首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 343 毫秒
1.
基于无人机遥感的玉米叶面积指数与产量估算   总被引:2,自引:0,他引:2  
以2018和2019年在河南省新乡县中国农业科学院农田灌溉研究所试验基地的玉米为研究对象,利用八旋翼无人机搭载的MicaSense RedEdge多光谱相机对试验区进行遥感监测,构建玉米叶面积无人机遥感监测模型和产量估算模型,并在示范区进行应用。结果表明,NDVI、EVI和GNDVI这3种植被指数在构建叶面积指数监测模型中具有较好的精度和稳定性。利用抽雄期植被指数构建的估产模型精度最高,吐丝期次之,拔节期最低。与单生育期估产模型相比,累积3个生育期植被指数构建的估产模型精度有一定提升,R2为0.87,RMSE为405.42 kg/hm2。构建的无人机遥感监测模型,可以快速有效评估玉米长势和产量。  相似文献   

2.
为探索冬小麦-夏玉米一体化种植中小麦的适宜群体配置模式,设置20 cm-20 cm(R1)、12 cm-12 cm-12 cm-24 cm(R2)及13 cm-20 cm(R3)三种行距处理方式和120 kg·hm-2(S1)、157.5 kg·hm-2(S2)及195 kg·hm-2(S3)三种播量,研究了行距和播量对小麦冠层结构特征和光合特性及产量的影响。结果表明,不同处理对各指标的影响因小麦生育时期的变化而不同。在孕穗至开花期, R1S1处理的小麦叶片SPAD值、净光合速率(Pn)及气孔导度(Gs)高于其他处理,开花期后R2S2处理表现出明显的光合优势。其中,R2S2处理的小麦LAI、叶倾角(MTA)在开花期后高于其他处理,在花后10 d之后其SPAD、Pn值最高。在不同处理中,R2S2处理产量最高,这主要归因于其有较高的穗数和千粒重。因此,在本试验条件下小麦高产的最佳群体配置是行距12 cm-12 cm-12 cm-24 cm和播量157.5 kg·hm-2。  相似文献   

3.
为明确灌水模式及追氮量对北京小麦生长发育和产量的影响,通过裂区试验,分别以灌水和追氮量为主副区。其中,灌水在各处理均灌溉越冬水600 m·hm-2和灌浆水450 m·hm-2基础上,设置4种春季灌水模式即返青水300 m·hm-2+拔节水450 m·hm-2(W1)、返青水750 m·hm-2 (W2)、起身水750 m·hm-2(W3)、拔节水750 m·hm-2(W4);追氮量设75、120、165、210和255 kg·hm-2 5个水平(分别用N1、N2、N3、N4、N5表示)。通过田间调查和室内考种分析了不同水氮条件下小麦群体和个体性状及产量的差异。结果表明,不同水氮处理相比,起身期灌水追氮促进了小麦植株基部第一节间的伸长,进而导致株高增加,加大了倒伏风险;返青期+拔节期灌水追氮有利于小麦穗发育,获得较少不孕小穗数和较高穗粒数。在所有处理中,返青+拔节两次灌水追氮处理的产量较高,其中W1N2处理的产量最高(7 728.0  kg·hm-2)。因此,在北京地区小麦种植中可采用春季返青期+拔节期两次灌水追氮的水氮管理模式。  相似文献   

4.
为给高磷土壤小麦磷管理提供依据,在河南省温县速效磷为49.1 mg·kg-1的土壤上开展2年田间试验,设置5个施磷量水平(0、45、90、135、180 kg P2O5·hm-2),研究施磷量对小麦产量、干物质积累、磷素吸收利用及土壤磷素平衡的影响。结果表明,随施磷水平的提高,小麦产量呈先增后减趋势,且两年分别在90和135 kg·hm-2施磷量下最高。90 kg·hm-2施磷处理显著提高小麦干物质积累量,施磷量进一步增加时干物质累积量无显著变化,叶片等各器官均表现出相似趋势。第一年小麦花后干物质转运量以90 kg·hm-2施磷处理最高,转运效率为36.7%;第二年花后干物质转运量以135 kg·hm-2施磷处理最高,转运效率为30.9%。小麦开花期和收获期磷素积累量均以90 kg·hm-2施磷处理最高,施磷处理收获期吸磷量比不施磷处理增加14.5%~44.6%,开花后各器官磷素转运量和转运效率以90 kg·hm-2施磷处理相对较高。磷肥利用率随着施磷量增加呈下降趋势,90 kg·hm-2施磷处理下磷肥利用率相对较高,磷肥偏生产力、农学效率、表观回收率两年平均为130.8 kg·kg-1、 10.6 kg·kg-1、23.9%。磷肥用量高于90 kg·hm-2时,土壤磷素呈盈余状况;在90 kg·hm-2施磷水平下土壤磷素盈余0.1~17.3 kg·hm-2;在施磷135 kg·hm-2和180 kg·hm-2时,土壤磷素盈余量分别为32.1~77.5和101.5~115.3 kg·hm-2。这说明,在土壤磷素肥力较高的情况下,推荐施磷量90 kg·hm-2,可促进干物质和磷素积累,提高小麦产量,同时维持合理的磷肥利用率及磷素平衡状况。  相似文献   

