首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Conservation tillage practices are intended to minimize soil erosion. Yet little is known concerning changes in physical properties of subarctic soils subject to tillage practices. This study ascertained whether physical properties of a newly cleared subarctic soil are altered after 7 years of continuous barley (Hordeum vulgare L.) using different tillage and straw management strategies. Tillage and straw treatments were established in 1983 near Delta Junction, Alaska, and consisted of conventional fall and spring disk, fall chisel plow, spring disk, and no-tillage. Tillage plots were split by straw management practices, which included straw and stubble, stubble only, and no straw or stubble. Soil samples were collected from the upper 0.15 m of the profile in the spring of 1990 to assess water content, bulk density, saturated hydraulic conductivity, dry aggregate and mechanical stability, penetration resistance, water retention, and particle size distribution. Percent non-erodible aggregates, mechanical stability, and penetration resistance were greater for no-tillage compared to conventional tillage, chisel plow, and spring disk. No-tillage soils were also typically wetter, denser, and had a greater hydraulic conductivity. The spring disk treatment was least susceptible to erosion and also conserved soil water compared with chisel plow. Straw maintained on the surface conserved water and promoted soil stability.  相似文献   

2.
For corn crops on soils with fine texture in eastern Canada, research has been ongoing on the relationships between corn grain yields and management practice, soil strength/compaction, and soil nutrient status. However, these variables can operate in a complex manner that may not be detectable via uni-structural models. This study used regression-tree analysis, in an exploratory context, to model corn grain yields over a relatively flat clay to silty loam field on the basis of several soil physical, soil nitrate, and management variables. It was found that corn grain yields were first subdivided by length of time under corn production (1st and 3rd year corn groups). These yield groups were further subdivided by cone penetration resistance, elevation, soil nitrate, and soil texture information. Generally, higher corn grain yields were associated with 1st year corn, lower relative soil strength/compaction, and higher post-growing season soil nitrate levels. The modeled results helped to identify equifinality, context dependent relationships, and spatial continuity in inferred formative mechanisms; issues important in many field and/or landscape studies of spatial processes.  相似文献   

3.
Nitrogen dynamics in soils are affected by spatial and temporal processes. Drainage class is generally regarded to be the most significant source of variability for N in temperate humid climates. A 5-year study was conducted including four rates of N fertilizer and three drainage classes within a 15 ha maize (Zea mays L.) field. Variance component analysis showed that N response was minimally affected by drainage class, but showed strong yearly variations, apparently related to early-season precipitation. Annual field-averaged economic optimum N rates had a range of 65 kg ha−1 with lower rates being associated with years with low early-season precipitation. A calibrated LEACHMN model and site-specific weather data were used to evaluate the effects of early-season weather conditions on N rate and availability. During wet years, soil N availability was reduced by approximately 35–50 kg ha−1 compared to dry years, largely independent of drainage class. For well-drained soils, most losses were attributed to leaching (especially in years with wet early-season), while poorly drained soils mainly experienced denitrification. It is concluded that limited benefits may be gained from spatially variable N applications within fields based on drainage class or soil type, but considerable economic and environmental gains are possible from yearly adjustment of supplemental N rates based on model simulations of N dynamics using information on early-season weather conditions.  相似文献   

4.
Landscape variability associated with topographic features affects the spatial pattern of soil water and N redistribution, and thus N uptake and crop yield. A landscape-scale study was conducted in a center pivot irrigated field on the southern High Plains of Texas in 1999 to assess soil water, soil NO3-N, cotton (Gossypium hirsutum L.) lint yield, and N uptake variability in the landscape, and to determine the spatial correlation between these landscape variables using a state-space approach. The treatments were irrigation at 50 and 75% cotton potential evapotranspiration (ET). Neutron access tubes were placed at a 15-m interval along a 710 m (50% ET) and 820 m (75% ET) transect across the field. Soil NO3-N in early spring was autocorrelated at a distance varying between 60 and 80 m. Measured soil volumetric water content (WC), total N uptake, and lint yield were generally higher on lower landscape positions. Cotton lint yield was significantly correlated to soil WC (r=0.76), soil NO3-N (r=0.35), and site elevation (r=−0.54). Differences of site elevation between local neighboring points explained the soil water, NO3-N and lint yield variability at the micro-scale level in the landscape. Soil WC, cotton lint yield, N uptake, and clay content were crosscorrelated with site elevation across a lag distance of ±30–40 m. The state-space analysis showed that cotton lint yield was positively weighted on soil WC availability and negatively weighted on site elevation. Cotton lint yield state-space models give insights on the association of soil physical and chemical properties, lint yield, and landscape processes, and have the potential to improve water and N management at the landscape-scale.  相似文献   

