首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The pituitary is an important endocrine tissue of the vertebrate that produces and secretes many hormones. Accumulating data suggest that several types of cells compose the pituitary, and there is growing interest in elucidating the origin of these cell types and their roles in pituitary organogenesis. Therein, the histogenous cell line is an extremely valuable experimental tool for investigating the function of derived tissue. In this study, we compared gene expression profiles by microarray analysis and real-time PCR for murine pituitary tumor-derived non-hormone-producing cell lines TtT/GF, Tpit/F1 and Tpit/E. Several genes are characteristically expressed in each cell line: Abcg2, Nestin, Prrx1, Prrx2, CD34, Eng, Cspg4 (Ng2), S100β and nNos in TtT/GF; Cxcl12, Raldh1, Msx1 and Twist1 in Tpit/F1; and Cxadr, Sox9, Cdh1, EpCAM and Krt8 in Tpit/E. Ultimately, we came to the following conclusions: TtT/GF cells show the most differentiated state, and may have some properties of the pituitary vascular endothelial cell and/or pericyte. Tpit/F1 cells show the epithelial and mesenchymal phenotypes with stemness still in a transiting state. Tpit/E cells have a phenotype of epithelial cells and are the most immature cells in the progression of differentiation or in the initial endothelial-mesenchymal transition (EMT). Thus, these three cell lines must be useful model cell lines for investigating pituitary stem/progenitor cells as well as organogenesis.  相似文献   

4.
Recent studies have shown that undifferentiated stem cells act as immunomodulators. To investigate the immunomodulatory function of the progenitor cells of the anterior pituitary gland, we attempted to establish a stem/progenitor cell line from the porcine anterior pituitary gland, and to detail its inflammatory cytokine expression. A cloned cell line from the porcine anterior pituitary gland was established and was designated as the porcine anterior pituitary-derived cell line (PAPC). PAPC expressed the mRNA of Nanog and Oct-4, and showed positive immunoreactivity for beta-catenin and Hes1 in its nucleus. PAPC grew stably by repeated passage and rapidly in the EGF and bFGF containing medium. RT-PCR showed that PAPC expressed mRNA of IL-1alpha, IL-6, IL-12, IL-15, IL-18 and TLR4. PAPC expressed S100alpha and IL-18 protein, which was localized in the marginal epithelial cells of Rathke's pouch. These results suggest that PAPC is a stem/progenitor cell and may regulate anterior pituitary cell function through an immuno-endocrine pathway.  相似文献   

5.
猪垂体特异性转录因子1基因cDNA的克隆及序列分析   总被引:2,自引:2,他引:0  
本试验根据公开发表的猪POU1F1基因序列设计1对引物,提取猪垂体总RNA,通过RT-PCR方法扩增出POU1F1基因cDNA全序列,扩增产物用琼脂糖凝胶检测为预期的876 bp特异性条带。将扩增产物克隆入PTZ57R/T载体进行序列测定。经DNAStar软件分析序列与已发表序列同源性为99.7%,克隆获得的序列为进一步对猪POU1F1基因不同拼接形式功能性研究奠定了基础。  相似文献   

6.
Research on sex-determining region Y-box 2 (SOX2)-positive pituitary stem/progenitor cells, as a source of hormone-producing cells, is progressing rapidly in rodents. However, the stem/progenitor cells supplying hormone-producing cells that are essential for growth, reproduction, and lactation in bovines have not yet been identified. In this study, we characterized SOX2-positive cells in the pituitary gland of dairy cattle (Holstein heifers) after sexual maturity. Immunofluorescence analysis revealed that the localization pattern of SOX2-positive cells in the dairy cattle pituitary gland was similar to that observed in the rodent pituitary gland; the marginal cell layer (MCL), dense cell clusters, and single cells scattered in the parenchyma of the anterior lobe. Furthermore, most of the SOX2-positive cells were positive for the pituitary stem/progenitor cell niche markers E-cadherin and cytokeratin 8+18, which have been reported in rodents. In addition, in the MCL of the anterior lobe, there was a subpopulation of SOX2-positive cells positive for paired-related homeobox 1 and 2, whereas negative for S100β. Moreover, in the parenchyma of the anterior lobe, co-localization of SOX2 and pituitary hormones was infrequent. In summary, this study reveals the localization of putative pituitary stem/progenitor cells positive for SOX2 in dairy cattle. These results provide valuable information to support further investigation of cell supply in the dairy cattle pituitary gland.  相似文献   

