首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
 马铃薯Y病毒(potato virus Y,PVY)主要侵染马铃薯和烟草等茄科作物,给世界农业造成巨大经济损失。本文对测定的23个及GenBank中注册的52个中国PVY分离物ORF序列进行了系统发育、重组和选择压等分析。系统发育分析表明,根据ORF序列可把我国75个PVY分离物和国外30个参比分离物分成O、C、E、NTN-NW(SYR-I型)、NTN-NW(SYR-II型)、NTN(NTN-a型)、NTN(NTN-b型)、NA-N/NTN、Eu-N、N-Wi(N:O型)和N-Wi(N-Wi型)等11个分子株系,其中中国PVY分离物属于除E和C株系外的9个分子株系。除ME162、guiyang、PVYzu、SD-G、WA-13和CN:JL-1:17等 6个分离物基因组中未检测到重组,其余69个分离物均存在明显重组。根据重组位点的不同,中国PVY可分为11种重组类型,其中5种为新的重组类型。选择压分析表明,中国PVY分离物的11个基因均处于负选择,其中核内含体b基因受到的选择压最大,PIPO受到的选择压最小。基因流分析表明,黑龙江、河南和山东PVY分离物间基因交流频繁,马铃薯与烟草PVY分离物之间基因交流频繁。本研究的结果明确了中国PVY分离物的分子株系组成,对指导PVY的检测和防控具有积极作用。  相似文献   

2.
一个马铃薯Y病毒山东分离物的分离与鉴定   总被引:4,自引:1,他引:4  
 从具有典型花叶症状的马铃薯叶片中分离到马铃薯Y病毒(Potato virus Y,PVY)(本文称PVY-SD-TA分离物),扩繁后,提纯病毒,电镜下可观察到700~900 nm×11 nm的病毒粒体,病组织超薄切片观察可见风轮状的内含体结构,寄主反应特性研究表明其能侵染2科13种植物。SDS-PAGE电泳检测病毒编码的外壳蛋白亚基的分子量为33 kDa。以PVY-SD-TA基因组RNA为模板,应用RT-PCR方法和特异引物合成了外壳蛋白基因。对cDNA全序列分析表明,PVY-SD-TA CP基因核苷酸序列与N株系的同源性为96%,与GenBank中登录序列号为AJ390306的O株系分离物的同源性最高,为99%;与国内不同学者报道的PVY中国流行株的同源性分别为96%,97%和98%。通过以上生物学特性和分子水平的研究将PVY-SD-TA鉴定为普通株系(PVYO株系)。  相似文献   

3.
烟草花叶病毒丁香分离物的分离与鉴定   总被引:6,自引:0,他引:6  
 从表现花叶症状的丁香病株上获得一病毒分离物,其在电镜下为约300 nm×18nm的杆状粒子;电泳分析表明感病组织中ds RNA大约为6.4kbp,而其外壳蛋白分子量约为17.6k Da。以上实验结果初步将该病毒分离物鉴定为烟草花叶病毒属(Tobamovirus)。根据该属病毒复制酶基因序列设计通用引物,进行RT-PCR检测,扩增出约1000 bp的预期特异片段(Gen Bank AY566703)。将PCR产物克隆后测序,序列分析表明,与从蚕豆中分离的TMV-B株系序列(Gen Bank AJ011933.1)同源性为99.90%。根据烟草花叶病毒(Tobacco mosaic virus,TMV)的RNA CP基因序列设计引物,进行RT-PCR,扩增出约800 bp的预期特异片段(Gen Bank AY56672),序列分析表明,与TMV-B株系序列(Gen Bank AJ011933.1)同源性达99%,上述实验结果表明,该病毒分离物为TMV。由于该分离物与TMV-B在指示植物上的症状存在明显差异,所以,作者把该分离物暂命名为TMV-S。  相似文献   

