首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Several tests for Bovine viral diarrhea virus (BVDV) were applied to samples collected monthly from December 20, 2005, through November 27, 2006 (day 0 to day 342) from 12 persistently infected (PI) cattle with BVDV subtypes found in US cattle: BVDV-1a, BVDV-1b, and BVDV-2a. The samples included clotted blood for serum, nasal swabs, and fresh and formalin-fixed ear notches. The tests were as follows: titration of infectious virus in serum and nasal swabs; antigen-capture (AC) enzyme-linked immunosorbent assay (ELISA), or ACE, on serum, nasal swabs, and fresh ear notches; gel-based polymerase chain reaction (PCR) testing of serum, nasal swabs, and fresh ear notches; immunohistochemical (IHC) testing of formalin-fixed ear notches; and serologic testing for BVDV antibodies in serum. Of the 12 animals starting the study, 3 died with mucosal disease. The ACE and IHC tests on ear notches had positive results throughout the study, as did the ACE and PCR tests on serum. There was detectable virus in nasal swabs from all the cattle throughout the study except for a few samples that were toxic to cell cultures. The serum had a virus titer ≥ log10 1.60 in all samples from all the cattle except for 3 collections from 1 animal. Although there were several equivocal results, the PCR test most often had positive results. The BVDV antibodies were due to vaccination or exposure to heterologous strains and did not appear to interfere with any BVDV test. These findings illustrate that PI cattle may be identified by several tests, but differentiation of PI cattle from cattle with acute BVDV infection requires additional testing, especially of blood samples and nasal swabs positive on initial testing. Also, calves PI with BVDV are continual shedders of infectious virus, as shown by the infectivity of nasal swabs over the 11-mo study.  相似文献   

3.
Bovine viral diarrhea virus (BVDV) field isolates show genetic and antigenic diversity. At least 14 subgenotypes of BVDV-1 and 4 of BVDV-2 have been identified in Artiodactyla worldwide. Of these, 6 subgenotypes of BVDV-1 and 1 of BVDV-2 have been isolated in Japan. Previously, we reported that each subgenotype virus expresses different antigenic characteristics. Here we investigated the reactivity of neutralizing antibodies against representative strains of Japanese BVDV subgenotypes using sera from 266 beef cattle to estimate the prevalence of this epidemic virus among cattle in Japan. Antibody titers at concentrations at least 4-fold higher than antibodies against other subgenotype viruses were considered subgenotype specific. Subgenotype-specific antibodies were detected from 117 (80.7%) of 145 sera samples (69.7% against BVDV-1a, 1.4% against BVDV-1b, 8.3% against BVDV-1c, and 1.4% against BVDV-2a). The results suggest that neutralization tests are useful in estimating currently epidemic subgenotypes of BVDV in the field.  相似文献   

4.
The 475 strains of bovine viral diarrhea virus (BVDV) isolated from cattle in 12 prefectures of Japan in the last 7 years were phylogenetically classified as BVDV-1 or BVDV-2 on the basis of the nucleotide sequence of the 5'-untranslated region. BVDV-1 strains were further subtyped as 1a (101 strains), 1b (163), 1c (128), 1j (3), and So CP/75-like (1), and all of the 79 BVDV-2 strains belonged to subtype 2a. These 2a BVDVs contain two isolates that had high nucleotide identities with those of highly pathogenic BVDV-2 strains reported in North America (Pellerin et al., 1994). However, acute infection with severe mortality like North American outbreak was not observed and most of the present BVDV-2 strains were isolated from persistently infected (PI) cattle showing mild or no clinical sign. Moreover, it was revealed that 61.5% of the 39 PI cattle with cytopathogenic BVDVs did not show typical mucosal disease and 54.6% of the 405 PI animals only with non-cytopathogenic BVDVs were apparently healthy. The present results indicate that the prevention of the infection with an appropriate vaccine and active surveillance covering healthy cattle are required for the control of BVD.  相似文献   