7.
Pretreatment of somatic cells with undifferentiated cell extracts, such as embryonic stem cells and mammalian oocytes, is an attractive alternative method for reprogramming control. The properties of induced pluripotent stem cells (iPSCs) are similar to those of embryonic stem cells; however, no studies have reported somatic cell nuclear reprogramming using iPSC extracts. Therefore, this study aimed to evaluate the effects of porcine iPSC extracts treatment on porcine ear fibroblasts and early development of porcine cloned embryos produced from porcine ear skin fibroblasts pretreated with the porcine iPSC extracts. The ChariotTM reagent system was used to deliver the iPSC extracts into cultured porcine ear skin fibroblasts. The iPSC extracts-treated cells (iPSC-treated cells) were cultured for 3 days and used for analyzing histone modification and somatic cell nuclear transfer. Compared to the results for nontreated cells, the trimethylation status of histone H3 lysine residue 9 (H3K9) in the iPSC-treated cells significantly decreased. The expression of Jmjd2b, the H3K9 trimethylation-specific demethylase gene, significantly increased in the iPSC-treated cells; conversely, the expression of the proapoptotic genes, Bax and p53, significantly decreased. When the iPSC-treated cells were transferred into enucleated porcine oocytes, no differences were observed in blastocyst development and total cell number in blastocysts compared with the results for control cells. However, H3K9 trimethylation of pronuclear-stage-cloned embryos significantly decreased in the iPSC-treated cells. Additionally, Bax and p53 gene expression in the blastocysts was significantly lower in iPSC-treated cells than in control cells. To our knowledge, this study is the first to show that an extracts of porcine iPSCs can affect histone modification and gene expression in porcine ear skin fibroblasts and cloned embryos.  相似文献   

8.
Mammalian uterus contains a population of mesenchymal stem/progenitor cells that likely contribute to endometrial regeneration during each reproductive cycle. In human and mouse, they reside in perivascular, epithelial and stromal compartments of the endometrial functionalis and basalis. Here, we aimed to identify tissue resident cells expressing mesenchymal stem cell markers CD29, CD44, CD90, CD105, CD140b and CD146 in the porcine endometrium. We used single immunofluorescence and Western blotting. Each of these markers was detected in small cells surrounding endometrial blood vessels. CD105 and CD146 were also expressed in single stromal cells. A few stromal and perivascular cells showed the presence of pluripotency marker Oct4 in the cytoplasm, but not in the nucleus, which may imply they are not truly pluripotent. Endometrial cell cultures were examined for the expression of CD29, CD44, CD90, CD105 and CD140b proteins and tested in wound‐healing assay and culture model of chemotaxis. In conclusion, our results demonstrate perivascular location of prospective mesenchymal stem/progenitor cells in the porcine endometrium and may suggest that stromal CD105+ and CD146+ cells represent more mature precursors originating from their perivascular ancestors.  相似文献   

9.
10.
11.
Prop-1 acts as an upstream regulator for the Pit-1 gene to induce development of Pit-1 lineage pituitary cell lines, GH-, PRL-, and TSH-producing cells, in the early stage of pituitary organogenesis. Furthermore, Prop-1 is presumed to be involved in the function of FSH/LH-producing cells, gonadotropes, since the defective Prop-1 gene shows hypogonadism. Recently, we reported evidence that Prop-1 directly regulates expression of the porcine FSHbeta gene, thus providing a novel advance in understanding the function of Prop-1 in FSH/LH production and hypogonadism. This study was intended to demonstrate the expressions of Prop-1 gene in pituitary tumor-derived cell lines. RT-PCR analyses were conducted of Pit-1, glycoprotein alpha subunit (alphaGSU), GnRH receptor, and cyclophilin A (a ubiquitously expressing gene). We observed expression of the Pit-1 gene in alphaT1-1, TalphaT1, MtT/S, GH3, and TtT/GF cells, expression of the alphaGSU gene in alphaT1-1, alphaT3-1, LbetaT2, LbetaT4, TalphaT1, and GH3 cells, and expression of GnRH receptor gene in alphaT3-1, LbetaT2, LbetaT4, and GH3 cells, respectively. These expression profiles were in accord with their cell lineages, with only a few exceptions. To accurately measure the expression level of the Prop-1 gene, a quantitative analysis was performed using the real-time PCR method. This analysis demonstrated that the LbetaT2 and LbetaT4 gonadotrope cell lines, which express the FSHbeta gene, express the Prop-1 gene. Taken together with our previous observation that Prop-1 is present in the adult porcine pituitary gonadotropes, Prop-1 might also be involved in development of gonadotropes and hormone production.  相似文献   

