首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thermoplastic films from wheat proteins   总被引:1,自引:0,他引:1  
We show that the wheat proteins gluten, gliadin and glutenin can be compression molded into thermoplastic films with good tensile strength and water stability. Wheat gluten is inexpensive, abundantly available, derived from renewable resource and therefore widely studied for potential thermoplastic applications. However, previous reports on developing thermoplastics from wheat proteins have used high amounts of glycerol (30-40%) and low molding temperature (90-120 °C) resulting in thermoplastics with poor tensile properties and water stability making them unsuitable for most thermoplastic applications. In this research, we have developed thermoplastic films from wheat gluten, gliadin and glutenin using low glycerol concentration (15%) but high molding temperatures (100-150 °C). Our research shows that wheat protein films with good tensile strength (up to 6.7 MPa) and films that were stable in water can be obtained by choosing appropriate compression molding conditions. Among the wheat proteins, wheat gluten has high strength and elongation whereas glutenin with and without starch had high strength and modulus but relatively low elongation. Gliadin imparts good extensibility but decreased the water stability of gluten films. Gliadin films had strength of 2.2 MPa and good elongation of 46% but the films were unstable in water. Although the tensile properties of wheat protein films are inferior compared to synthetic thermoplastic films, the type of wheat proteins and compression molding conditions can be chosen to obtain wheat protein films with properties suitable for various applications.  相似文献   

2.
3.
Wheat gluten films were cast from aqueous dispersions containing 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS) as cross-linking reagents and glycerol as a plasticizer. Cross-linking was carried out to improve film properties such as water sensitivity and tensile strength. Films were characterized by measuring protein and water content, amount of amino groups, swelling of the films in water, and mechanical properties such as tensile strength (σmax) and strain at maximum stress ( at σmax). The use of different ratios of EDC to COOH resulted in different tensile properties and different percentage of swelling, which was attributed to the degree of cross-linking in the film. At a ratio of EDC/NHS/COOH=0.5/0.5/1, films had a water content of 10–11.5% and showed the highest σmax (2.8±0.9 MPa), the lowest at σmax (142±67%), and the lowest swelling (46%) compared to σmax=1.7±0.4 MPa, at σmax=257±63%, and swelling=68% for native gluten films.  相似文献   

4.
In the present study, blue corn flour films were developed. The cereal grain’s total composition (excluding the pericarp) is used to obtain the films. The plasticizing effects of two different polyols such as glycerol and sorbitol on the mechanical, thermal, and microstructural properties of flour films were researched. The results showed that films plasticized with sorbitol had better mechanical properties and less affinity for water than those plasticized with glycerol. The sorbitol-plasticized films were more rigid and did not lose their integrity when immersed in water. The ATR-FTIR spectra of blue corn flour plasticizer with sorbitol showed the presence of the additional band at 1745 cm−1 characteristic of the vibrational carbonyl peak, which confirms the chemical linkages between sorbitol and a polymeric matrix. The effect of the plasticizer on the glass transition temperature (Tg) was characterized using differential scanning calorimetry (DSC). Tg decreased as the plasticizer content increased. Plasticized glycerol films showed lower Tg values than those with sorbitol. SEM observations showed that it was necessary to add plasticizer to maintain film integrity. The sorbitol-plasticized flour films revealed better adhesion between phases, and these films showed a compact structure.  相似文献   

5.
Environmentally friendly green composites were prepared by conventional blending wheat gluten (WG) as matrix, methylcellulose (MC) microfibers as filler and glycerol as plasticizer followed by compression molding of the mixture at 127 °C to crosslink the matrix. Morphology, dynamic mechanical analysis (DMA), tensile properties (Young’s modulus E, tensile strength σb and elongation at break ?b), and moisture absorption (MA) and weight loss (WL) in water as well as thermogravimetric analysis (TGA) were evaluated in relation to MC content. It was found that addition of MC microfibers can significantly improve E and σb of the composite, which is accompanied by rises in glass transition temperatures of the WG matrix. Influences of MC content on the thermal decomposition and gluten solubility (GS) in water are also discussed.  相似文献   