4.
马铃薯A病毒CP基因的克隆与序列分析   总被引:9,自引:0,他引:9       下载免费PDF全文
利用根据马铃薯A病毒 (PVA)外壳蛋白 (CP)基因序列设计合成的一对引物 ,以带毒植物总RNA为模板 ,RT-PCR扩增得到长 0.8kb的目的片段。将目的片段转入大肠杆菌并进行了序列测定。测序结果与PVA其他分离物CP基因序列比较 ,发现其核苷酸同源性最高可达 99%。依据CP序列建立了PVA病毒的系统进化树并对PVA不同分离物CP氨基酸序列差异性做了分析  相似文献   

5.
为利用RNA介导的病毒抗性策略,培育抗性稳定或抗多烟草蚀纹病毒(Tobacco etch virus,TEV)株系的转基因植株,采用RT-PCR及5'-RACE方法克隆了烟草蚀纹病毒山东分离物TEV-SD1的全基因组序列。TEV-SD1全基因组核苷酸序列长度为9494 bp,包含1个9165 bp的开放阅读框架(open reading frame,ORF),编码3054个氨基酸。将TEV-SD1基因组序列与GenBank中已公布的4个TEV全基因组序列和11个外壳蛋白(coat protein,CP)基因序列比对分析发现,各分离物CP基因间的核苷酸和氨基酸序列平均相似性分别为96.65%和98.31%,高于其它功能基因间的相似性;各分离物CP基因3'端核苷酸序列相似性平均为96.55%,高于5'端序列。聚类分析发现TEV在自然界中的分子变异与其寄主关系密切。  相似文献   

6.
一株PVYNTN-NW黑龙江马铃薯分离物的检测鉴定   总被引:1,自引:0,他引:1  
 马铃薯Y病毒(Potato virus Y,PVY)是马铃薯、烟草等茄科作物上的重要病毒,在与寄主共同进化过程中产生了许多株系。本文从黑龙江马铃薯样品中得到PVY分离物A12。ELISA结果表明A12被PVYO的单克隆抗体特异性识别。A12开放阅读框为9 186个核苷酸,编码3 061个氨基酸,与SYR-II-Be1分离物的核苷酸和氨基酸序列一致率均最高,分别为98.3%和99.2%。系统发育分析发现A12与PVYNTN-NW株系SYR-II型的分离物聚类到一起;重组分析表明,A12是N-605和Oz的重组体,重组类型与SYR-II-Be1相同。综合以上结果表明,A12属于PVYNTN-NW株系SYR-II型。但与常见PVYNTN-NW株系分离物在珊西烟引起叶脉坏死不同,A12产生花叶症状。A12辅助成分-蛋白酶在182位和245位的氨基酸均为精氨酸,而其它PVYNTN-NW株系分离物为赖氨酸。本研究结果可为黑龙江马铃薯PVY的早期检测和有效防控提供理论指导。  相似文献   

7.
 马铃薯Y病毒(Potato virus Y,PVY)是马铃薯、烟草等茄科作物上的重要病毒,在与寄主共同进化过程中产生了许多株系。本文从黑龙江马铃薯样品中得到PVY分离物A12。ELISA结果表明A12被PVYO的单克隆抗体特异性识别。A12开放阅读框为9 186个核苷酸,编码3 061个氨基酸,与SYR-II-Be1分离物的核苷酸和氨基酸序列一致率均最高,分别为98.3%和99.2%。系统发育分析发现A12与PVYNTN-NW株系SYR-II型的分离物聚类到一起;重组分析表明,A12是N-605和Oz的重组体,重组类型与SYR-II-Be1相同。综合以上结果表明,A12属于PVYNTN-NW株系SYR-II型。但与常见PVYNTN-NW株系分离物在珊西烟引起叶脉坏死不同,A12产生花叶症状。A12辅助成分-蛋白酶在182位和245位的氨基酸均为精氨酸,而其它PVYNTN-NW株系分离物为赖氨酸。本研究结果可为黑龙江马铃薯PVY的早期检测和有效防控提供理论指导。  相似文献   