5.
为挖掘稻茬晚播小麦产量潜力,以春性中强筋小麦品种扬麦23为试验材料,设置不同密度、氮肥施用量及比例的处理,按实收产量高低划分为不同产量水平群体,研究了较适宜播期推迟10 d左右播种的晚播小麦8 000 kg·hm-2高产群体的产量及其结构、品质和群体质量形成特征。结果表明,晚播条件下,扬麦23实现产量8 000 kg·hm-2以上,要求穗数、穗粒数和千粒重分别为560×10·hm-2以上、39.0~40.0 粒和38.0 g左右,总结实粒数在22 000×10 粒左右。群体特征主要表现:分蘖期和拔节期的茎蘖数分别为穗数的1.1~1.3倍和2.3~2.5倍,茎蘖成穗率40.0%左右;开花期干物质积累量为15 000 kg·hm-2,成熟期为21 000 kg·hm-2左右,花后干物质积累量>6 200 kg·hm-2;孕穗期、开花期和乳熟期群体LAI分别在7.0、5.6和3.2左右,粒数叶比和粒重叶比分别为0.31~0.33 粒·cm-2和11.5~11.8 mg·cm-2;各时期具有较高的旗叶SPAD值,花后21 d旗叶SPAD值控制在43.0~47.0。8 000 kg·hm-2高产群体具有较高的籽粒蛋白质含量以及湿面筋含量,使品质得到改善。本试验条件下,扬麦23晚播10 d适宜的栽培措施组合为种植密度270× 10株·hm-2、施氮量225 kg·hm-2、氮肥运筹5∶1∶2∶2或4∶2∶1∶3。  相似文献   

6.
小麦植株感染条锈病后叶片花青素含量会发生明显变化。为了在地块尺度上利用冬小麦花青素值实现条锈病害的直观、快速监测,通过监测叶片花青素含量评估小麦条锈病严重程度,2021年获取感染条锈病的小麦田块的无人机RGB影像和采集地面病害区域的花青素含量数据,利用影像提取采样点感兴趣区的光谱特征参数和基于灰度共生矩阵的纹理特征参数,采用连续投影算法(SPA)结合相关性分析优选特征参数,分别采用单一光谱特征参数和组合参数,结合主成分回归(PCR)、拉索回归(LR)、随机森林回归(RFR)、梯度提升回归(GBR)和误差反向传播神经网络(BPNN)等方法构建了小麦花青素含量估算模型,并利用最优模型反演了田块的花青素含量。结果表明,图像光谱特征结合纹理特征后,花青素估算模型的R2增大,RMSE减小,模型精度显著提升。基于组合特征参数构建的随机森林模型精度最高,验证集R2、RMSE和MAE分别为0.801、0.026、0.021。该模型具有良好的花青素含量估算能力,得到的花青素值分布图与条锈病的空间分布具有一致性,能够定量化、可视化地反映病害严重程度。  相似文献   