5.
Micro and macroporosity, pore shape and size distribution, aggregate stability, saturated hydraulic conductivity and crop yield were analysed in alluvial silty loam (Fluventic Eutrochrept) and clay soils (Vertic Eutrochrept) following long-term minimum and conventional tillage. The soil structure attributes were evaluated by characterizing porosity by means of image analysis of soil thin sections prepared from undisturbed soil samples.

The interaggregate microporosity, measured by mercury intrusion porosimetry, increased in the minimally tilled soils, with a particular increase in the storage pores (0.5–50 μm). The amount of elongated transmission pores (50–500 μm) also increased in the minimally tilled soils. The resulting soil structure was more open and more homogeneous, thus allowing better water movement, as confirmed by the greater hydraulic conductivity of the minimally tilled soils. The aggregate stability was less in the conventionally tilled soils and this resulted in a greater tendency to form surface crusts and compacted structure, compared with the minimally tilled soils. The latter tillage practice seemed to maintain, in the long-term, better soil structure conditions and, therefore, maintain favourable conditions for plant growth. In the silt loam, the crop yield did not differ significantly between the two tillage systems, while in the clay soil it decreased in the minimum tilled soil because of problems of seed bed preparation at the higher surface layer water content.  相似文献   


6.
Soil penetration resistance (cone index) varies with water content. The field variation of water content could mask treatment differences. The correction of cone index data to a single water content would help prevent this. We used equations from TableCurve software and from the literature to correct cone indices for differences in soil water contents. Data were taken from two field experiments where cotton (Gossypium hirsutum L.) was grown using conventional and conservation tillage without irrigation, and beans (Phaseolus vulgaris L.) were grown using conventional tillage with microirrigation. Boundary conditions based on hard, dry and soft, wet soils were imposed on the equations. Equations fit the data with coefficients of determination ranging from 0.55 to 0.92 and error mean squares from 1.37 to 6.35. After correction, cone index dependence on water content was reduced. A single-equation correction did not always fit the data across all treatments. Separate corrections, based on treatment, might be required. When corrections required multiple equations, differences may be real or may be a manifestation of the correction differences. In this case, the correction may not be feasible (unless some future work can coordinate different equations and assure a uniform correction).  相似文献   

7.
Field studies on soil properties and processes in southern Saskatchewan have clearly indicated the need to account for both lateral and vertical transfers of components in the landscape for a better understanding of soil dynamics at a given point. Extrapolation of these studies requires greater integration of the site-specific field results with the current generation of process models. In this paper, we use the results of a field study to assess the ability of the CENTURY model to describe the influence of soil redistribution on soil organic carbon (SOC) dynamics. After modifying the erosion input of CENTURY to account for soil deposition, the results from CENTURY were compared to measured SOC levels from a chronosequential study of cultivation effects on SOC levels in southern Saskatchewan. CENTURY closely simulated the effects of soil loss on SOC levels in landform segments with dominantly convex profile (i.e., downslope) curvature. CENTURY estimates of SOC changes for landform segments experiencing soil gain are less comparable to the field results; it overestimated SOC loss after 80 years by 16 Mg ha−1 for depressional complexes and 10 Mg ha−1 for footslope complexes. This leads to a 14% difference in total SOC loss on a landscape-weighted basis (estimated loss based on field data of 36 Mg ha−1 versus a CENTURY-simulated loss of 41 Mg ha−1).  相似文献   