8.
为明确分离自黑龙江省克山县马铃薯上的2个病毒分离物KS4和KS7的分类地位,通过RTPCR扩增、克隆获得其基因组序列,利用重组分析程序包和最大似然法分别进行重组分析和系统发育分析。结果显示,分离物KS4和KS7的开放阅读框均有9 186个核苷酸,编码3 061个氨基酸,分离物KS4的核苷酸和氨基酸序列均与马铃薯Y病毒(potato virus Y,PVY)分离物Mb112一致率最高,分别为96.9%和98.4%;分离物KS7的核苷酸序列与PVY分离物12-94一致率最高,为97.4%,其氨基酸序列与PVY分离物SYR-Ⅱ-Be1一致率最高,为97.8%。重组分析表明,分离物KS4和KS7均为分离物N-605和Oz的重组体,其中KS4基因组5′-端的2 392个核苷酸来自分离物N-605,其余核苷酸来自分离物Oz;KS7基因组的第800~2 227个核苷酸和第5 637~8 950个核苷酸来自分离物N-605,其余核苷酸来自分离物Oz。系统发育分析发现,分离物KS4被聚类到N:O株系(PVY~(N:O)),分离物KS7被聚类到NTN株系(PVY~(NTN))b型。  相似文献   

9.
根据哈尔滨地区豇豆感病植株的症状,初步鉴定感染豇豆的病毒为菜豆普通花叶病毒(Bean common mosaic, virus,SCMV)。利用马铃薯Y病毒属通用引物扩增出病毒基因组3’末端序列,经BLAST检索表明该病毒为BCMV,将该序列与GenBank上的21个BCMV分离物的3'末端序列进行比较,显示其核苷酸序列与其他分离物的序列同源性为91.7%-97.3%。系统进化分析显示不同分离物可聚为5个类群,并显示出一定的寄主相关性。哈尔滨分离物BCMV-X与2个浙江分离物、1个澳大利亚分离物聚为一支,且该4株分离物的寄主均为豇豆。RNA二级结构分析显示BCMV基因组3’末端非编码区形成4个茎环结构,不同分离物的序列变化并未引起茎环结构的明显变化。  相似文献   

10.
根据哈尔滨地区豇豆感病植株的症状,初步鉴定感染豇豆的病毒为菜豆普通花叶病毒(Bean common mosaic virus,BCMV).利用马铃薯Y病毒属通用引物扩增出病毒基因组3'末端序列,经BLAST检索表明该病毒为BCMV,将该序列与GenBank上的21个BCMV分离物的3'末端序列进行比较,显示其核苷酸序列与其他分离物的序列同源性为91.7%~97.3%.系统进化分析显示不同分离物可聚为5个类群,并显示出一定的寄主相关性.哈尔滨分离物BCMV-X与2个浙江分离物、1个澳大利亚分离物聚为一支,且该4株分离物的寄主均为豇豆.RNA二级结构分析显示BCMV基因组3'末端非编码区形成4个茎环结构,不同分离物的序列变化并未引起茎环结构的明显变化.  相似文献   

11.
Fifteen species of dermestid beetles were recorded at ‘Evolution Canyon’ (EC), Lower Nahal Oren, Mt. Carmel, Israel. They represent ~35% of known Israeli dermestid species. The following three species were recorded for the first time in Israel:Trogoderma svriaca Dalla Torre, 1911;Ctesias svriaca Ganglbauer, 1904; andAnthrenus (s.str.) jordaniens Pic, 1934. Adults of 13 species were collected on the more solar radiated, warmer and climatically more fluctuating south-facing slope (SFS); ten species were collected on the opposite, north-facing slope (NFS), which was cooler and climatically more stable. The abundance of adult dermestid beetles was 1.9 times higher on the SFS than on the NFS (86 and 47, respectively). Species richness and abundance distribution at EC (three collecting stations on each slope and one at the valley bottom) were significantly negatively correlated with the plant cover that consisted of trees and bushes (Spearmanr s ,P=0.007 and 0.039, respectively) and perennials (Spearmanr s ,P=0.039 and 0.077, respectively), indicating that non-woody plants were preferred by adult dermestid beetles.  相似文献   