5.
MX belongs to a family of type I interferon (IFN)-stimulated genes, and the MX protein has antiviral activity. MX has at least two isoforms, known as MX1 and MX2, in mammals. Moreover, bovine MX1 has been found to have alternative splice variants—namely, MX1-a and MX1B. In ruminants, IFN-τ—a type I IFN—is temporarily produced from the conceptus before implantation and induces MX expression in the endometrium. However, the expression dynamics of MX after implantation are not clear. In the present study, we investigated the expression of MX1-a, MX1B and MX2 in the endometrium and placenta before and after implantation along with the expression of IFN-α, type I receptors (IFNAR1 and IFNAR2) and interferon regulatory factors (IRF3 and IRF9). Pregnant uterine samples were divided into five groups according to pregnancy days 14–18, 25–40, 50–70, 80–100, and 130–150. Tissue samples were collected from the intercaruncular endometrium (IC), caruncular endometrium (C) and fetal placenta (P). Although all the MX expressions were significantly higher in the IC and C at days 14–18, presumably caused by embryo-secreted IFN-τ stimulation, their expressions were also detectable in the IC, C and P after implantation. Furthermore, IFN-α expression was significantly higher in the IC. RT-PCR indicated IFNAR1, IFNAR2, IRF3 and IRF9 mRNA in all the tissues during pregnancy. These results suggest that all the MX genes are affected by the type I IFN pathway during pregnancy and are involved in an immune response to protect the mother and fetus.  相似文献   

6.
This study aimed to investigate the role of epithelial cells in regulating innate immunity in bovine oviduct epithelial cell (BOEC) culture. We studied the effect of Escherichia coli lipopolysaccharide (LPS) and its interaction with ovarian steroids, estradiol (E2) and progesterone (P4), and luteinizing hormone (LH) at concentrations observed during the preovulatory period on immune responses in BOEC culture. Immunohistochemistry of oviduct tissue showed intensive expression of Toll-like receptor-4 (TLR-4) and TLR-2 in epithelial cells. A dose of 10 ng/ml LPS stimulated TLR-4, cyclooxygenase-2 (COX-2), nuclear factor kappa B inhibitor A (NFKBIA), interleukin 1β (IL-1β) and tumor necrosis factor α (TNF-α) expression, indicating an early pro-inflammatory response. A dose of 100 ng/ml LPS did not induce expression of these genes but stimulated TLR-2, IL-10,IL-4 and microsomal prostaglandin E synthase-1 (mPGES-1) expression and PGE2 secretion, indicating an anti-inflammatory response. Ovarian steroids and LH completely block LPS (10 ng/ml)-induced TLR-4, IL-1β and TNF-α expression as well as LPS (100 ng/ml)-induced TLR-2 expression. Taken together, this study suggests the existence of an early signaling system to respond to infection in the BOEC. In addition, ovarian steroids and LH may play a critical role in inducing homeostasis and in controlling hyperactive pro-inflammatory responses detrimental to epithelial cells, sperm and the embryo.  相似文献   

7.
Bovine viral diarrhea virus (BVDV) is one of the most important pathogens to the cattle industry, causing a significant economic loss throughout the world. Despite the wide use of various control measures for BVDV, the disease remains prevalent. In this study, we achieved an efficient inhibition of NADL strain replication by plasmid-mediated shRNA targeting conserved regions of the viral genome. To further enhance the inhibiting efficiency, a dual shRNA expression plasmid, which could simultaneously express two different shRNA, was established and showed stronger inhibitory effects on virus replication. Moreover, the antiviral activity induced by the dual shRNA expression system was also evident on other BVDV-1 subgenotypes (BVDV-1a, BVDV-1b and BVDV-1c). Therefore, the dual shRNA system provides a more powerful strategy for inhibiting BVDV replication in a cross-resistance manner.  相似文献   

8.
We report DNA immunisation experiments in cattle using plasmid constructs that encoded glycoprotein E2 from bovine viral diarrhoea virus (BVDV)-1 (E2.1) and BVDV-2 (E2.2). The coding sequences were optimised for efficient expression in mammalian cells. A modified leader peptide sequence from protein gD of BoHV1 was inserted upstream of the E2 coding sequences for efficient membrane export of the proteins. Recombinant E2 were efficiently expressed in COS7 cells and they presented the native viral epitopes as judged by differential recognition by antisera from cattle infected with BVDV-1 or BVDV-2. Inoculation of pooled plasmid DNA in young cattle elicited antibodies capable of neutralising viral strains representing the major circulating BVDV genotypes.  相似文献   