8.
Very little research has been done to investigate soil loosening as a function of the geometry of the tillage tool and of the original soil properties and moisture content. A field experiment was conducted to observe the effects of the geometric parameters of flat tillage tools on their draft, cutting efficiency and loosening of a moist clay soil. The test tool variables included rake angles to the horizontal of 30, 60 and 90°, widths of 75 and 150 mm and depths of operation of 100, 150 and 200 mm. Measurements were taken of draft, disturbed soil cross sectional profiles and the initial area of soil disturbed by the tools. The resulting draft requirement increased with width, depth and rake angle of the tool. The cross sectional area of soil disturbed did not change appreciably with rake angle, but the significant increase in draft with angle resulted in markedly diminished soil cutting efficiency (area divided by draft). The degree of soil loosening was generally smaller at a rake angle of 60° than at 30 or 90°, and tended to be higher at greater depths of operation. In addition, a larger depth to width ratio generally increased the degree of loosening. Results for the soil studied indicate that the best implement design for low draft, high cutting efficiency and superior soil loosening should have a rake angle of about 30° and should be fairly narrow with a depth to width ratio of 2 or more.  相似文献   

9.
Crop yield maps may contain substantial corollary information regarding the distribution of yield related soil properties across a landscape. One of these properties is water holding capacity (WHC). Since WHC is an important parameter for crop models and is also critical for crop yield, our objective was to determine if WHC could be estimated by matching simulated yield with yield map data. We collected soil cores for water retention measurements and recorded plant phenological stages from 60 plots on four transects over two growing seasons (1997 and 1998). Soil cores were also sampled on 40 other locations set out on a grid pattern. We utilized a simple water budget model that uses the relative transpiration ratio to calculate relative yield from available water in the soil profile. Rainfall, potential evapotranspiration and soil water holding capacity are input. An optimization program varies the WHC to produce a grain yield similar to the one from the yield map at a particular location. This analysis was carried out over several scales by averaging yields over 55 m×71 m, 27 m×35 m, and 11 m×14 m areas. Yield data from 2 years were used. Yields from the transects in both years were significantly related to measured WHC in the surface 0–10 cm of soil. The calculated stress indices from the water budget model and estimated available WHC calculated for the 1997 data were similar to those calculated for the 1998 data where data were aggregated in 27 by 35 m or larger blocks. The contour map of estimated WHC was similar to the map of measured WHC for some features though there were also some differences. Use of multiple years of yield data are required to give stable results for estimated water holding capacities.. This information could be used in a farm management plan by allowing a producer to classify a field into areas that are buffered against drought and areas more susceptible to drought.  相似文献   

10.
Soil compaction has been recognized as a problem limiting crop production, especially in the Southern Coastal Plain of the USA. Development of tillage and residue management systems is needed to alleviate soil compaction problems in these soils. Fertilizer nitrogen (N) management is also an important factor in these management systems. In 1988, a study was initiated with a wide-frame (6.3 m) vehicle to determine the interactive effects of traffic, deep tillage, and surface residue management on the fate of fertilizer N applied to corn (Zea mays L.) grown on a Norfork loamy sand (fine-loamy, siliceous, Thermic, Typic Kandiudults). Corn was planted into a winter cover crop of ‘Tibbee’ crimson clover (Trifolium incarnatum L.). Treatments included: traffic (conventional equipment or no traffic); deep tillage (no deep tillage, annual in-row subsoiling, or one-time only complete disruption); residue management (no surface tillage or disk and field cultivation). The one-time only complete disruption was accomplished by subsoiling at a depth of 43 cm on 25 cm centers in spring 1988. In 1990–1991, fertilizer applications were made as 15N-depleted NH4NO3 to microplots inside each treatment plot. The 1990 and 1991 data are reported here. In 1990 an extreme drought resulted in an average grain yield of 1.8 Mg grain ha−1, whereas abundant rainfall in 1991 resulted in 9.4 Mg grain ha−1. Deep tillage increased corn dry matter production in both years. In 1991, grain yields indicated that corn was susceptible to recompaction of soil owing to traffic when residues were incorporated with surface tillage. In the dry year, plant N uptake was increased 27% with deep tillage and decreased 10% with traffic. In the wet year, a surface tillage × deep tillage × traffic interaction was observed for total N uptake, fertilizer N uptake, and total fertilizer N recovery in the plant-soil system. When combined with traffic, plant N uptake was reduced with the highest intensity tillage treatment (135 kg N ha−1) because of rootrestricting soil compaction, and with the lowest intensity tillage treatment (129 kg N ha−1) because of increased N losses. In these soils, leaving residues on the soil surface can reduce the detrimental effect of traffic on corn production, but if no surface tillage is performed, deep tillage is needed.  相似文献   