12.
Recent data on the epidemiology of the common mycotoxigenic species of Fusarium, Alternaria, Aspergillus and Penicillium in infected or colonized plants, and in stored or processed plant products from the Mediterranean area are reviewed. Emphasis is placed on the toxigenicity of the causal fungal species and the natural occurrence of well known mycotoxins (aflatoxins, ochratoxins, fumonisins, trichothecenes, zearalenone, patulin, Alternaria-toxins and moniliformin), as well as some more recently described compounds (fusaproliferin, beauvericin) whose toxigenic potential is not yet well understood. Several Fusarium species reported from throughout the Mediterranean area are responsible of the formation of mycotoxins in infected plants and in plant products, including: Fusarium graminearum, F. culmorum, F. cerealis, F. avenaceum, F. sporotrichioides and F. poae, which produce deoxynivalenol, nivalenol, fusarenone, zearalenone, moniliformin, and T-2 toxin derivatives in wheat and other small grains affected by head blight or scab, and in maize affected by red ear rot. Moreover, strains of F. verticillioides, F. proliferatum, and F. subglutinans, that form fumonisins, beauvericin, fusaproliferin, and moniliformin, are commonly associated with maize affected by ear rot. Fumonisins, were also associated with Fusarium crown and root rot of asparagus and Fusarium endosepsis of figs, caused primarily by F. proliferatum. Toxigenic A. alternata strains and associated tenuazonic acid and alternariols were commonly found in black mould of tomato, black rot of olive and citrus, black point of small cereals, and black mould of several vegetables. Toxigenic strains of A. carbonarius and ochratoxin A were often found associated with black rot of grapes, whereas toxigenic strains of A. flavus and/or P. verrucosum, forming aflatoxins and ochratoxin A, respectively, were found in moulded plant products from small cereals, peanuts, figs, pea, oilseed rape, sunflower seeds, sesame seeds, pistachios, and almonds. Finally, toxigenic strains of P. expansum and patulin were frequently found in apple, pear and other fresh fruits affected by blue mould rot, as well as in derived juices and jams.  相似文献   

13.
The genera ofMicrogaster Latreille 1804 andHygroplitis Thomson 1895 from China are presented systematically in this paper. Thirty-two species ofMicrogaster and three species ofHygroplitis are known in China. Diagnosis, character variation, distribution and host of each species among the two genera are presented, including its host and distribution. Keys to the species ofMicrogaster andHygroplitis are given. http://www.phytoparasitica.org posting Dec. 19, 2006.  相似文献   

14.
Plant Viruses Transmitted by Whiteflies   总被引:18,自引:0,他引:18  
One-hundred and fourteen virus species are transmitted by whiteflies (family Aleyrodidae). Bemisia tabaci transmits 111 of these species while Trialeurodes vaporariorum and T. abutilonia transmit three species each. B. tabaci and T. vaporariorum are present in the European–Mediterranean region, though the former is restricted in its distribution. Of the whitefly-transmitted virus species, 90% belong to the Begomovirus genus, 6% to the Crinivirus genus and the remaining 4% are in the Closterovirus, Ipomovirus or Carlavirus genera. Other named, whitefly-transmitted viruses that have not yet been ranked as species are also documented. The names, abbreviations and synonyms of the whitefly-transmitted viruses are presented in tabulated form together with details of their whitefly vectors, natural hosts and distribution. Entries are also annotated with references. Whitefly-transmitted viruses affecting plants in the European–Mediterranean region have been highlighted in the text.  相似文献   