12.
Actinobacillus suis is an important opportunistic pathogen of swine that can cause disease in pigs of all ages, especially in high-health status herds. Although A. suis shares many virulence factors in common with Actinobacillus pleuropneumoniae and can cause a haemorrhagic pleuropneumonia similar to that caused by A. pleuropneumoniae, A. suis most often causes septicaemia and diseases such as arthritis and meningitis that are sequelae to septicaemia. In a recent signature-tagged transposon mutagenesis study, 30 colonization-essential genes of A. suis were identified. In the current study, the attachment and invasion patterns of strains harboring Tn10 insertions in ompA, pfhaB1, lcbB, and cpxR were evaluated using porcine palatine tonsil organ cultures, the swine kidney epithelial cell line, SK6, and a porcine brain microvascular endothelial cell line, PBMEC/C1-2. All of these mutants attached in lower numbers than wild type to the tonsillar explants and to the SK6 cells. The ompA mutant attached in significantly lower numbers than wild type to the porcine tonsil cells (P = 0.02) and to PBMEC (P = 0.0008) at 60 min time point. As well, the ompA mutant showed significantly greater sensitivity than wild type to chemical stressors and to swine serum. Using fluorescent microscopy, a GST-OmpA fusion protein could be demonstrated to interact with the crypt epithelial cells of porcine palatine tonsil.  相似文献   

13.
Fertility of domestic roosters decreases at ∼50 wk of age. In a previous study on aging white leghorn roosters, low fertility was accompanied by low levels of both hypothalamic vasoactive intestinal peptide (VIP) and pituitary prolactin (PRL) mRNA expression; however, their role in aging broiler breeder rooster reproduction is still unclear. In this study we compared reproductive activities of young (35-wk-old) and aging (73-wk-old) broiler breeder roosters. Weekly semen volume; concentration and ejaculation grade; and concentrations of plasma testosterone, estradiol, and PRL were examined. Every other week, 10 roosters from each group were euthanized, their testes weighed, and hypothalamus and pituitary removed to determine mRNA expression of hypothalamic GnRH-I, pituitary FSH, pituitary LH, hypothalamic VIP, and pituitary PRL. Aging roosters had significantly lower testis weight and semen volume, sperm concentration, ejaculation grade and plasma testosterone and low hypothalamic GnRH-I, pituitary FSH, and pituitary LH mRNA expression than young roosters (P ≤ 0.05). Aging roosters had higher concentrations of plasma estradiol and PRL and higher hypothalamic VIP and pituitary PRL mRNA expression than young roosters (P ≤ 0.05). We suggest that PRL, which is known to inhibit the gonadal axis, and its releasing factor, VIP, play an important role in the reproductive failure associated with age in broiler breeder roosters.  相似文献   

14.
15.
16.
Leukemia inhibitory factor (LIF) is a pleiotropic cytokine of the IL-6 family that activates the hypothalamic-pituitary-adrenal axis and promotes corticotrope cell differentiation during development. The aim of this study was to investigate the expression of LIF and its receptor (LIFR) in the canine pituitary gland and in corticotrope adenomas, and to perform a mutation analysis of LIFR. Using immunohistochemistry, immunofluorescence, and quantitative expression analysis, LIF and LIFR expression were studied in pituitary glands of control dogs and in specimens of corticotrope adenoma tissue collected through hypophysectomy in dogs with pituitary-dependent hypercortisolism (PDH, Cushing's disease). Using sequence analysis, cDNA was screened for mutations in the LIFR. In the control pituitary tissues and corticotrope adenomas, there was a low magnitude of LIF expression. The LIFR, however, was highly expressed and co-localized with ACTH1-24 expression. Cytoplasmatic immunoreactivity of LIFR was preserved in corticotrope adenomas and adjacent nontumorous cells of pars intermedia. No mutation was found on mutation analysis of the complete LIFR cDNA. Surprisingly, nuclear to perinuclear immunoreactivity for LIFR was present in nontumorous pituitary cells of the pars distalis in 10 of 12 tissue specimens from PDH dogs. These data show that LIFR is highly co-expressed with adrenocorticotropic hormone (ACTH) and α-melanocyte-stimulating hormone (α-MSH) in the canine pituitary gland and in corticotrope adenomas. Nuclear immunoreactivity for LIFR in nontumorous cells of the pars distalis may indicate the presence of a corticotrope adenoma.  相似文献   

