首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bacterial wilt (BW), caused by Ralstonia solanacearum, is one of the most destructive bacterial diseases of Solanaceous species worldwide. The species infects plants in more than 200 species and 50 families and was ranked second in a list of the top 10 most scientifically and economically important bacterial plant pathogens [1]. The molecular mechanisms underlying resistance and the functions of R. solanacearum effectors are beginning to be uncovered, and much remains to be discovered. In this mini-review, we provide a summary of host resistance and R. solanacearum virulence mechanisms, with a focus on tomato.  相似文献   

2.
Tomato is an important species grown in many countries, either in fields or greenhouses. Despite decades of improvement, it is still susceptible to diseases, thus requiring the use of chemical pesticides, especially in greenhouses. Nevertheless it is imperative to reduce the use of environmental-unfriendly phytochemicals and favor less toxic tools to fight pathogens. Plants possess elaborate mechanisms against diseases that can lead to resistance. In the present work, we investigate the induction of plant defenses by means of extracts from plants widespread and easy to find, also known for their antimicrobial properties. Aqueous extracts of pepper ‘Rocoto’, wild rue and ethanolic extracts of clove powder (whose inhibiting effect was assessed on Oidium sp. spores) were tested on tomato plants for their ability to induce expression of different defense genes (PRs and regulatory proteins) after spraying. As revealed by RT-qPCR, all extracts were able to induce mRNA accumulation of different PR and MAPK regulators for several hours upon treatment, with clove and wild rue being the strongest. This effect could also be reproduced in tomato plants after a second treatment, 15 days after the first. The same extracts were tested in tomato and tobacco plants via leaf infiltration, showing necrotic symptoms associated with the hypersensitive response, thus confirming the priming capacity of the extracts. The involvement of salicylic acid (SA) in these responses was verified by HPLC analysis and in SA-depleted transgenic tobacco (NahG). The results obtained suggest that natural antimicrobial extracts can be used to induce plant defenses and protect valuable crops. At the same time these low-cost extracts do not pose a threat to the environment or the farmer and can help reduce the farming costs, especially in developing countries.  相似文献   

3.
Root‐knot nematodes (RKNs) heavily damage most solanaceous crops worldwide. Fortunately, major resistance genes are available in a number of plant species, and their use provides a safe and economically relevant strategy for RKN control. From a structural point of view, these genes often harbour NBS–LRR motifs (i.e. a nucleotide binding site and a leucine rich repeat region near the carboxy terminus) and are organised in syntenic clusters in solanaceous genomes. Their introgression from wild to cultivated plants remains a challenge for breeders, although facilitated by marker‐assisted selection. As shown with other pathosystems, the genetic background into which the resistance genes are introgressed is of prime importance to both the expression of the resistance and its durability, as exemplified by the recent discovery of quantitative trait loci conferring quantitative resistance to RKNs in pepper. The deployment of resistance genes at a large scale may result in the emergence and spread of virulent nematode populations able to overcome them, as already reported in tomato and pepper. Therefore, careful management of the resistance genes available in solanaceous crops is crucial to avoid significant reduction in the duration of RKN genetic control in the field. From that perspective, only rational management combining breeding and cultivation practices will allow the design and implementation of innovative, sustainable crop production systems that protect the resistance genes and maintain their durability. © 2015 Society of Chemical Industry  相似文献   

4.
Crops resistant to insect attack offer an alternative strategy of pest control to a total reliance upon chemical pesticides. Transgenic plant technology can be a useful tool in producing resistant crops, by introducing novel resistance genes into a plant species. This technology is seen very much as forming an integral component of a crop management programme. Several different classes of plant proteins have been shown to be insecticidal towards a range of economically important insect pests from different orders; in some cases a role in the defence of specific plant species against phytophagous insects has been demonstrated. Genes encoding insecticidal proteins have been isolated from various plant species and transferred to crops by genetic engineering. Amongst these genes are those that encode inhibitors of proteases (serine and cysteine) and α-amylase, lectins, and enzymes such as chitinases and lipoxygenases. Examples of genetically engineered crops expressing insecticidal plant proteins from different plant species, with enhanced resistance to one or more insect pests from the orders Lepidoptera, Homoptera and Coleoptera are presented. The possibility of ‘pyramiding’ different resistance genes to improve the effectiveness of protection and durability is discussed and exemplified. The number of different crop species expressing such genes is very diverse and ever-increasing. The viability of this approach to crop protection is considered. © 1998 SCI.  相似文献   