11.
为探索太行山区农业景观中不同生境类型对蜘蛛多样性的影响,采用陷阱法对河北省武安市西部太行山区5种类型生境(核桃林、玉米地、苹果-芍药套作园、次生林、绿海花廊景观带)的地表蜘蛛多样性进行调查。通过分析5种类型生境中蜘蛛多样性分布及其与局部生境因子的相关关系,探讨半自然生境对蜘蛛的保护作用。结果表明:人为干扰会显著降低生境中蜘蛛丰富度和多度;增加植被群落结构的复杂程度会使生境中蜘蛛丰富度显著增加,而蜘蛛的多度显著降低;蜘蛛的多度随生境中枯落物厚度的增加而增加。其中核桃林的蜘蛛Shannon-Wiener多样性显著高于其他4种类型生境,核桃林、次生林和绿海花廊的蜘蛛丰富度显著高于苹果-芍药套作园和玉米地,苹果-芍药套作园和绿海花廊的蜘蛛多度显著高于其他3种生境。玉米地、苹果园-芍药套作和绿海花廊中蜘蛛的群落组成具有较高相似性,而核桃林与次生林中蜘蛛群落结构具有较高异质性。地表枯落物厚度是影响当地蜘蛛群落结构的最主要因素。研究区在农业景观与自然景观的过渡区种植核桃林、苹果-芍药套作园和绿海花廊间作板栗,对蜘蛛多样性的保护都有积极作用;不同的生境因子与不同蜘蛛群落的关系不同,如狼蛛偏向人为干扰较大的苹果-芍药套作园和绿海花廊景观带,所以生产管理时要结合特有的生境条件,对相应的蜘蛛进行合理的保护和高效的利用。研究结果对当地的农业景观生境管理和生物多样性保护具有指导意义。  相似文献   

12.
Soil microbial C, N and P as affected by land-use change were studied in a Himalayan watershed at Sikkim, India. The major land-uses considered were forests (dense and open), agroforestry types (large cardamom and mandarin), open cropped and wasteland areas covering subtropical and temperate zones. Across the land-use, microbial C ranged from 219 to 864 μg g−1, microbial N from 30 to 142 μg g−1, and microbial P from 12 to 43 μg g−1 soils. The microbial C, N and P were positively related to each other. The microbial C:N ratio in these soils ranged from 6 to 11 and the microbial C:P ratio from 18 to 27. The conversion of forests into other land-uses resulted in a remarkable decline in the amounts of soil nutrients and microbial C, N and P. The microbial nutrients in the Himalayan region are very sensitive to land-use/cover changes. Therefore, the conversion of forest to agricultural land should be reversed. Agroforestry systems should be included in agricultural land in mountainous regions.  相似文献   

13.
Different agricultural practices can result in a decline in soil organic carbon (SOC) and a consequent reduction in soil structural stability. Experiments were conducted on soils with a range of SOC values, to quantify the destabilizing effects of increased tillage intensity. Different tillage intensity was simulated with the use of a falling weight, where specific energy levels, similar to those experienced during tillage, were reproduced. The level of destabilization was assessed by the quantity of mechanically dispersed clay (using a turbidimetric technique) and the quantity of water-stable aggregates (WSA) > 0.25 mm remaining after being shaken in water.