6.
We report a novel method of developing thermoplastics from steamed soyproteins with good tensile properties. Soyproteins are generally made thermoplastic by using plasticizers or by chemical modifications. However, soyprotein thermoplastics developed using plasticizers have poor tensile properties when wet and chemical modifications make soyproteins expensive and/or environmentally unfriendly. In this research, soyproteins were steamed at various temperatures and time and the steamed proteins were compression molded into thermoplastic films. The effect of steaming on the molecular weight and thermal behavior and tensile properties of the films at different steaming and compression conditions were studied. Steaming substantially reduced the molecular weights, decreased the melting temperature and increased the melting enthalpy. Thermoplastics developed from steamed soyproteins had good tensile strength (5 MPa) and modulus (193 MPa) but moderate elongation (14.5%). Although glycerol was necessary to improve the thermoplasticity, soyprotein thermoplastics developed in this research required lower glycerol to form thermoplastic films compared to films reported in literature. Steaming of soyproteins shows promise to be an inexpensive and environmentally friendly process to develop biothermoplastics.  相似文献   

7.
Soyprotein-jute fiber composites developed using water without any chemicals as the plasticizer show much better flexural and tensile properties than polypropylene-jute composites. Co-products of soybean processing such as soy oil, soyprotein concentrate and soy protein isolates are inexpensive, abundantly available and are renewable resources that have been extensively studied as potential matrix materials to develop biodegradable composites. However, previous attempts on developing soy-based composites have either chemically modified the co-products or used plasticizers such as glycerol. Chemical modifications make the composites expensive and less environmentally friendly and plasticizers decrease the properties of the composites. In this research, soyprotein composites reinforced with jute fibers have been developed using water without any chemicals as plasticizer. The effects of water on the thermal behavior of soyproteins and composite fabrication conditions on the flexural, tensile and acoustic properties of the composites have been studied. Soyprotein composites developed in this research have excellent flexural strength, tensile strength and tensile modulus, much higher than polypropylene (PP)-jute fiber composites. The soyprotein composites have better properties than the PP composites even at high relative humidity (90%).  相似文献   

8.
A novel phosphorus-containing flame retardant plasticizer (PFRP) derived from castor oil acid methyl ester (COME) was synthesized to substitute dioctyl phthalate (DOP) for plasticizing polyvinyl chloride (PVC) products. The chemical structures of PFRP were confirmed by fourier transform infrared spectroscopy (FTIR) and 1H nuclear magnetic resonance (1H NMR). Meanwhile, the plasticizing effect, flammability and thermal stability of plasticized PVC films were investigated by dynamic mechanical analyzer (DMA), limiting oxygen index (LOI) test, scanning electron microscope (SEM) and thermogravimetric analysis (TGA). As the PFRP content increasing from 0 wt% to 50 wt% amount of plasticizers, the plasticizing efficiency and the mechanical properties showed a slightly decreasing tendency compared with that of DOP, while the LOI value of plasticized PVC increased remarkably from 21.5 % to 25.2 %, showing a combined plasticizing efficiency and flame retardancy. SEM and TGA analysis indicated that PFRP had little effect on thermal stability but was effective to promote the formation of compact carbon residue.  相似文献   

9.
The present work aims to study the influence of reducing agents of sodium bisulfite, sodium sulfite and thioglycolic acid on the equibiaxial extensional deformation of glycerol plasticized wheat gluten and the properties of gluten bioplastics thermo-molded at 125 °C. Moisture absorption, weight loss and water uptake, uniaxial tensile properties (Young's modulus, tensile strength, elongation at break and tensile set), and morphology observations were performed to characterize the physical properties of the thermo-molded gluten bioplastics. The results showed that reducing agents facilitated the viscous flow and restrained the elastic recovery of the plasticized gluten while not hindering the crosslinking reaction of gluten proteins during thermo-molding. On the contrary, reducing agents do not significantly influence moisture absorption, Young's modulus, tensile strength and the morphology of the gluten bioplastics thermo-molded at 125 °C. It is shown that reducing agents are highly effective for tailoring the flow viscosity of the plasticized gluten dough and the mechanical properties of thermo-molded gluten bioplastics.  相似文献   