15.
Broad bean mottle virus (BBMV) was transmitted from infected to healthy faba-bean plants by the curculionid weevilsApion radiolus Kirby,Hypera variabilis Herbst,Pachytychius strumarius Gyll,Smicronyx cyaneus Gyll, andSitona lineatus L. The latter appeared to be an efficient vector: acquisition and inoculation occurred at the first bite, the rate of transmission was c. 41%, and virus retention lasted for at least seven days.S. lineatus transmitted the virus from faba bean to lentil and pea, but not to the three genotypes of chickpea tested. This is the first report on the generaHypera, Pachytychius, andSmicronyx as virus vectors, and onA. radiolus, H. variabilis, P. strumarius, andS. cyaneus as vectors of BBMV.Out of 351 samples of food legumes with symptoms suggestive of virus infection, 16, 11, 19, and 17% of the samples of chickpea, lentil, pea, and common bean, respectively, were found infected when tested for BBMV in DAS-ELISA. This is the first report on the natural occurrence of BBMV in chickpea, lentil, pea, and common bean. The virus should be regarded as a food-legume virus rather than a faba-bean virus solely, and is considered an actual threat to food legume improvement programmes.  相似文献   

16.
A collection of 38 PVY isolates from seed potato batches, originating from several Western European countries, was characterized by using current biological, serological and molecular tools differentiating PVY strains and groups. The correlation between the three kinds of tests was good but not absolute. No single serological or PCR method was able to discriminate among the five isolate groups found. Twenty-nine isolates belonged to the PVYN strain and six to the PVYO strain. No PVYC was found. Two other isolates reacted serologically like PVYO, but were unable to elicit a hypersensitive response from the Nytbr gene and probably represent the PVYZ group. At the molecular level, these two isolates showed a combination of both PVYO and PVYN and could be recombinants of these strains. Another isolate reacted serologically like PVYO, but induced vein necrosis in tobacco, like PVYN-Wilga. Some PVYN isolates caused tuber ring necrosis in glasshouse conditions. These might belong to the PVYNTN group. The PVYNTN, PVYN-Wilga and PVYZ groups probably represent pathotypes within strains PVYN and PVYO, respectively. The present study also confirms previous reports showing a high genetic variation at the 5 end within the PVYN strain.  相似文献   

17.
The phenology of the autumn leafroller,Syndemis musculana, a local pest of apple, was studied in order to forecast larval emergence. From 1983–1986, peak flight as determined with sexpheromone traps was always between 13–18 May. The duration of embryonic development was determined at various constant temperatures and used to estimate the periods of egg hatch in these four years. Each year, most eggs should have hatched in the second decade of June.Differences in attack rates between apple cultivars seem to be explained largely by the variation in picking time. Larvae are only half grown at the beginning of harvest (cv. James Grieve), and have gone into hibernation when the latest variety (cv. Golden Delicious) is picked. Moreover, the varieties Cox's Orange Pippin and Belle de Boskoop, picked about half time, are liable to receive additional damage by caterpillars brought with the picked fruits into storage.Various hymenopterous parasites were reared from caterpillars. As the only leafroller in the orchard which hibernates as mature larva,S. musculana may promote winter survival of some parasitoids, like the eulophidColpyclypeus florus.Samenvatting De fenologie van de herfstbladroller (Syndemis musculana Hübner), een incidentele plaag op appel, werd nader bepaald met het doel het uitkomen van de eieren te kunnen voorspellen. In 1983–1986 viel de piekvlucht, bepaald met behulp van feromoonvallen, steeds tussen 13 en 18 mei.De ontwikkelingsduur van de eieren bij verschillende constante temperaturen werd gebruikt om de periode van uitkomen te schatten. De meeste eieren zullen ieder jaar in de eerste helft van juni uitkomen.Geconstateerde verschillen in schade tussen appelrassen blijken goeddeels terug te voeren op verschillen in pluktijdstip. De rupsen van de herfstbladroller zijn pas half-was als de eerste appels eind augustus geplukt worden, terwijl tegen het einde van de oogst begin oktober de meeste al in winterslaap zijn. Met name tussentijdse rassen, als Cox's Orange Pippin and Schone van Boskoop, lopen extra schade op doordat grotere rupsen met de geplukte vruchten in de kist terecht komen.Uit de rupsen werden negen, al van andere boomgaardbladrollers bekende, sluipwespen gekweekt, Omdat deze bladrollersoort, als enige in de boomgaard, als volgroeide rups overwintert, lijkt zij bij uitstek geschikt als winterwaard.This study was carried out at the Experimental Orchard De Schuilenburg, Schuilenburg 3, 4041 BK Kesteren, the Netherlands, to which address correspondence should be addressed.  相似文献   