7.
基于无人机多时相遥感影像的冬小麦产量估算   总被引:1,自引:0,他引:1  
为高效准确地预测小麦产量,以浙江省冬小麦为研究对象,利用四旋翼无人机精灵4多光谱相机获取冬小麦5个关键生育时期(拔节期、孕穗期、抽穗期、灌浆期、成熟期)的冠层多光谱数据,选取多光谱相机的五个特征波段计算各生育时期的72个植被指数,分别通过逐步多元线性回归(SMLR)、偏最小二乘回归(PLSR)、BP神经网络(BPNN)、支持向量机(SVM)、随机森林(RF)构建不同生育时期的产量估算模型,最后采用决定系数(R)、均方根误差(RMSE)和相对误差(RE)对估算模型进行评价,筛选出最优估算模型。结果表明,基于随机森林建立的模型估算效果最优,SMLR、PLSR和SVM三种方法建立的模型估算效果接近。利用随机森林算法所建拔节期、孕穗期、抽穗期、灌浆期、成熟期模型的R、RMSE和RE分别为0.92、0.35、11%;0.93、0.33、10%;0.94、0.32、9%;0.92、0.36、9%;0.77、0.67、33%。模型验证时,抽穗期估算效果最好(R、RMSE和RE分别为0.91、0.35和15%),拔节期、孕穗期、灌浆期估算效果接近且有很好的估算能力,成熟期估算精度最差(R、RMSE和RE分别为0.71、0.47和13%)。由此说明,结合机器学习算法和无人机多光谱提取的植被指数可以提高小麦产量估算效果。  相似文献   

8.
氮肥施用对稻茬小麦冠层结构及产量、品质的影响   总被引:7,自引:0,他引:7  
为给安徽省沿淮稻茬小麦高产栽培的氮肥合理运筹提供理论依据,通过大田试验,选用当地小麦主栽品种济麦22(半冬性中筋品种)和烟农19(半冬性强筋品种)为材料,设置0、90、180、270和360 kg·hm-2 5个施氮水平,分析施氮量对两种基因型小麦冠层结构、产量及品质的影响。结果表明,在0~180 kg·hm-2 施氮范围内,随着施氮量的增加,小麦株高、叶面积指数和叶片SPAD值显著上升,群体截获更多光能,冠层截获光合有效辐射显著增加,群体透光率显著降低,冠层光谱反射率在400~725 nm波段逐渐下降,在725~1 000 nm逐渐上升;随着施氮量的进一步增加,360 kg·hm-2 施氮处理的各冠层指标与270 kg·hm-2 施氮处理之间差异未达到0.05显著水平。籽粒产量随施氮量增加呈先升后降趋势,2个小麦品种产量均以270 kg·hm-2 施氮处理最高。穗数、穗粒数均随施氮量增加而显著提高,都以360 kg·hm-2 施氮处理最大,但180、270和360 kg·hm-2 施氮处理间差异较小或不显著;千粒重则表现为先升后降的趋势,以90 kg·hm-2 施氮处理最高。小麦籽粒蛋白质含量、湿面筋含量、沉降值均随施氮量增加而逐渐提高,除2014-2015年270和360 kg·hm-2 两个施氮处理间差异不显著外,两年不同施氮处理间均差异显著。综合高产、优质、低环境风险的选择条件,沿淮稻茬麦区小麦季氮素在180~270 kg·hm-2 范围内偏下限施用较为适宜,强筋品种烟农19可适当提高施氮量。  相似文献   

9.
为明确不同氮、磷、钾用量对小麦冠层不同层次光截获和干物质分配的影响,以济麦22为供试材料,设置F0(不施肥)、F1(N 180 kg·hm-2,P2O5 75 kg·hm-2,K2O 60 kg·hm-2)、F2(N 225 kg·hm-2,P2O5 120 kg·hm-2,K2O 105 kg·hm-2)和F3(N 270 kg·hm-2,P2O5 165 kg·hm-2,K2O 105 kg·hm-2)4个施肥量处理,比较分析开花后不同氮、磷、钾用量对小麦叶面积指数、冠层不同层次光截获特性和成熟期干物质分配的影响。结果表明,F1处理下叶面积指数显著高于F0处理,而与F2和F3处理间无显著差异;开花后15 d,F1处理下小麦冠层不同层次及总PAR截获率和截获量均显著高于F0处理,而与F2和F3处理间无显著差异。F1处理下成熟期干物质在小麦冠层不同层次营养器官中的分配量、籽粒中的分配量及总干物质积累量显著高于F0处理,而与F2和F3处理间无显著差异。成熟期干物质在小麦冠层不同层次营养器官和籽粒中的分配量以及总干物质积累量与冠层上层(顶部至株高2/3)、中层(株高2/3至株高1/3)和总PAR截获率均呈显著正相关。F1处理(N 180 kg·hm-2,P2O5 75 kg·hm-2,K2O 60 kg·hm-2)为本试验条件下的最优处理。  相似文献   