10.
The present work aims to study the influence of reducing agents of sodium bisulfite, sodium sulfite and thioglycolic acid on the equibiaxial extensional deformation of glycerol plasticized wheat gluten and the properties of gluten bioplastics thermo-molded at 125 °C. Moisture absorption, weight loss and water uptake, uniaxial tensile properties (Young's modulus, tensile strength, elongation at break and tensile set), and morphology observations were performed to characterize the physical properties of the thermo-molded gluten bioplastics. The results showed that reducing agents facilitated the viscous flow and restrained the elastic recovery of the plasticized gluten while not hindering the crosslinking reaction of gluten proteins during thermo-molding. On the contrary, reducing agents do not significantly influence moisture absorption, Young's modulus, tensile strength and the morphology of the gluten bioplastics thermo-molded at 125 °C. It is shown that reducing agents are highly effective for tailoring the flow viscosity of the plasticized gluten dough and the mechanical properties of thermo-molded gluten bioplastics.  相似文献   

11.
Reduced glutathione (GSH) commonly exists in wheat flour and has remarkable influence on gluten properties. In this study, effect of GSH on the gelatinization and retrogradation of wheat flour and wheat starch were investigated to better understand the GSH-gluten-starch interactions in wheat flour. Compared with wheat starch, wheat flour showed significant decreases in peak and final viscosity, and gelatinization onset temperature with increasing GSH concentration. GSH depolymerized gluten and thereby broke down the protein barrier around starch granules to make the starch easily gelatinized. However, the interaction between GSH and wheat starch restrained starch swelling. GSH addition resulted in weakened structure with higher water mobility in freshly gelatinized wheat flour dispersions but decreased water mobility in wheat starch dispersions. After storage at 4 °C for 7 d, GSH increased elasticity and retrogradation degree in wheat flour dispersions but retarded retrogradation in wheat starch dispersions. The results indicated that GSH promoted retrogradation of wheat flour, which mainly attributed to the depolymerized gluten embedding in the leached starch chains, and inhibiting the re-association of amylose, and subsequently promoted the starch intermolecular associations and starch retrogradation. This study could provide valuable information for the control of the quality of wheat flour-based products.  相似文献   

12.
Waxy wheat flour (WWF) was substituted for 10% regular wheat flour (RWF) in frozen doughs and the physicochemical properties of starch and protein isolated from the frozen doughs stored for different time intervals (0, 1, 2, 4 and 8 weeks) were determined to establish the underlying reasons leading to the effects observed in WWF addition on frozen dough quality. Using Nuclear Magnetic Resonance (NMR), Differential Scanning Calorimeter (DSC) and X-ray Diffraction (XRD) among others, the gluten content, water molecular state, glutenin macropolymer content, damaged starch content, starch swelling power, gelatinization properties, starch crystallinity and bread specific volume were measured. Compared to RWF dough at the same frozen storage condition, 10% WWF addition decreased dry gluten and glutenin macropolymer contents and T23 proton density of frozen dough, but increased the wet gluten content, T21 and T22 proton density. 10% WWF addition also decreased damaged starch content, but increased starch swelling power, gelatinization temperature and enthalpy, crystallinity of starch and bread specific volume of frozen dough. Results in the present study showed that the improvement observed due to WWF addition in frozen dough bread quality might be attributed to its inhibition of redistribution of water molecules bound to proteins, increase in damaged starch content and decrease in starch swelling power.  相似文献   