5.
Recent taxonomic advances, based on biochemical and genotypic processes demonstrate that the plant pathogenic species Pseudomonas cichorii consists of a cluster of closely related genomic groups. Prior to this study, three morphotype groups had been described (C1-C3), all sharing various phenotypic and biochemical characters but partially differing in their DNA content. All entities of the complex could cause disease among a variety of hosts, including lettuce, celery, chrysanthemum and others. In this study, we present the biochemical and molecular characterization of P. cichorii isolates as the causal agent of pith necrosis of tomato plants. A detailed characterization of the genetic variability among strains belonging to P. cichorii was achieved using BOX-PCR and Multi Locus Sequence Analysis utilizing three housekeeping genes (gyrB, rpoD, rpoB). In addition, a number of biochemical and physiological tests were also used for the identification of the tomato P. cichorii isolates. To our knowledge, this is the first complete biochemical, molecular and phylogenetic study of P. cichorii strains isolated from tomato plants affected by pith necrosis disease. Our findings demonstrate the emergence of a new genomovar of P. cichorii, yet another indication for the genetic heterogeneity of the species.  相似文献   

6.
The oomycete Phytophthora infestans is the causal agent of potato late blight, one of the most destructive and historically significant pathogens in agricultural production. A virus-induced gene silencing-based screening of the solanaceous model plant N. benthamiana resulted in revealing a wide range of resistance mechanisms of solanaceous plants against this pathogen. In this article, we present an overview of the various pathways involved in the N. benthamianaP. infestans pathosystem, including some of the follow-up work that was triggered by these findings. The purpose of this review is to assemble these findings and integrate them into our current understanding of plant pathogen defense mechanisms and discuss their potential application for the development of potato resistance to P. infestans.  相似文献   

7.
Pathogenic isolates of Fusarium oxysporum applied on a non-host plant species, as soil-borne non-pathogenic isolates, are able to protect this plant against pathogenic strains inducing wilts. Several modes of action contribute to the biocontrol activity of these protective strains; however the genetic basis of the biocontrol mechanisms is far from being understood. The aim of this study was to identify genes involved in biocontrol activity of F. oxysporum using an original model made of Fom24, a strain protective on tomato and its mutant rev157 which has lost its protective capacity. A Rapid Subtractive Hybridization (RaSH) approach was chosen to identify genes up-regulated in the protective or in the non-protective interaction when germinated conidia of either Fom24 or rev157 are confronted to tomato cell cultures. A total of 86 up-regulated sequences were generated, 42 and 44 from the protective and the non-protective interaction respectively. Homology searches led to identification of both plant and fungal genes that were grouped according to their putative functions. Among plant genes, those involved in plant response to stresses were the most abundant. Expression profiles of genes homolog to a basic endochitinase, a ferredoxine-NADP(H) reductase (FNR), an ATP synthase and the RPM1-interacting protein 4 (RIN4) were confirmed by Northern blotting. A large proportion of fungal sequences were encoding genes of unknown function; among other, those involved in response to oxidative stress and a gene putatively encoding an enolase are the most promising to further study their potential role in the protective interaction between F. oxysporum and tomato.  相似文献   

8.
Breeding resistance to whitefly‐transmitted begomoviruses is an important goal of tomato breeding programmes worldwide. So far, resistance to begomoviruses in tomato has been achieved using wild species, and at least five resistance genes (Ty genes) have been studied. The present study was undertaken to combine Ty‐2 and Ty‐3 and to determine the effect of pyramiding on infection of tomato by three diverse begomovirus species. The diagnostic ability of the markers linked to Ty genes was assessed and marker‐assisted selection was used to develop pyramided tomato lines from the crosses between Ty stocks. Five stable pyramided tomato lines that differ in fruit morphology and yield potential were developed. The horticultural performance of pyramided lines in field trials showed that the yield and horticultural traits are well maintained in the plants. The response of these lines was assessed using agroinoculation and field tests in a disease hotspot. The pyramided lines and Ty‐3‐carrying lines exhibited a high level of resistance to the monopartite and two bipartite begomoviruses tested. The pyramided tomato lines developed in this study could be important genetic resources for sustainable tomato production in areas affected by tomato leaf curl virus disease. The combined results of disease resistance tests also showed that Ty‐3 is critical for achieving broad‐spectrum resistance. The limitations of relying on a single gene and the importance of pyramiding are discussed in the light of available evidence on frequent recombination in begomoviruses.  相似文献   