10.
为给太湖地区冬小麦合理施氮提供理论依据及技术选择, 以扬麦10号为试验材料, 在田间条件下研究了施氮和肥料添加剂对小麦产量和氮素吸收利用的影响。结果表明, 增施氮肥可显著提高小麦产量和植株累积吸氮量, 但对阶段氮累积比例无明显影响; 氮肥吸收利用率和农学利用率随施氮量增加而降低。在施氮基础上增施肥料添加剂可进一步增加小麦产量和各生育时期植株累积吸氮量, 且增加值随施氮量和肥料添加剂用量的增加而增加。尿素配施低水平(50 kg·hm-2)肥料添加剂对小麦产量和植株氮素吸收利用的综合提升效应不明显;施用高水平肥料添加剂(100 kg·hm-2)在施氮150 和250 kg·hm-2条件下产量及氮素吸收利用均显著增加(P<0.05)。综合考虑籽粒产量和氮肥利用率, “施氮 250 kg·hm-2 + 施肥料添加剂 100 kg·hm-2 ”是本试验条件下较优的氮肥管理模式。  相似文献   

11.
为及时、准确地掌握小麦产量动态信息,基于无人机遥感平台,分别分析了小麦4项生理指标[地面实测叶面积指数、叶片含氮量、叶片含水量及叶片叶绿素相对含量(SPAD值)]及10项植被指数与产量的相关性,以筛选出与产量最为敏感的生理指标与植被指数,并比较了3种建模方法(一元回归UR、多元逐步回归SMLR和主成分回归PCAR)在小麦各生育时期估产的适用性,进而得到小麦最优估产模型。结果表明:(1)不同生育时期两类变量与产量的相关性变化特征一致,均表现为抽穗期>灌浆期>成熟期;不同生理指标、植被指数与产量的相关性在各生育时期均存在差异,生理指标表现为叶片含氮量>LAI>SPAD>叶片含水量;而植被指数在各时期表现不同;(2)以生理指标与植被指数为自变量,采用SMLR模型构建的抽穗期估产模型拟合精度最高,R、RMSE和nRMSE分别为0.828、362.53 kg·hm-2和12.35%;(3)小麦估产模型在各生育时期的预测精度表现为抽穗期>灌浆期>成熟期。  相似文献   

12.
为探讨基于无人机RGB影像实现对小麦叶面积指数(leaf area index, LAI)和产量估算的可行性,设置不同生态点、品种和氮素处理的小麦田间试验,应用大疆精灵4 Pro无人机获取小麦拔节期、抽穗期、扬花期和灌浆期4个主要生育时期的RGB高时空分辨率影像,并同测定小麦LAI。采用相关性分析筛选出不同生育时期对LAI敏感的光谱与纹理特征集,并借助随机森林(random forest, RF)、偏最小二乘回归法(partial least squares regression, PLSR)、BP神经网络(back propagation neural network, BPNN)和支持向量机(support vector machine, SVM)分析方法,筛选出小麦不同生育时期最优的LAI估测模型。基于不同生育时期的光谱与纹理特征以及时期特征集,进一步建立产量预测模型,并在不同生态点验证叶面积估算模型与产量预测模型的普适性。结果表明,基于RF的LAI估测模型的验证精度最高,4个生育时期的均方根误差(root mean square error, RMSE)分别为2.26、1.44...  相似文献   

13.
多光谱与热红外数据融合在冬小麦产量估测中的应用   总被引:1,自引:0,他引:1  
为了解多光谱与热红外数据融合对冬小麦产量估测精度的影响,以30个黄淮麦区冬小麦品种为材料,利用三种灌溉处理(处理1、处理2和处理3灌水量分别为240、190和145 mm)下冬小麦拔节期、挑旗期、抽穗期与灌浆期的无人机多光谱和热红外动态数据,构造了多个光谱指数,以支持向量机构建冬小麦产量估测模型,并验证其精度。结果表明,植被指数与籽粒产量的相关性受溉水量影响,处理1下植被指数与籽粒产量均呈正相关,处理2下植被指数除土壤调整植被指数(SAVI)和转化叶绿素吸收反射指数(TCARI)外均与籽粒产量呈正相关,处理3下植被指数与籽粒产量均呈负相关。通过多光谱和热红外数据融合构建的冬小麦产量估测模型的预测精度比仅使用多光谱数据构建的模型提高8%。不同灌溉条件下,通过多光谱与热红外数据融合构建的模型的预测精度存在差异,在处理1、处理2和处理3下拔节期、挑旗期、抽穗期和灌浆期验证决定系数(R)最高值分别为0.63、0.68和0.56,均方根误差(RMSE)最低值分别为0.60、0.24和0.41 t·hm-2,且在三种灌溉条件下灌浆期预测效果均最佳。因此,利用无人机光谱对小麦品种产量估测时应将多光谱与热红外数据融合,用支持向量机(SVM)算法构建产量估测模型,且模型在灌浆期具有较高预测  精度。  相似文献   