13.
不同水氮处理对济麦20蛋白组分和加工品质的影响   总被引:2,自引:0,他引:2  
为了明确水氮处理时小麦品质的影响,在防雨棚肥水控制池条件下研究了不同水氮处理对强筋小麦济麦20蛋白组分和加工品质的影响.结果表明,灌水效应大于施氮效应.随灌水次数增加,蛋白组分和加工品质指标均有下降的趋势,其中开花水和灌浆水的影响最为显著.籽粒蛋白质及各组分含量除谷蛋白外均对灌水反应敏感,对氮肥反应迟钝;增施氮肥有利于谷蛋白、贮藏蛋白含量的提高;面粉加工品质指标除形成时间和稳定时间外均对灌水反应敏感,增施氮肥有利于吸水率的提高以及面包体积的减小.总蛋白、醇溶蛋白、贮藏蛋白含量均与沉淀值和湿面筋含量呈极显著正相关;贮藏蛋白含量与形成时间呈显著正相关;总蛋白、醇溶蛋白含量与面包体积呈显著正相关.在本试验条件下,适当减少灌水次数,适量施用氮肥有利于小麦品质的综合提高.  相似文献   

14.
A series of shape memory polyurethane (PU) copolymers synthesized from 1,4-phenyldiisocyanate (PDI), poly(tetramethyleneglycol) (PTMG), 1,4-butanediol (BD) as a chain extender, and glycerol as a cross-linking agent were tested for the mechanical properties and the shape memory effect at the temperature 20 °C above melting temperature (T m), and were compared with other PUs synthesized from 4,4′-methylene-bis-phenyldiisocyanate (MDI), PTMG, and BD. Mechanical properties and shape memory effect were improved substantially by adopting both PDI and glycerol. Interestingly, enthalpy of melting and T m were not affected by the glycerol content. Vibration and shock absorption ability was investigated by measuring both loss tan δ and storage modulus with dynamic mechanical analyzer (DMA).  相似文献   

15.
Konjac glucomannan (KGM), a dietary fiber, can be used to improve the quality of flour products. In this study, the effects of KGM at different concentrations on the water distribution, morphological, textural, thermal, and structural properties of wheat gluten were studied. KGM improved the physicochemical and structural properties of wheat gluten by changing the water holding capacity, secondary structure, and free sulfhydryl and disulfide bond contents. Scanning electron microscopy confirmed that KGM can evenly fill the network structure, affecting gluten network development. KGM exhibited no effect on moisture content; however, KGM decreased water mobility in wheat gluten. The increased thermal denaturation temperature indicates that KGM can improve the thermal stability of wheat gluten. Sharp changes in texture profile analysis (TPA) parameters were observed around 5% KGM, and elasticity and cohesiveness were optimal after the addition of 4% KGM. In addition, the secondary structure analysis indicated that α-helix and β-sheet structures increased. The addition of 5% KGM increased the content of disulfide bonds by 2.57-fold. Overall, the changes in gluten structure and properties suggest that wheat gluten could be improved the stability, functionality and water holding capacity of gluten by adding KGM.  相似文献   

16.
Biodegradable packaging is gaining much attention in food industry as the awareness on sustainability has increased. Thermoplastic starch is a possible alternative. This study evaluated the influence of malic acid (MA) and citric acid (CA), used as a plasticizer, on the mechanical properties of thermoplastic starch (TPS) obtained by spray drying. TPS powder was produced from solution spray drying. This powder was further compression molded to prepare TPS dog-bone test samples. X-ray Diffraction (XRD) results showed that both the spray dried TPS powder and dog-bone test samples were amorphous in nature irrespective of the amount of plasticizer added. Scanning electron microscope (SEM) was used to examine the morphology of solution spray dried TPS powder. No noticeable difference was observed in the morphology. Particles were spherical in shape with homogenous surface. The FT-IR analysis indicated the interaction of plasticizers with starch chains by hydrogen bonding. During TGA analysis, apart from moisture loss at 100 °C, samples were thermally stable up to 170 °C. Mechanical testing of TPS dog-bone revealed that sample containing malic acid as plasticizer exhibited a more elastic behavior as compared to citric acid plasticized formulations. It was revealed that the tensile strength of TPS dog-bone samples was inversely proportional to the quantity of plasticizer used.  相似文献   