9.
Melanoma differentiation-associated gene 5 (MDA5) is an important intracellular receptor that recognizes long molecules of viral double-stranded RNA in innate immunity. To understand the mechanism of duck MDA5-mediated innate immunity, we cloned the MDA5 cDNA from the Muscovy duck (Cairina moschata). Quantitative real-time PCR analysis indicates that duck MDA5 mRNA was constitutively expressed in all sampled tissues. A significant increase of MDA5 mRNA was detected in the brain, spleen and lungs of ducks after infection with an H5N1 highly pathogenic avian influenza virus (HPAIV). We investigated the role of the predicted functional domains of MDA5. The results indicate the caspase activation and recruitment domain (CARD) of duck MDA5 had a signal transmission function through IRF-7-dependent signaling pathway. Overexpression of the CARD strongly activated the chicken IFN-β promoter and upregulated the mRNA expression of antiviral molecules (such as OAS, PKR and Mx), proinflammatory cytokines (such as IL-2, IL-6, IFN-α and IFN-γ, but not IL-1β and IL-8) and retinoic acid-inducible gene I (RIG-I)-like receptors (RLR) (RIG-I and LGP2) without exogenous stimulation. We also demonstrate the NS1 of the H5N1 HPAIV inhibited the duck MDA5-mediated signaling pathway in vitro. These results suggest that duck MDA5 is an important receptor for inducing antiviral activity in the host immune response of ducks.  相似文献   

10.
11.
The genetic characteristics, of 38 field isolates of bovine viral diarrhoea virus (BVDV) collected in 1999 from sick or healthy and persistently infected cattle of dairy farms situated in northern Italy, were investigated. A partial 5-untranslated region (5-UTR) sequence of each isolate was determined and a phylogenetic analysis was performed. All the isolates were classified as belonging to the BVDV-1 genotype and could be assigned to different BVDV-1 groups, namely BVDV-1b (n = 20), BVDV-1d (n = 6) and BVDV-1e (n = 10). Two remaining isolates could be classified as BVDV-1f and BVDV-1h, respectively. These results provided evidence for genetic heterogeneity of BVDV in Italy, and contribute to a better knowledge of the circulation of BVDV strains, and to their classification.  相似文献   

12.
Bovine viral diarrhea virus (BVDV) has various economic impacts associated with diarrhea, poor performance, an increase in the frequency of other infections and lethal outcomes. Both genotypes, namely BVDV-1 and BVDV-2, as well as different subgroups within these genotypes have been reported worldwide. Understanding the serological differences among the BVDV subgroups is important for disease epidemiology and prevention as well as vaccination programs. The aim of this study was to determine the serological relatedness among the subgroups in BVDV-1. For that purpose, sheep hyperimmune sera were collected against representative strains from 6 of the subgroups of BVDV-1 (BVDV-1a, -1b, -1d, -1f, -1h and -1l). The serum samples that gave the peak antibody titer to the homologous strains were used to perform cross neutralization assays. The highest homologous antibody titer (1:5160) was obtained against BVDV-1h. Regarding the cross neutralizing (heterologous) antibodies, the lowest titer (1:20) was produced by the BVDV-1f antiserum against the BVDV-1a and BVDV1-b viruses. The highest cross neutralizing titer (1:2580) achieved by the BVDV-1h antiserum was against the BVDV-1b strain. The cross neutralization results indicated particular serological differences between the recently described subgroup (BVDV-1l) and BVDV-1a/-1b, which are widely used in commercial vaccines. Considering the cross neutralization titers, it is concluded that selected BVDV-1l and BVDV-1h strains can be used for the development of diagnostic and control tools.  相似文献   