14.
为探讨基于多源遥感数据和机器学习算法预测冬小麦产量的可行性,利用中麦175/轮选987重组自交系F7代群体中70个家系开展田间试验,通过无人机遥感平台和地面表型车平台及手持式冠层鉴定平台,获取冬小麦灌浆期光谱数据,分别用4种机器学习方法和集成方法建立产量预测模型。结果表明,在61个光谱指数中,除MCARI、DSI、PVI外,其余指数均与产量显著相关或极显著相关,700 nm和800 nm组合的高光谱指数能够比较准确地预测产量。相对于高光谱和多光谱,RGB传感器预测产量精度最高,平均决定系数(r2)为0.74,平均均方根误差(RMSE)为517.78 kg·hm-2。相对于决策树(DT)、随机森林(RF)、支持向量机(SVM)三种传统机器学习算法,岭回归(RR)算法预测产量的精度最高,平均r2为0.73,平均RMSE为516.1 kg·hm-2。与单一的传统机器学习算法相比,DT、RF、SVM、RR结合集成算法的预测精度高且稳定,r2高达0.77,RMSE也...  相似文献   

15.
为探讨利用冠层光谱数据实现滴灌春小麦推荐追施氮肥的可行性,利用手持主动遥感光谱仪(Greenseeker)测定了滴灌春小麦各生育时期的冠层NDVI值,分析其与滴灌小麦不同时期追施氮肥效应的关系.结果表明,从拔节期到乳熟期NDVI值与春小麦出苗后天数可用一元二次函数拟合,模型精度较高,R2均大于0.91;拔节期、孕穗期、抽穗期和灌浆期的冠层NDVI值与施氮量之间呈极显著线性相关;利用一元二次模型拟合出施氮量与产量之间的关系,得出实现最高产量7 393 kg·hm-2下的施氮量为289kg·hm-2,实现最佳经济产量7 378 kg·hm-2下的施氮量为265 kg·hm-2;拔节期、孕穗期、抽穗期和灌浆期的NDVI临界值分别为0.715、0.792、0.887和0.911;根据各生育时期NDVI值与施氮量的关系,建立了氮肥推荐模型,并且根据模型计算出滴灌春小麦各生育时期NDVI值对应的氮肥追施推荐用量表.  相似文献   

16.
县域冬小麦生物量动态变化遥感估测研究   总被引:1,自引:0,他引:1  
为给生产管理中及时掌握县域冬小麦长势的动态变化提供有效手段,以江苏省沭阳县为研究区,基于冬小麦生物量形成的生理生态过程,重构冬小麦生物量遥感估测模型。选用两景不同时相的HJ星影像数据,利用植被指数反演的LAI数据,对冬小麦生物量模型进行参数修订,并对县域冬小麦拔节期生物量的空间分布进行估测。在此基础上,进一步估测冬小麦抽穗期生物量分布特征及其动态变化特点。结果表明:(1)冬小麦拔节期生物量估测值和观测值范围分别为2 054.3~4 828.3 和1 962.5~4 568.4 kg·hm-2 ,平均值分别为3 148和3 045.5 kg·hm-2 ,RMSE为214.8 kg·hm-2 ,决定系数为0.919 1,表明冬小麦生物量模型模拟精度较好;(2)冬小麦抽穗期生物量较拔节期发生明显变化,其中长势变化快的田块面积为20 108.7hm,占总种植面积的23.4%。春季气候因素的转好以及肥水措施的实施对冬小麦营养与生殖共生阶段的生长起到明显促进作用。说明本研究提出的基于遥感反演信息与生长模型协同的冬小麦生物量估测方法能有效估测县域冬小麦不同生长时期生物量的空间分布及其动态变化。  相似文献   