9.
Induced resistance by chemicals such as acibenzolar-S-methyl -ASM (commercialized as Actigard by Syngenta Inc) mimics the biological activation of systemic acquired resistance (SAR). ASM takes the place of salicylic acid (SA) in the SAR signal pathway inducing the same molecular markers and range of resistance. The goal of our work was to understand the downstream molecular events by which ASM confers resistance to Phytophthora infestans in tomatoes. To accomplish this goal we assayed gene expression in ASM-treated plants using a microarray with more than 12,000 tomato ESTs. As many as 300 genes were responsive to ASM. Of these, 117 were detected in most of the biological replications. Basal defense associated genes as well as SAR and disease resistance genes (R-like) involved in induced resistance and effector-triggered immunity were highly expressed. We attempted to determine the phenotype of 13 of these genes by virus induced gene silencing (VIGS). These 13 genes were selected on the basis of previous implication in plant defense response and by reliability of induction by ASM. VIGS was partially successful for three of the 13 genes, but this partial silencing did not lead to a significant reduction in the effect of ASM. The ethylene pathway was also activated in response to ASM, but a tomato mutant not responsive to ethylene remained responsive to ASM. It seems most likely that the ASM effect is complex and polygenic, depending on the effect of several genes.  相似文献   

10.
The main causal agent of early blight, the noxious disease of solanaceous crops, is generally considered to be Alternaria solani Sorauer (in a broad sense). However, heterogeneity in many morphological features of this pathogen has been noted suggesting that the disease may not be caused by a single species. Recent research has revealed that several large-spored Alternaria species may cause disease of potato and tomato including A. solani sensu stricto and A. tomatophila. The goal of our research was to compare Russian large-spored Alternaria isolates from tomato and potato to test the hypothesis that early blight of tomato and potato are caused by different species. Cluster analysis of genetic distances estimated from 12 polymorphic molecular markers (universally primed-polymerase chain reaction and randomly amplified polymorphic DNA) revealed two groups of isolates accepted here as A. solani and A. tomatophila that were supported by morphology and host plant association. Differentiation of species was supported by phylogeny derived from the DNA sequences of a portion of the Alt a1, gpd and calmodulin genes. Species-specific primers based on the Alt a1 and calmodulin gene sequences for both species were designed. Under laboratory conditions, A. solani isolates were equally aggressive on both tomato and potato, whereas A. tomatophila was highly aggressive to tomato but only weakly aggressive to potato. In the field, A. solani was isolated from potato, tomato and from several wild potato species including S. schickii, S. papita and S. kurtzianum. The majority (90 %) of A. solani isolates carried the mating type locus 1 (MAT1) idiomorph MAT1-1 while the majority (88 %) of A. tomatophila isolates carried the MAT1-2 idiomorph.  相似文献   

11.
TIR-NBS-LRR (TNL) genes greatly affect plant growth and development. Ninety TNL-type genes were identified and characterized in Chinese cabbage (Brassica rapa ssp. pekinensis). Tissue-expression profiling revealed different expression levels in different tissues. qRT-PCR analysis revealed the expression patterns of 69 genes challenged by Turnip mosaic virus (TuMV): 42 genes were up-regulated, and 11 genes down-regulated; genes were grouped according to their different expression patterns. Sixteen candidate genes were identified as responding to TuMV infection. This study supplies information on resistance genes involved in Chinese cabbage's response against TuMV, and furthers the understanding of resistance mechanisms in B. rapa crops.  相似文献   

12.
Aphids damage major world food and fiber crops through direct feeding and transmission of plant viruses. Fortunately, the development of many aphid‐resistant crop plants has provided both ecological and economic benefits to food production. Plant characters governing aphid host selection often dictate eventual plant resistance or susceptibility to aphid herbivory, and these phenotypic characters have been successfully used to map aphid resistance genes. Aphid resistance is often inherited as a dominant trait, but is also polygenic and inherited as recessive or incompletely dominant traits. Most aphid‐resistant cultivars exhibit constitutively expressed defenses, but some cultivars exhibit dramatic aphid‐induced responses, resulting in the overexpression of large ensembles of putative aphid resistance genes. Two aphid resistance genes have been cloned. Mi‐1.2, an NBS‐LRR gene from wild tomato, confers resistance to potato aphid and three Meloidogyne root‐knot nematode species, and Vat, an NBS‐LRR gene from melon, controls resistance to the cotton/melon aphid and to some viruses. Virulence to aphid resistance genes of plants occurs in 17 aphid species – more than half of all arthropod biotypes demonstrating virulence. The continual appearance of aphid virulence underscores the need to identify new sources of resistance of diverse sequence and function in order to delay or prevent biotype development. © 2013 Society of Chemical Industry  相似文献   