13.
Expression of CD25 (interleukin-2 receptor alpha chain) was used to monitor antigen-specific activation of T lymphocyte subsets (CD4+, CD8+, and gamma delta T cells) from cattle immunized with modified-live virus (MLV) bovine viral diarrhea virus (BVDV) vaccines. Two groups of 15 animals each were vaccinated with one dose of either BVDV genotype 1 (BVDV-1) or BVDV-1 and BVDV genotype 2 (BVDV-1/2). Six animals negative for both BVDV antibody and BVDV virus were used as negative controls. Three animals vaccinated 7 and 5 weeks before the start of the experiment with MLV BVDV-1 vaccine served as positive controls. Blood samples were taken from the negative control group, the positive control group, and the BVDV-1/2 group 0, 21, 35, 60, and 90 days after vaccination. Blood samples were taken from the BVDV-1 group 0, 21, and 90 days after vaccination. Isolated peripheral blood lymphocytes from immunized and control animals were incubated for 5 days with and without BVDV-1 or BVDV-2. Compared with nonvaccinated animals, a significant (P <.05) increase in expression of CD25 by CD4+ (60 days), CD8+, and gammadelta T (35 to 90 days) lymphocytes from the group given BVDV-1/2 was detected following in vitro exposure to BVDV-1 or BVDV-2 after vaccination. The CD8+ and gammadelta T cells from the group vaccinated with BVDV-1 had significantly (P <.05) increased expression of CD25 compared with nonvaccinates following postvaccination exposure to in vitro BVDV-1 but not to BVDV-2. There was no significant difference between the two vaccinated groups in CD25 expression on any of the T cell subsets in response to BVDV-1 or BVDV-2 exposure. A single administration of MLV BVDV vaccine may be more effective at stimulating CD8+ and gammadelta T cell-specific immune responses to the homologous genotype than to the heterologous genotype.  相似文献   

14.
Infections with bovine viral diarrhea virus (BVDV) of the genus pestivirus, family Flaviviridae, are not limited to cattle but occur in various artiodactyls. Persistently infected (PI) cattle are the main source of BVDV. Persistent infections also occur in heterologous hosts such as sheep and deer. BVDV infections of goats commonly result in reproductive disease, but viable PI goats are rare. Using 2 BVDV isolates, previously demonstrated to cause PI cattle and white-tailed deer, this study evaluated the outcome of experimental infection of pregnant goats. Pregnant goats (5 goats/group) were intranasally inoculated with BVDV 1b AU526 (group 1) or BVDV 2 PA131 (group 2) at approximately 25–35 days of gestation. The outcome of infection varied considerably between groups. In group 1, only 3 does became viremic, and 1 doe gave birth to a stillborn fetus and a viable PI kid, which appeared healthy and shed BVDV continuously. In group 2, all does became viremic, 4/5 does aborted, and 1 doe gave birth to a non-viable PI kid. Immunohistochemistry demonstrated BVDV antigen in tissues of evaluated fetuses, with similar distribution but reduced intensity as compared to cattle. The genetic sequence of inoculated viruses was compared to those from PI kids and their dam. Most nucleotide changes in group 1 were present during the dam’s acute infection. In group 2, a similar number of mutations resulted from fetal infection as from maternal acute infection. Results demonstrated that BVDV may cause reproductive disease but may also be maintained in goats.  相似文献   

15.
Genotypes and subgenotypes of bovine viral diarrhea virus (BVDV) field isolates from Japan, Germany and the United States of America (USA) were identified, and the prevalent pattern of BVDV in individual countries was estimated genetically. Subgenotypes were determined based on phylogenetic analyses of nucleotide sequences of a part of the E2-coding gene of BVDV. Forty-five, 61 and 56 BVDV strains were isolated from naturally infected cattle in Japan, Germany and USA, respectively, between 1980 and 2003. The most prevalent BVDV in these three countries was BVDV-1b. The second most prevalent BVDV strains were 1a, 1d and BVDV-2 in Japan, Germany and USA, respectively. The most prevalent subgenotype 1b in each country constructed individual small clusters in the subgenotype 1b branch in the phylogenetic tree. Although cattle and/or cattle products were moving among the three countries as part of international trade, the distribution of BVDV in the field in each country showed long-standing individual patterns.  相似文献   

16.
17.

Background

The genus pestivirus within the family Flaviviridae includes bovine viral diarrhoea virus (BVDV) types 1 and 2, border disease virus (BDV) and classical swine fever virus. The two recognised genotypes of BVDV are divided into subtypes based on phylogenetic analysis, namely a-p for BVDV-1 and a-c for BVDV-2.

Methods

Three studies were conducted to investigate the phylogenetic diversity of pestiviruses present in Northern Ireland. Firstly, pestiviruses in 152 serum samples that had previously tested positive for BVDV between 1999 and 2008 were genotyped with a RT-PCR assay. Secondly, the genetic heterogeneity of pestiviruses from 91 serum samples collected between 2008 and 2011 was investigated by phylogenetic analysis of a 288 base pair portion of the 5’ untranslated region (UTR). Finally, blood samples from 839 bovine and 4,437 ovine animals imported in 2010 and 2011 were tested for pestiviral RNA. Analysis of animal movement data alongside the phylogenetic analysis of the strains was carried out to identify any links between isolates and animal movement.