The quantity of clay dispersed increased with increasing water content, in the absence of any mechanical pretreatment, the rate of increase rising sharply with declining SOC. Following simulated tillage, and at water contents above the plastic limit, clay dispersion increased in proportion to the energy of disruption, and also increased with decreasing SOC levels. Below the plastic limit all the soils were relatively insensitive to mechanical disruption. A simple empirical model was derived to link clay dispersion to SOC, water content and energy of disruption.

The proportion of WSA declined sharply with decreasing SOC, and to a lesser extent following tillage. The quantity of WSA following simulated intensive tillage (300 J kg−1) of grassland (SOC, 2.8–3.2 g (100 g)−1) was greater than that present, prior to tillage from fallow, arable and arable/ley rotation treatments (SOC 1.1–2.5 g (100 g)−1). Aggregate tensile strength was found to be relatively insensitive to differences in SOC. However, variations of strength within treatments, an indicator of soil friability, increased in proportion with SOC. A turbidity index was derived in which the turbidity of natural and remoulded aggregates was compared. Variation of this index with increasing mechanical energy is used as an indicator of the sensitivity of soils to damage during tillage. A visual representation is constructed to link the sensitivity of soils to damage during tillage with both SOC and water potential. These experiments illustrate that management practices, which lead to a long term reduction in SOC, are responsible for an increase in aggregate strength and reduction in stability plus an increase in sensitivity of soils to structural decline following subsequent tillage.  相似文献   


14.
The recent adoption of conservation farming systems in the semi-arid Canadian prairies opens up the possibility of replacing the traditional fallow period with non-cereal crops (oilseeds, legumes). However, information on changes to soil water regimes by inclusion of these crops, especially in combination with zero tillage, is sparse. A study was initiated in 1984 on a sandy clay loam soil at Lethbridge, Alberta, to investigate the performance of winter wheat (Triticum aestivum L.) under conventional, minimum and zero tillage in monoculture and in 2-year rotations with fallow, canola (Brassica campestris L.) or lentils (Lens culinaris Medic.)/flax (Linum usitatissimum L.). Conventional tillage in the Lethbridge region is shallow cultivation (10 cm) with a wide-blade (sweep) cultivator. Continuous cropping greatly depleted soil water reserves, resulting in some crop failures. Averaged over 10 years, available water for establishment of winter wheat in fall was least after canola (45 mm), followed by continuous winter wheat (59 mm), lentils/flax (74 mm) and fallow (137 mm). In this semi-arid region, the effect of rotation on soil water was much greater than that of tillage. Zero tillage had relatively little impact on available water to 1.5 m depth. However, once the experiment had been established for 6–7 years, available water in the 0–15 cm depth under winter wheat in spring was greatest under zero tillage. Precipitation storage efficiency during the fallow year was generally unaffected by tillage system.  相似文献   

15.
Chisel ploughing is considered to be a potential conservation tillage method to replace mouldboard ploughing for annual crops in the cool-humid climate of eastern Canada. To assess possible changes in some soil physical and biological properties due to differences in annual primary tillage, a study was conducted for 9 years in Prince Edward Island on a Tignish loam, a well-drained Podzoluvisol, to characterize several mouldboard and chisel ploughing systems (at 25 cm), under conditions of similar crop productivity. The influence of primary tillage on the degree of soil loosening, soil permeability, and both organic matter distribution throughout the soil profile and organic matter content in soil particle size fractions was determined. At the time of tillage, chisel ploughing provided a coarser soil macrostructure than mouldboard ploughing. Mouldboard ploughing increased soil loosening at the lower depth of the tillage zone compared to chisel ploughing. These transient differences between primary tillage treatments had little effect on overall soil profile permeability and hydraulic properties of the tilled/non-tilled interface at the 15–30 cm soil depth. Although soil microbial biomass, on a volume basis, was increased by 30% at the 0–10 cm soil depth under chisel ploughing, no differences were evident between tillage systems over the total tillage depth. Mouldboard ploughing increased total orgainc carbon by 43% at the 20–30 cm soil depth, and the carbon and nitrogen in the organic matter fraction ≤ 53 μm by 18–44% at the 10–30 cm soil depth, compared to chisel ploughing.  相似文献   