17.
限水减氮对高产麦田群体动态和产量形成的影响   总被引:1,自引:0,他引:1  
为解决河北省水资源匮乏和麦田施氮量偏多问题,于2013~(-2)014和2014~(-2)015年度,在河北省石家庄市藁城区分别设置限水灌溉的单因素试验和限水减氮的二因素裂区试验,研究了限水减氮对河北省高产麦田群体动态和产量的影响。结果表明,在2013~(-2)014年度,限水灌溉处理(拔节期45mm、开花期30mm、灌浆期30mm,春季总灌水量105mm)与节水灌溉对照(拔节期60mm、开花期60mm,春季总灌水量120mm)间小麦叶面积指数、光能截获率、生物产量、穗数和穗粒数差异均不显著;限水灌溉的千粒重显著增加,籽粒产量为10 081.08kg·hm~(-2),水分利用效率为27.98kg·hm~(-2)·mm-1。在2014~(-2)015年度,限水灌溉处理中W3处理(拔节期37.5mm、开花期15mm、灌浆期15mm,春季总灌水量67.5mm)的叶面积指数、光能截获率与节水灌溉对照(拔节期67.5mm、开花期67.5mm,春季总灌水量135mm)无显著差异,穗数和穗粒数有所降低,但千粒重显著增加,籽粒产量8 903.70kg·hm~(-2),比节水灌溉对照减产7.95%,生物产量降低7.15%,但水分利用效率和灌水利用效率分别提高9.28%和84.10%,且未显著增加0~140cm和0~200cm土层贮水的消耗,是本试验条件下保证高产高效的最佳限水灌溉模式。120、180和240kg·hm~(-2)的3个施氮水平间各指标差异均不显著。综合节水高产和减氮增效的现状,以小麦拔节期灌水37.5mm、开花期15mm、灌浆期15mm的灌溉模式结合生育期施N 120kg·hm~(-2)为本试验条件下的最优限水减氮组合。  相似文献   

18.
为探讨遥感信息和作物生长模型在作物估产方面的优势互补特性,选取河北省藁城市冬小麦作为研究对象,采集多个关键生育时期的生理生化、农田环境、气象等数据,并获取准同步的环境减灾小卫星HJ-CCD影像数据,采用植被指数反演冬小麦叶面积指数(LAI),基于扩展傅里叶振幅灵敏度检验法(EFAST)对WOFOST作物模型的26个初始参数进行全局敏感性分析,筛选敏感性参数,调整WOFOST模型的核心参数,利用查找表优化算法构建基于WOFOST模型和遥感LAI数据同化的区域尺度冬小麦单产预测模型,并定量预测区域冬小麦单产水平。结果表明,增强型植被指数(EVI)是遥感反演LAI的最佳植被指数(开花期建模r=0.913,RMSE=0.410,灌浆期建模r=0.798,RMSE=0.470),预测能力最强(开花期r=0.858,RMSE=0.531,灌浆期r=0.861,RMSE=0.428);筛选出6个待优化参数,即TSUM1、SLATB1、SLATB2、SPAN、EFFTB3和TMPF4;产量预测精度r=0.914,RMSE=253.67 kg·hm-2,找到了待优化参数的最佳取值,最终完成了单产模拟。  相似文献   

19.
基于临界氮浓度稀释曲线的小麦氮肥需求量估测研究   总被引:3,自引:0,他引:3  
为探究基于临界氮浓度稀释曲线估测小麦氮素需求量的可行性,基于不同生态区开展的不同品种及氮肥水平的小麦试验,结合小麦临界氮浓度曲线(N_c=4.16W~(-0.41)),构建了拔节期、孕穗期、抽穗期和开花期四个关键生育时期下,小麦氮营养指数(NNI)、氮素需求量(NR)及相对产量(RY)三者间的关系模型,并进行了验证。结果表明,在江苏地区,当总施氮量在120~180kg·hm~(-2)时,小麦的氮素需求量最接近于0,氮营养指数最接近于1,为最优的氮素施用量。氮营养指数与氮素需求量(NNI-NR)在小麦生长的各关键阶段存在极强的线性关系(R~2=0.93~0.97);相对产量与氮营养指数(RY-NNI)在各生育时期呈现线性加平台关系,在开花期表现最好,R~2=0.86;相对产量与氮素需求量(RY-NR)的拟合关系在抽穗期表现最好,R~2值为0.72。NNI-NR验证结果与建模结果一致,即在各时期均表现良好,其中拔节期相关关系最强;但RY-NNI和RY-NR验证结果显示两模型分别在开花期和抽穗期预测效果表现最佳。综上,所构建的NNI-NR、RY-NNI和RY-NR三种模型均具有良好的拟合优度和稳定性,运用基于临界氮浓度曲线的小麦氮营养指数和确立的相对产量水平,可以较好地估测当季的小麦氮素需求量,并进行小麦田间氮素精确管理。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号