantly reduced blue mould, but decay was not reduced further when followed by sodium carbonate treatment.  相似文献   

2.
Ammonium molybdate was tested as a potential fungicide for use in apples (cv Golden Delicious) against blue and grey mould, important post‐harvest diseases of pome fruits. In tests in vivo at 20 °C, ammonium molybdate (15 mM ) reduced lesion diameters of Penicillium expansum, Botrytis cinerea and Rhizopus stolonifer by 84%, 88% and 100% respectively. When apples treated with ammonium molybdate were stored at 1 °C for three months, a significant reduction in severity and incidence of P expansum and B cinerea was observed in both years of study (1998 and 1999). In the second year of the experiment the reduction in disease severity was greater than 88% for both pathogens, and the level of control was similar to, or greater than, that observed with the fungicide imazalil. When ammonium molybdate was applied as a pre‐harvest treatment, a significant reduction in blue mould decay was observed after three months in cold storage. In vitro, ammonium molybdate greatly inhibited spore germination of P expansum and B cinerea, although better inhibition was obtained against grey mould. Ammonium dimolybdate, sodium molybdate and potassium molybdate were also tested in vitro in comparison with ammonium molybdate as inhibitors of spore germination, but only ammonium molybdate inhibited spore germination by more than 50%. © 2001 Society of Chemical Industry  相似文献   

3.
The potential of using Pantoea agglomerans (strain CPA-2) alone, or in combination with sodium bicarbonate or sodium carbonate solutions, for control of Penicillium digitatum (green mold) and Penicillium italicum (blue mold) on oranges was investigated under ambient (20 °C) and cold storage (3 °C) conditions. P. agglomerans controlled both pathogens on oranges at 2 × 108 cfu ml-1. The biocontrol agent was found to be completely tolerant to 2% sodium bicarbonate at room temperature, although its culturability was reduced by > 1000-fold after 30 min in 2% sodium carbonate. The efficacy of P. agglomerans for control of green mold was improved when combined with sodium bicarbonate, resulting in complete and 97.6% reduction of decay incidence at 3 °C and 20 °C, when compared to untreated controls. Satisfactory results were also obtained with the combined treatment for control of blue mold. P. agglomerans grew well inside wounds on oranges at both 20 °C and 3 °C. In contrast, it showed a reduced growth on the surface of intact fruit. Sodium bicarbonate at 2% concentration did not noticeably affect antagonist population development. Thus, use of bicarbonate treatment at 2% followed by the antagonist P. agglomerans CPA-2 could be an alternative to chemicals for control of postharvest diseases on oranges.  相似文献   

4.
5.
The yeast Pichia anomala strain K was selected in Belgium from the apple surface for its antagonistic activity against post-harvest diseases of apples. The efficacy of this strain against P. expansum was evaluated in the laboratory in three scenarios designed to mimic practical conditions, with different periods of incubation between biological treatment, wounding of fruit surface, and pathogen inoculation. Higher protection levels and higher final yeast densities were obtained when the applied initial concentration was 1 × 108 cfu ml−1 than when it was only 1 × 105 cfu ml−1. The protection level correlated positively with the yeast density determined in wounds and was influenced by apple surface wetness. In orchard trials spanning two successive years, biological treatment against P. expansum, based on a powder of P. anomala strain K (1 × 107 cfu ml−1), β-1,3-glucans (YGT 2 g l−1), and CaCl2.2H20 (20 g l−1), was applied to apples pre- or post-harvest under practical conditions and its effect compared with standard chemical treatments. The first year, the highest reduction (95.2%) against blue decay was obtained by means of four successive fungicide treatments and the next-highest level (87.6%) with pre-harvest high-volume spraying of the three-component mixture 12 days before harvest. The second year, the best results were obtained with post-harvest Sumico (carbendazim 25% and diethofencarb 25%) treatment and post-harvest biological treatment, both by dipping the apples, 88.3 and 56.3% respectively. A density threshold of 1 × 104 cfu cm−2 of strain K on the apple surface seemed to be required just after harvest for high protective activity, whatever the method and time of application. In the case of pre-harvest biological treatments, variations in meteorological conditions between the 2 years may have considerably affected strain K population density and its efficacies.  相似文献   

6.
The effects of post‐harvest curing and storage temperature on severity of black dot, caused by Colletotrichum coccodes, were investigated for potato crops grown for different crop durations (days from 50% emergence to harvest) in soils that posed a low, medium and high risk of disease. In field trials over four growing seasons (2005–8), black dot severity at harvest increased with increasing crop duration, within the range 103–146 days from 50% emergence to harvest (< 0.05). In field trials over three growing seasons (2006–8), black dot severity on tubers at harvest increased significantly with increasing soil inoculum in each year, within the range 43–4787 pg C. coccodes DNA/g soil (< 0.05). Storage trials were conducted to measure the influence of accumulated post‐harvest temperature on black dot. In 2005, no difference in black dot severity was observed on tubers stored for 20 weeks at 2.5 and 3.5 °C. In 2006 (but not 2007), increasing the duration of curing after harvest from 4 to 14 days increased black dot severity on tubers from 8.9 to 11.2% (P < 0.01) in long duration crops (>131 days after 50% emergence) grown under high (>1000 pg C. coccodes DNA/g soil) soil inoculum. The number of days of curing did not affect disease severity for shorter duration crops grown at high soil inoculum, or on crops grown at medium or low (100–1000 and <100 pg C. coccodes DNA/g soil, respectively) soil inoculum concentrations. Soil inoculum and crop duration together provided a reasonable prediction of black dot severity at harvest and after a 20‐week storage period.  相似文献   