16.
The large proportion (nearly 90%) of soil covered by crop residue with no-tillage (NT0) systems often results in decreased soil warming, reduced germination, and reduced early plant growth in parts of the Midwest section of the USA. We hypothesize that removal of some of the residue from the seeding zone could potentially improve crop production with NT0. Thus, we evaluated the impact of residue removal from a 30-cm-wide zone directly over the row in a no-tillage system (NT30) compared to NT0 and conventional moldboard tillage (CN) on soil growing degree days (GDD), soil temperature, and corn (Zea mays L.) growth and yield. This investigation was conducted in 1987 and 1988 on a Plano silt loam soil (fine-loamy, mixed, mesic, Typic Hapludalfs). Maximum growth rate (MGR) and relative growth rate (RGR) were calculated from weekly measured dry matter and leaf area. Soil temperature at 0–50 cm deep was measured hourly. Soil GDD was calculated from average soil temperature measured at the soil surface and 5 cm deep. Maximum growth rate and RGR were not significantly different between NT30 and CN treatments in 1987. However, mean values of MGR and RGR were significantly greater for NT30 than for NT0 in 1987. This occurred because soil temperature values with NT30 were similar to those for CN and significantly greater than NT0. Maximum growth rate and RGR values with NT30 were significantly greater than for CN in 1988. This may have resulted from a lower dry matter and leaf area index (LAI) with CN in 1988. During 1987, NT30 compared to NT0 had significantly greater time to emergence, MGR, RGR, and soil temperature in the seed zone (0–5 cm) and in the plow zone (0–20 cm). In 1988, NT30 had greater MGR, RGR, and LAI compared to CN because of the conserved soil water in the top 0- to 15-cm layer during an excessively dry soil season. Based on this research, NT30 will provide soil thermal and water conditions that are conducive to good plant growth and production while reducing the potential for soil erosion.  相似文献   

17.
Soil biological parameters, such as soil respiration or N-mineralization, may be more sensitive to soil compaction than physical parameters. Therefore we studied the effects of soil compaction on net N-mineralization and microbial biomass dynamics in the field. The soils were silty clay loams (Typic Endoaquepts) in either a well-structured permanent pasture with high organic-C content (46 mg g−1) or a site which had been continuously cropped with cereals for 28 years with low organic-C content (21 mg g−1) and a very poor structure. Compaction treatments were applied by five passes of a tractor (total weight 4880 kg, speed 2.2 m s−1). An energy flux of either 2712 J m−2 (assuming deflecting tyres) or 6056 J m−2 (assuming rigid tyres) per pass of the rear tyres was estimated. Soil dry bulk densities were initially 1.00 and 1.30 Mg m−3 in the pasture and cropped sites, respectively, and increased significantly only in the less dense pasture site. However, soil surface CO2-fluxes decreased substantially after compaction on both sites (57–69%) because of the highly reduced air permeability of the topsoil. At the cropped site this was also accompanied by a significant decrease in oxygen-diffusion rate (45%). Using the in situ core technique with covered cores the apparent net N-mineralization rate was less in compacted than in non-compacted areas of the pasture ((0.27 and 0.38 μg N g−1 day−1, respectively), but did not differ at the cropped site (average 0.15 μg N g−1 day−1). However, N-mineralization measurements by the in situ core technique were found to be problematic as denitrification possibly occurred and concealed actual net N-mineralization. Microbial biomass did not change significantly as a result of the compaction treatment, but was shown to either decrease or increase over time depending on the methodology used to estimate microbial biomass.  相似文献   