13.
Phytohormones are involved in the regulation of plant responses to biotic stress. How a limited number of hormones differentially regulate defence responses and influence the outcome of plant–biotic interactions is not fully understood. In recent years, cytokinin (CK) was shown to induce plant resistance against several pathogens. In the present study, we investigated the effect of CK in inducing tomato resistance against the hemibiotrophic pathogenic bacteria Xanthomonas campestris pv. vesicatoria (Xcv) and Pseudomonas syringae pv. tomato (Pst). We demonstrate that CK enhances tomato resistance to Xcv and Pst through a process that relies on salicylic acid and ethylene signalling. CK did not directly affect the growth or biofilm formation ability of these pathogens in vitro. Overall, our work provides insight into the underlying mechanisms of CK-induced immune responses against bacterial pathogens in tomato.  相似文献   

14.
Classification and parasitic specialization of blast fungi   总被引:1,自引:0,他引:1  
Pyricularia oryzae (Magnaporthe oryzae), a causal agent of blast diseases on staple gramineous crops, is a model organism listed as the most important economically and scientifically of the top 10 fungal pathogens by fungal molecular pathologists. Although we are now in an era of genome-enabled analysis, we need to understand the history of the pathogen’s taxonomy, classification, and parasitic specialization in addition to recent research advances. In this review, we focus on these rather fundamental topics. First, the history of classification, including the discovery of its sexual stage and designation, is overviewed. Based on recent results of phylogenetic analysis of Magnaporthaceae isolates, blast fungi are suggested to constitute a robust population that is not congeneric with Magnaporthe salvinii, the type species of Magnaporthe. Second, genetic mechanisms involved in its parasitic specialization into host-specific subgroups and races are outlined. Implications of recent molecular data for resistance breeding are discussed.  相似文献   

15.
Genetic exchange is considered to be an important process in the selective adaptation of microorganisms to shifting and challenging environmental conditions. As a consequence of the copious use of copper bactericides, many species of plant pathogenic bacteria, including Xanthomonas citri subsp. citri (Xcc), have developed resistance to copper. This study assesses whether copper resistant (CuR) strains of other Xanthomonas species and citrus epiphytic bacteria pose a risk for the development of copper resistance in Xcc. CuR epiphytic bacteria were isolated on MGY agar from citrus leaves collected in two citrus groves treated with copper bactericides in Florida. Horizontal gene transfer of copper resistance genes was investigated within different Xanthomonas species and from citrus epiphytic bacteria to Xanthomonas. CuR epiphytic bacteria from citrus were screened for the presence of copper resistance genes homologous to copL, copA and copB genes from Xcc and characterized regarding tolerance to copper. Copper resistance determinants from a citrus epiphytic strain of Stenotrophomonas maltophilia (Stm) were cloned and expressed in Xcc and other Xanthomonas strains. Copper resistance genes in Xcc were determined to be present on a large (~300?kb) conjugative plasmid. Cu resistance was transferred via conjugation from two copper resistant citrus strains, Xcc and X. alfalfae subsp. citrumelonis (Xac), and two tomato pathogens, X. euvesicatoria (Xe) and X. perforans (Xp), to Xcc. PCR analysis revealed that two CuR strains from citrus, an epiphytic Xanthomonas ssp. and a strain of Stm, harboured homologs of the copper resistance genes found in CuR Xcc. The introduction of copLAB gene cluster from Stm into different xanthomonads conferred copper resistance to sensitive strains of Xcc, Xac, Xe and Xp. Based on these results there is a low, but significant, likelihood of horizontal gene transfer of copper resistance genes from other xanthomonads or epiphytic bacteria to Xcc in nature.  相似文献   

16.
植物抗虫基因工程为控制害虫的危害提供了新的途径。目前,对同翅目害虫具抗虫活性的基因有三种来源,(1)植物:如植物凝集素基因、番茄抗线虫基因Mi等;(2)微生物:如异戊烯转移酶抗性基因;(3)动物:如来自一些昆虫的蛋白酶抑制素基因。其中一些基因已被成功地转入植物体内,并且获得的转基因抗虫植物对同翅目害虫的生长、发育、繁殖能力等方面都具有一定的抑制作用,表现出这些抗虫基因在防治这类害虫中的应用潜力。雪花莲凝集素可通过人工饲料或转基因作物进入昆虫体内,并通过营养级传递于天敌,进而对天敌造成直接或间接的影响。  相似文献   