18.
Molecular diagnostic techniques have been developed to differentiate the Ascochyta pathogens that infect cool season food and feed legumes, as well as to improve the sensitivity of detecting latent infection in plant tissues. A seed sampling technique was developed to detect a 1% level of infection by Ascochyta rabiei in commercial chickpea seed. The Ascochyta pathogens were shown to be genetically diverse in countries where the pathogen and host have coexisted for a long time. However, where the pathogen was recently introduced, such as A. rabiei to Australia, the level of diversity remained relatively low, even as the pathogen spread to all chickpea-growing areas. Pathogenic variability of A. rabiei and Ascochyta pinodes pathogens in chickpea and field pea respectively, appears to be quantitative, where measures of disease severity were based on aggressiveness (quantitative level of infection) rather than on true qualitative virulence. In contrast, qualitative differences in pathogenicity in lentil and faba bean genotypes indicated the existence of pathotypes of Ascochyta lentis and Ascochyta fabae. Therefore, reports of pathotype discrimination based on quantitative differences in pathogenicity in a set of specific genotypes is questionable for several of the ascochyta-legume pathosystems such as A. rabiei and A. pinodes. This is not surprising since host resistance to these pathogens has been reported to be mainly quantitative, making it difficult for the pathogen to overcome specific resistance genes and form pathotypes. For robust pathogenicity assessment, there needs to be consistency in selection of differential host genotypes, screening conditions and disease evaluation techniques for each of the Ascochyta sp. in legume-growing countries throughout the world. Nevertheless, knowledge of pathotype diversity and aggressiveness within populations is important in the selection of resistant genotypes.  相似文献   

19.
In the summer of 2004 an epidemic of sclerotinia blight of peanut, a disease caused by Sclerotinia minor, occurred in Texas in fields where the disease was never previously detected. The disease was observed on many plants within one of the fields (>3000 disease foci), although most foci were <1 m. It is hypothesized that these observations were inconsistent with the recent introduction of a monocyclic pathogen, even if disease developed under conducive environmental conditions. The pattern of disease is most suggestive of the presence of foliar (ascospore) infections, although air temperature was above the known limits for apothecia development if the pathogen had arrived in the field in 2004 peanut seed. To further examine this epidemic, 232 isolates were collected, across a variety of spatial scales spanning this field and other Texas peanut fields, and evaluated for aggressiveness, fungicide sensitivity and genotypic diversity. There was wide variation among isolates for the phenotypic characteristics measured, but there was no evidence that a genotypically unique, highly aggressive, and fungicide resistant isolate had been introduced or evolved. The predominant genotype, TX1, which contained 154 isolates, was found in every county and field population.  相似文献   

20.
Four species so far classified in Pseudocercosporella or Ramulispora (hyphomycetes) are associated with eyespot disease symptoms of cereals. Two of these have been linked to teleomorphs that were described in Tapesia. Sequence data derived from the Internal Transcribed Spacer region (ITS1, 5.8S and ITS2) of the rDNA operon showed, however, that the eyespot fungi associated with Tapesia are not congeneric with Ramulispora sorghi, the type of Ramulispora. The genus name Tapesia is now rejected in favour of the conserved name Mollisia, which appears to comprise heterogeneous fungi. Tapesia yallundae is not closely related to the type of Mollisia, M. cinerea, but clusters separately, being more closely allied to species with Cadophora anamorphs. A new holomorph genus, Oculimacula, is therefore proposed for teleomorphs of the eyespot fungi, while the anamorphs are accommodated in Helgardia gen. nov.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号