18.
More research is required to validate and refine natural abundance stable isotope ratio techniques as a tool for the investigation of the feeding ecology of soil animals and trophic relations in soil food webs. Isotope ratios of C (δ13C) and N (δ15N) were measured in herbivorous and detritivorous invertebrate groups, namely lumbricid earthworms (7 species), enchytraeid worms (3 species), slugs (3 taxa), and their potential food sources in an arable system. Intrapopulation δ15N variation in the slug Deroceras reticulatum (n=52) was large (range 4.2‰), possibly reflecting spatial variability in the food sources. Significant correlations between C:N ratios and isotope ratios in earthworms suggest that factors other than feeding may influence isotopic patterns. One enchytraeid species, Enchytraeus buchholzi, was enriched in 13C and strongly depleted in 15N compared to all other groups. Invertebrates formed a continuum when considered in relation to C and N separately, but fell into two distinct groups on the basis of combined C and N isotope ratios. The less enriched group represents herbivorous and litter-feeding species, while the more enriched group represents soil feeders. It is concluded that δ13C measurements could provide a means of assigning separate baseline δ15N values to primary and secondary decomposers, which in turn could improve the inference of higher trophic levels, omnivory and intraguild predation.  相似文献   

19.
连作年限对香蕉园土壤线虫群落结构及多样性的影响   总被引:3,自引:1,他引:3  
为研究连作对蕉园土壤生态系统的影响,以海南香蕉种植区为例,采集不同连作年限(l a、3 a、5 a、7a、10 a和15 a)蕉园土壤,采用线虫形态学鉴定方法,分析了不同连作年限蕉园土壤线虫群落结构及多样性的变化规律。结果表明:整个生育期不同连作年限地块共发现土壤线虫属45个。苗期随连作年限增加线虫总数、食细菌线虫数量和食真菌线虫数量逐渐降低(15 a除外);营养生长期随连作年限增加线虫总数、食细菌线虫数量和食真菌线虫数量先增加后降低;抽蕾期随连作年限增加线虫总数和食细菌线虫数量先增加后降低,食真菌线虫数量逐渐降低。整个生长季,随着连作年限增加植物寄生线虫数量先增加后降低。苗期、营养生长期和成熟期,随着连作年限增加捕食/杂食线虫数量逐渐降低。苗期和抽蕾期的线虫总数显著高于营养生长期和成熟期。苗期的食真菌线虫数量和营养生长期的植物寄生线虫数量显著低于其他各生长时期。苗期和营养生长期的捕食/杂食线虫数量显著低于抽蕾期和成熟期。苗期随连作年限增加,优势度指数(λ)先增加后降低,香农多样性指数(H)和植物寄生线虫成熟度指数(PPI)逐渐增加,瓦斯乐斯卡指数(WI)和通路指数(NCR)逐渐降低;营养生长期随连作年限增加,λ先增加后降低,NCR和PPI逐渐增加,H、自由生活线虫成熟度指数(MI)和WI逐渐降低;抽蕾期随连作年限增加,λ先增加后降低,NCR和PPI逐渐增加,H和WI逐渐降低;成熟期随连作年限增加,H和MI逐渐降低,PPI逐渐增加。从整个生育期来看,随生长时间推移,H逐渐增加,λ逐渐降低,苗期和营养生长期的MI低于抽蕾期和成熟期,苗期和成熟期的WI低于营养生长期和抽蕾期。本研究显示,土壤线虫群落结构可有效反映连作蕉园土壤的健康状况,土壤线虫可作为土壤中重要的指示生物。  相似文献   

20.
There have been major changes in agricultural practice over the past 50 years. The increasing efficiency of arable production has led to larger field sizes with the associated removal of many hedgerow field boundaries. This, together with high input farming practices, has had a deleterious effect on the quality of the rural landscape as a wildlife habitat. This study focuses on green lanes, that is, trackways bounded on both sides by hedgerows, and the adjacent field margins of arable crops and examines each habitat to determine their relative resource value to bumblebees. The vegetation communities within 15 green lane sites and those of the adjacent field margins were recorded, and subsequent analysis showed that species richness was significantly higher within the green lanes. Bee numbers were recorded at each site during 10 visits, both along the inside of green lane hedges and the outside of the opposite hedge on the field margins of the arable crops. At each visit the flower abundance of 10 plant groups was recorded for each habitat type. The results show that bumblebee abundance was significantly higher within the green lane habitat than on the field margins and that this difference was directly related to the abundance of flowers within the habitat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号