Results

No BVDV-2 strains were detected. All of the 152 samples in the first study were genotyped as BVDV-1. Phylogenetic analysis indicated that the predominant subtype circulating was BVDV-1a (86 samples out of 91). The remaining five samples clustered close to reference strains in subtype BVDV-1b. Out of the imported animals, 18 bovine samples tested positive and 8 inconclusive (Ct ≥36), while all ovine samples were negative. Eight sequences were obtained and were defined as BVDV-1b. Analysis of movement data between herds failed to find links between herds where BVDV-1b was detected.

Conclusion

Given that only BVDV-1a was detected in samples collected between 1968 and 1999, this study suggests that at least one new subtype has been introduced to Northern Ireland between 1999 and 2011 and highlights the potential for importation of cattle to introduce new strains.
  相似文献   

18.
Bungowannah virus is the most divergent atypical pestivirus that had been detected up to now, and does not fit into any of the four approved species: Bovine viral diarrhea virus type 1 (BVDV-1) and type 2 (BVDV-2), Classical swine fever virus (CSFV) and Border disease virus (BDV). However, the presence of Npro and Erns coding regions, which are unique to pestiviruses, provides clear evidence of a pestivirus. Nevertheless, the amino acid identity of Bungowannah virus Npro and BVDV-1 Npro (strain CP7) is only 51.5%. By using a BVDV-1 backbone, a novel chimeric construct was generated, in which the genomic region encoding the non-structural protein Npro was replaced by that of Bungowannah virus (CP7_Npro-Bungo). In vitro studies of CP7_Npro-Bungo revealed autonomous replication with the same efficacy as the BVDV backbone CP7 and infectious high-titer virus could be collected. In order to compare the ability of interferon (IFN) suppression, two reporter gene assays, specific for type-I IFN, were carried out. In virus-infected cells, no significant difference in blocking of IFN expression between the parental virus CP7, Bungowannah virus and the chimeric construct CP7_Npro-Bungo could be detected. In contrast, an Npro deletion mutant showed an impaired replication in bovine cells and a marked type-I IFN response.Taken together, our findings reveal the compatibility of non-structural protein Npro of atypical Bungowannah virus with a BVDV type 1 backbone and its characteristic feature as an inhibitor of type-I IFN induction with an inhibitor-activity comparable to other pestiviruses.  相似文献   

19.
The in vitro permissivity to infection with homologous and heterologous bovine viral diarrhoea virus (BVDV) strains of bovine peripheral blood mononuclear cells (PBMCs) from eight na?ve and eight BVDV-1b immune animals was studied. Four reference strains (BVDV-1a NADL, BVDV-1b NY-1, BVDV-2 125 and BVDV-2 890) were selected, based on genotype, prevalence and biotype. Virus neutralizing antibody titres were determined at bleeding and the viral loads were measured in PBMCs by end point titration in cell culture and by real-time PCR. PBMCs from both na?ve and immune animals became infected by all BVDV strains tested, although virus titres were lower for immune heifers than na?ve ones; the differences were significant for NADL (P<0.05) and 890 (P<0.001) strains. The in vitro model used in this study showed that PBMCs from immune animals are susceptible to re-infection with both homologous and heterologous BVDV strains, albeit at a lower extent than na?ve cattle.  相似文献   

20.
Persistently infected (PI) animals play a significant role in spread and transmission of bovine virus diarrhoea virus (B VD V) (Duffell & Harkness 1985). The identification and removal of PI cattle from the herd is of great importance in the control of BVDV. Although PI animals often show various degrees of growth retardation and unthrifty appearance, a significant proportion is clinically normal. PI animals are often seronegative (Duffell & Harkness 1985), but calves may be tested seropositive because of the presence of maternal immunity (Meyling & Jensen 1988). The passively derived BVDV antibodies may interfere with the ability to detect virus. Considering the importance of early recognition of PI calves, it is essential to determine the earliest time when PI animals can safely be diagnosed in the herd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号