7.
In field experiments conducted near Stoneville, MS, USA, in 2000 and 2001, the bioherbicidal fungus, Myrothecium verrucaria (Alb. & Schwein.) Ditmar: Fr., was tested alone and in combination with a glyphosate ( N -[phosphonomethyl]glycine) product for controlling natural infestations of the invasive vines, redvine ( Brunnichia ovata [Walt.] Shinners) and trumpetcreeper ( Campsis radicans [L.] Seem. ex Bureau). After 12 days, redvine and trumpetcreeper were controlled by 88% and 90%, respectively, through a synergistic interaction between the fungus and the herbicide, glyphosate. The disease symptomatology was characterized by rapid necrosis of the leaf and stem tissues, with mortality occurring within 72 h. Neither glyphosate alone, nor M. verrucaria alone, controlled these weeds at commercially acceptable levels (≥80%). No visual disease or herbicide damage occurred to the soybean in the treated test plots 12 days after planting. These results suggest that some formulations of glyphosate, mixed with M. verrucaria , can effectively control redvine and trumpetcreeper.  相似文献   

8.
9.
稻糠与浮萍控制稻田杂草和稻纹枯病初步研究   总被引:8,自引:1,他引:8  
温室盆栽和田间小区试验研究了稻糠、稻草糠、浮萍和满江红对稻田主要杂草和水稻纹枯病的控制作用,以及对水稻生长及产量的影响。结果表明,单独施用稻糠、稻草糠、浮萍和满江红对水稻分蘖、株高、生物量和产量无显著影响,但可明显抑制稗草的萌发、降低其生物产量;对移栽的莎草、鸭舌草、牛毛毡的株高、鲜重控制效果不一。稻糠加浮萍可显著提高对主要杂草和水稻纹枯病的控制效果,且对水稻无明显影响。  相似文献   

10.
Witches’ broom disease (WBD), caused by ‘Candidatus Phytoplasma aurantifolia’, is a serious disease of acid lime (Citrus aurantifolia) in Oman and the UAE. However, little is known about the distribution of phytoplasma and the expression of WBD symptoms in different geographical locations. A survey was carried out in 18 districts in Oman and the UAE covering 143 orchards and 5823 acid lime trees. ‘Candidatus Phytoplasma aurantifolia’ was detected in acid lime in all the 18 surveyed districts. However, the development of typical symptoms of WBD was only observed in 12 districts. Districts in which the phytoplasma was present but symptoms were not expressed were located either in desert areas or in areas characterized by semitropical conditions. Phylogenetic analysis of 16 phytoplasma isolates from trees developing WBD symptoms and six phytoplasma isolates from trees with no WBD symptoms showed that all isolates share an identical 16S rRNA sequence, belonging to subgroup II‐B. Quantitative PCR analysis showed that the concentration of phytoplasma is significantly higher (8800–801 000 copies) in leaves developing WBD symptoms compared to 2–268 copies in symptomless leaves from the same trees and 8–874 copies in acid lime trees from areas where disease symptoms were not expressed. The lack of expression of WBD symptoms under certain environmental conditions may suggest that symptom development and phytoplasma are affected by certain unfavourable environmental conditions. These findings could provide a basis for managing WBD through encouraging lime cultivation under climatic conditions less conducive to WBD symptom expression.  相似文献   

11.
12.
Leaf populations ofTrichoderma were studied on tomato, pepper and geranium plants incubated under various conditions. Treatments involved high (>90%) or lower (75–85%) relative humidity (r.h.), temperatures of 15±3°C or 25±3°C, and soil fertilization with formulations of 2,2,5%, 3,3,8% or 5,3,8% NPK. The size of populations on leaves treated with the fungusTrichoderma harzianum differed according to plant species, leaf age, length of incubation, atmospheric conditions, and plant nutrition.T. harzianum populations were promoted in many cases by high r.h. and by 3,3,8% NPK. Interactions of introduced populations ofBotrytis cinerea with populations ofT. harzianum on tomato leaves under combinations of the above conditions showed that the population ofB. cinerea wasca tenfold lower in the presence ofT. harzianum than in the absence of this fungus.  相似文献   

13.
14.
The sterol biosynthesis inhibitors bromuconazole and difenoconazole and tank mixes of each fungicide with captan were applied to apples and evaluated as controls for moldy-core and fruit decay caused by Alternaria alternata. Effectiveness of a mixture of bromuconazole and captan in controlling colonization by the fungus was also evaluated. Decay formation by A. alternata on mature detached fruits was partially inhibited by bromuconazole at 0.5 μg ml−1 and was completely inhibited at 50 μg ml−1; it was significantly affected by either bromoconazole at 5 μg ml−1 or captan at 1,250 μg ml−1, and was completely inhibited by their mixture. In general, three foliar applications of bromuconazole or difenoconazole in the field, during the bloom period, reduced the numbers of infected fruits by 40–60% compared with untreated control trees. However, tank mixes of either fungicide with captan improved control of moldy-core in fruits at harvest. Tank mixtures of bromuconazole and captan also significantly reduced the percentage of fruits colonized by A. alternata when sampled at various days after full bloom. Artificial inoculations in the orchard at full bloom did not change the inhibitory effects of the tank mixtures. Large-scale demonstration trials in commercial orchards supported these findings. The inhibitory effects of tank mixes on decay development in detached fruits, and on moldy-core in the field indicate that a control programme based on mixtures of either bromuconazole or difenoconazole with captan during the bloom period can effectively reduce moldy-core on Red Delicious apples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号