17.
Wheat flour, which was rendered gluten-free by sourdough lactic acid bacteria fermentation and fungal proteases, was used for manufacturing experimental gluten-free pasta (E-GFp), according to a traditional process with low temperature drying cycle. Chemical, technological, structural, nutritional and sensory features were characterized and compared with those of commercial gluten-free (C-GFp) and durum wheat pasta (C-DWp). As shown through immunological analyses, the residual concentration of gluten of the hydrolyzed wheat flour was below 10 ppm. E-GFp showed rapid water uptake and shorter optimal cooking time compared to the other pastas. Despite the absence of the gluten network, the supplementation with pre-gelatinized rice flour allowed structural properties of E-GFp, which were comparable to those of C-GFp. The in vitro protein digestibility of E-GFp resulted the highest. Probably due to proteolysis during sourdough fermentation; chemical scores, essential amino acid profile, biological value and nutritional index of E-GFp were higher than those of C-DWp. The hydrolysis index (HI) of E-GFp was ca. 30% lower than that found for C-GFp. As shown by sensory analysis, the characteristic of E-GFp were acceptable. The manufacture of E-GFp should be promising to expand the choice of gluten-free foods, which combine sensory and nutritional properties.  相似文献   

18.
The water adsorption properties of hard and soft wheat flours and flour components (starch, damaged starch, gluten, soluble pentosans, and insoluble pentosans) were determined at 25 °C using a controlled atmosphere microbalance. At different levels of relative humidity (from 10% to 95%), changes in sample mass (i.e., water gain) were continuously measured versus time and described using exponential models (R2≥0·994). Water adsorption isotherms were constructed for wheat flours and flour components and described using Guggenheim-Anderson-de Boer models (R2≥0·997). It was not possible to distinguish between the selected hard and soft wheat flours by their isotherms. The water-soluble pentosans had the highest water adsorption capacity. The theoretical distribution of water between the flour components (calculated using the Guggenheim-Anderson-de Boer parameters) was starch, 88%; gluten, 10%; and pentosans, 2%.  相似文献   

19.
High fibre breads were produced with the addition of durum wheat bran fractions (regular bran and a fraction extracted from the most internal bran layer) and their physico-chemical properties and water status were characterised during storage. Bran enriched breads exhibited similar properties during storage, they were harder, less springy and less cohesive than the control. Water status was strongly affected by bran addition, independently of bran composition: water activity, moisture and frozen water content (measured by Differential Scanning Calorimetry) were generally higher in the bran samples than in the control bread during storage. Amylopectin retrogradation was significantly larger in the presence of bran fractions. 1H NMR mobility (T2 number of populations and relaxation times) was different in the high fibre breads as compared to the control sample. The changes in protons mobility observed upon storage indicated an influence of bran on water/gluten/starch molecular domains and their dynamics, that may have affected the development of the gluten network resulting in different textural properties.  相似文献   

20.
Wheat flour was plasticized with glycerol and compounded with poly(lactic acid) in a one-step twin-screw extrusion process in the presence of citric acid with or without extra water. The influence of these additives on process parameters and thermal, mechanical and morphological properties of injected samples from the prepared blends, was then studied.Citric acid acted as a compatibilizer by promoting depolymerization of both starch and PLA. For an extrusion without extra water, the amount of citric acid (2 parts for 75 parts of flour, 25 parts of PLA and 15 parts of glycerol) has to be limited to avoid mechanical properties degradation. Water, added during the extrusion, improved the whole process, minimizing PLA depolymerization, favoring starch plasticization by citric acid and thus improving phases repartition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号