17.
Several species of Xanthomonas cause bacterial leaf spot, a disease that affects solanaceous crops worldwide. The diversity of 64 Australian isolates of Xanthomonas spp. associated with bacterial leaf spot in tomato, capsicum and chilli crops in eastern Australia was determined using multi-locus sequence analysis of atpD, dnaK, efp and gyrB genes, species-specific PCR assays and biochemical analyses. At least five species of Xanthomonas associated with bacterial leaf spot were identified in Australian tomato, capsicum and chilli crops and their pathogenicity assessed. Phylogenetic and biochemical analyses identified X. euvesicatoria, X. perforans and X. vesicatoria as the most frequently recovered pathogenic species. Non-pathogenic and weakly pathogenic species were also identified. The suitability of the identification methods used and the implications of the detection of these species will be discussed.  相似文献   

18.
Plant NADPH oxidases are key regulators of plant–microbe interactions and reactive oxygen species (ROS) are essential to plant defences against pathogens. A significant part in the role played by ROS has been ascribed to plant respiratory burst oxidase homologs (RBOHs). In potato (Solanum tuberosum), where RBOHs were previously shown to be involved in wound-induced oxidative burst, we assessed their expression after inoculation with Verticillium dahliae Kleb. and showed that StRbohA was the only homolog to be differentially induced in potato in response to inoculation. In order to investigate the potential role of this gene in plant protection against wilt diseases, we used Agrobacterium-mediated transformation of Arabidopsis to assess the effects of its overexpression on plant responses to V. dahliae. After inoculation with this pathogen, the transformed Arabidopsis line overexpressing StRbohA showed lower disease severity (percent damaged leaf area and vascular discoloration) as compared to the wild type. It also had higher ROS production and more cell death caused by hydrogen peroxide (H2O2), compared to the wild type. Suberization of root cells was also more pronounced in the line overexpressing StRbohA, and supports a possible role for StRBOHA in plant resistance to V. dahliae. Together, these findings indicate that overexpressed StRbohA in Arabidopsis enhances the ROS-mediated defence mechanisms against V. dahliae and can be a potential tool to improve plant resistance to this and other soilborne pathogens that cause wilts in economically important crops.  相似文献   

19.
Previous works indicated a considerable variation in the pathogenicity, virulence, and host range of Oidium neolycopersici isolates causing tomato powdery mildew epidemics in many parts of the world. In this study, rDNA internal transcribed spacer (ITS) sequences, and amplified fragment length polymorphism (AFLP) patterns were analyzed in 17 O. neolycopersici samples collected in Europe, North America, and Japan, including those which overcame some of the tomato major resistance genes. The ITS sequences were identical in all 10 samples tested and were also identical to ITS sequences of eight previously studied O. neolycopersici specimens. The AFLP analysis revealed a high genetic diversity in O. neolycopersici and indicated that all 17 samples represented different genotypes. This might suggest the existence of either a yet unrevealed sexual reproduction or other genetic mechanisms that maintain a high genetic variability in O. neolycopersici. No clear correlation was found between the virulence and the AFLP patterns of the O. neolycopersici isolates studied. The relationship between O. neolycopersici and powdery mildew anamorphs infecting Aquilegia vulgaris, Chelidonium majus, Passiflora caerulea, and Sedum alboroseum was also investigated. These anamorphs are morphologically indistinguishable from and phylogenetically closely related to O. neolycopersici. The cross-inoculation tests and the analyses of ITS sequences and AFLP patterns jointly indicated that the powdery mildew anamorphs collected from the above mentioned plant species all represent distinct, but closely related species according to the phylogenetic species recognition. All these species were pathogenic only to their original host plant species, except O. neolycopersici which infected S. alboroseum, tobacco, petunia, and Arabidopsis thaliana, in addition to tomato, in cross-inoculation tests. This is the first genome-wide study that investigates the relationships among powdery mildews that are closely related based on ITS sequences and morphology. The results indicate that morphologically indistinguishable powdery mildews that differed in only one to five single nucleotide positions in their ITS region are to be considered as different taxa with distinct host ranges.  相似文献   

20.
Changes in global temperature and humidity as a result of climate change are producing rapid evolutionary changes in many animal species, including agricultural pests and disease vectors, leading to changes in allele frequencies of genes involved in thermotolerance and desiccation resistance. As some of these genes have pleiotropic effects on insecticide resistance, climate change is likely to affect insecticide resistance in the field. In this review, we discuss how the interactions between adaptation to climate change and resistance to insecticides can affect insecticide resistance in the field using examples in phytophagous and hematophagous pest insects, focusing on the effects of increased temperature and increased aridity. We then use detailed genetic and mechanistic studies in the model insect, Drosophila melanogaster, to explain the mechanisms underlying this phenomenon. We suggest that tradeoffs or facilitation between adaptation to climate change and resistance to insecticides can alter insecticide resistance allele frequencies in the field. The dynamics of these interactions will need to be considered when managing agricultural pests and disease vectors in a changing climate. © 2019 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号