17.
Thirty-one Aeromonas hydrophila, 13 A. sobria and two A. salmonicida strains of diverse sources were tested for enterotoxigenicity, hemagglutination and cell surface hydrophobicity. Although 93% of the culture supernatant fluids of the Aeromonas strains exhibited cytotoxic effects on Y1 adrenal and Chinese hamster ovary (CHO) cells, typical rounding of Y1 adrenal cells was reproducibly observed before cytotoxicity for 80% of the isolates within 1 h of exposure.Twenty-eight strains were positive for delayed permeability factor (DPF) activity in rabbit skin. Culture filtrates of 16 of 20 strains that were positive both in the Y1 adrenal cell test and for DPF activity elicited fluid accumulation in rabbit ileal loops. The DPF and ileal loop activities were neutralizable by cholera antitoxin. All, except two strains each of A. sobria and A. hydrophila, produced a heat-stable, rapid permeability factor (RPF) detected in rabbit skin. Heat-treated culture supernatant fluids of two A. hydrophila and one A. sobria isolate gave positive responses in the infant mouse assay. Nine other strains gave borderline reactions.When A. hydrophila and A. sobria isolates were grown in broth, approximately 90% agglutinated bovine, chicken, human group A and guinea-pig erythrocytes in the presence of mannose at 4°C and/or 20°C. The two A. salmonicida isolates produced mannose resistant hemagglutination (MRHA) of these four blood types.Hydrophobic interaction chromatography indicated adhesive potential in 61% A. hydrophila and 100% A. sobria strains expressing weak to strong hydrophobic cell surface properties. The results of these investigations strongly imply that the Aeromonas strains produce a cytotonic enterotoxin immunologically related to cholera toxin. Adhesive characteristics were commonly found in both clinical and routine isolates.  相似文献   

18.
To date, stem/progenitor cells have not been identified in the canine pituitary gland. Cells that efficiently exclude the vital dye Hoechst 33342 can be visualised and identified using fluorescence activated cell sorting (FACS) as a 'side population' (SP), distinct from the main population (MP). Such SPs have been identified in several tissues and display stem/progenitor cell characteristics. In this study, a small SP (1.3%, n=6) was detected in the anterior pituitary glands of healthy dogs. Quantitative PCR indicated significantly higher expression of CD34 and Thy1 in this SP, but no differences in the expression of CD133, Bmi-1, Axin2 or Shh. Pro-opiomelanocortin (POMC) and Lhx3 expression were significantly higher in the MP than in the SP, but no differences in the expression of Tpit, GH or PRL were found. The study demonstrated the existence of an SP of cells in the normal canine pituitary gland, encompassing cells with stem cell characteristics and without POMC expression.  相似文献   

19.
In mouse embryos, segregation of the inner cell mass (ICM) and trophectoderm (TE) lineages is regulated by genes, such as OCT-4, CDX2 and TEAD4. However, the molecular mechanisms that regulate the segregation of the ICM and TE lineages in porcine embryos remain unknown. To obtain insights regarding the segregation of the ICM and TE lineages in porcine embryos, we examined the mRNA expression patterns of candidate genes, OCT-4, CDX2, TEAD4, GATA3, NANOG, FGF4, FGFR1-IIIc and FGFR2-IIIc, in blastocyst and elongated stage embryos. In blastocyst embryos, the expression levels of OCT-4, FGF4 and FGFR1-IIIc were significantly higher in the ICM than in the TE, while the CDX2, TEAD4 and GATA3 levels did not differ between the ICM and TE. The expression ratio of CDX2 to OCT-4 (CDX2/OCT-4) also did not differ between the ICM and TE at the blastocyst stage. In elongated embryos, OCT-4, NANOG, FGF4 and FGFR1-IIIc were abundantly expressed in the embryo disc (ED; ICM lineage), but their expression levels were very low in the TE. In contrast, the CDX2, TEAD4 and GATA3 levels were significantly higher in the TE than in the ED. In addition, the CDX2/OCT-4 ratio was markedly higher in the TE than in the ED. We demonstrated that differences in the expression levels of OCT-4, CDX2, TEAD4, GATA3, NANOG, FGF4, FGFR1-IIIc and FGFR2-IIIc genes between ICM and TE lineages cells become more clear during development from porcine blastocyst to elongated embryos, which indicates the possibility that in porcine embryos, functions of ICM and TE lineage cells depend on these gene expressions proceed as transition from blastocyst to elongated stage.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号