共查询到10条相似文献,搜索用时 78 毫秒
1.
夏玉米茎流速率和茎直径变化规律及其影响因素 总被引:8,自引:5,他引:8
为了揭示夏玉米茎流速率和茎直径的变化规律及其影响因素,该研究对夏玉米生育中期的茎流变化和茎直径微变化过程进行监测,分析了二者的日变化过程及相关关系、茎流速率与环境因子之间关系、茎直径随土壤含水率的变化规律。结果表明:茎流速率日变化过程呈单峰曲线型,其变化受太阳辐射、饱和水气压差、风速等气象因子的影响显著,通过对实测数据的分析得到了茎流速率与上述气象因子的线性回归方程,为今后利用气象因子预测夏玉米的叶面蒸腾量提供了基础;茎直径微变化的日变化过程也呈现明显的昼夜变化规律,白天收缩,夜晚复原,每日茎直径最大值随土壤含水率的降低而减小,二者之间呈线性相关关系,依据这一关系可利用茎直径微变化诊断作物缺水状况。 相似文献
2.
在全球气候变化背景下,东北地区干旱及其主导气象因子呈现出新的态势,并可能对当地农业生产带来不可预见的灾害风险。因此,开展干旱时空规律研究,揭示春玉米生长季干旱发生的气象驱动因子,对于指导当地开展农业防旱减灾工作尤为重要。该研究利用东北地区及其周边105个气象站点数据以及30 m分辨率的DEM,在考虑海拔影响的前提下将逐月气象因子数据空间插值并计算了1989-2018年1、3、6、12、24个月尺度的潜在蒸散量和标准化降水蒸散指数(Standardized Precipitation Evaporation Index,SPEI),分析了干旱的多尺度特征和春玉米生长季各气象因子的变化规律,明确了干旱的高发月份、区域及主导气象因子。结果表明:1)1989-2018年干旱呈现出10 a周期的偏轻-偏重-偏轻规律,其中2000-2010年干旱较为严重。2)干旱高发月份为5月,且在吉林西部、内蒙古东部和黑龙江西南部等地区干旱发生概率较高。3)气象因子变化主要以气温增加为主,且伴随气压下降和风力减弱,平均气温、最高气温、最低气温、气压、风速分别以0.41 ℃/(10 a)、0.42 ℃/(10 a)、0.39 ℃/(10 a),−0.05 kPa/(10 a)、−0.08 m/(s•10 a)的速度变化。4)各月干旱主导气象因子不尽相同,5月为降水、相对湿度、最高温度和日照时数,6月为降水、相对湿度、日照时数和最低气温,7月为降水、相对湿度和日照时数,8月为降水、最高气温和平均气温,9月为降水、相对湿度和最高气温,生长季平均条件下为降水、最高气温、日照时数和相对湿度,降水对干旱的直接作用远大于其他气象因子。该研究可为全面了解东北地区春玉米生长季干旱特点、以及制定合理的干旱应对措施提供一定的参考和依据。 相似文献
3.
东北寒区日光温室葡萄液流特征及其主要环境影响因子研究 总被引:1,自引:3,他引:1
为了探明东北冷寒区设施环境下,葡萄液流特征及其与温室内环境因子之间的响应特征,对葡萄液流速率以及环境因子进行连续监测和系统分析,结果表明:葡萄日内液流和全生育期逐日蒸腾均呈现单峰变化趋势,日内液流峰值出现在10:30-13:00之间,在液流最为旺盛的8月,其峰值达406.32g/h。葡萄全生育期日蒸腾量在8月变化相对最为剧烈,日均蒸腾量超过4 mm/d。液流速率与光合有效辐射(photosynthetically active radiation,PAR),气温、水汽压亏缺(vapor pressuredeficit,VPD)及实际水汽压均表现为显著正相关(P0.01),与相对湿度表现为显著负相关(P0.01)。瞬时液流速率与日蒸腾最主要的影响因子是PAR与VPD,月尺度液流最主要影响因子在PAR与蒸腾整合变量(variableof transpiration,VT)之间变化。全生育期液流最主要的影响因子是PAR与VT,但其决定系数随研究时间尺度的增加而降低。不同气象因子与液流之间存在明显的时滞效应,PAR的启动时间及停止时间均提前于液流,到达高峰时间滞后于液流,时滞时间最长为1.5 h。VPD整体滞后于液流。 相似文献
4.
华北地区滴灌灌水频率对春玉米生长和农田土壤水热分布的影响 总被引:5,自引:1,他引:5
针对华北地区春玉米田间灌溉和降雨相结合的灌溉模式,以北京为典型试验区,在保证作物最优土壤水分下限和灌溉定额相同的基础上,研究了滴灌灌水频率对土壤水、热分布及春玉米根系分布和产量的影响.试验结果表明:在春玉米抽雄期以前阶段实施的滴灌各处理中,高频滴灌下土壤平均含水率和不同深度处的土壤基质势波动幅度较小,高频滴灌下土壤水分能保持在一个比较稳定的范围;土壤温度受灌水过程、土壤含水率及作物生育阶段的影响较明显,滴灌能显著延迟气温对土壤温度的影响:灌水频率对春玉米根系分布存在一定影响,高频灌溉能显著促进春玉米根系在上层土壤(0~40 cm)中的分布;此外,在这种典型的灌溉和降雨相结合灌溉模式下,不同灌水频率下玉米产量差异不显著.因此,建议华北地区春玉米滴灌模式采用低频滴灌. 相似文献
5.
明确日光温室作物不同空间尺度蒸散量及变化规律是提高水分利用效率、实现农业水资源合理配置的关键。该文针对华北地区典型日光温室,于2015—2016年在中国农业科学院新乡综合试验基地,以滴灌番茄为研究对象,参考20 cm标准蒸发皿的累积蒸发量,设计充分灌溉和亏缺灌溉2种水平,研究不同水平下番茄叶片蒸腾、单株耗水(用茎流速率表征)和群体蒸散量的日变化和生育期变化,并采用通径分析法确定影响不同空间尺度蒸散量的主控因子。结果表明:叶片蒸腾和气孔导度随太阳辐射变化,峰值出现在10:00—14:00之间,移栽54~58 d后充分和亏缺处理的叶片蒸腾和气孔导度开始出现差异;充分和亏缺处理的单株耗水在晴天差异最大,阴雨天最小,且滞后太阳辐射约1 h;全生育期充分和亏缺处理的日群体蒸散量分别在0.32~6.65和0.15~5.91 mm/d之间变化,群体蒸散量在盛果期最大,占总耗水量的31.7%~34.7%。净辐射对叶片、单株和群体尺度的蒸腾量影响均显著,而水汽压差仅对单株和群体尺度蒸散量影响显著,估算日光温室番茄单株耗水和群体蒸散量时需考虑风速影响。水分胁迫条件下,考虑叶温变量可显著提高单株耗水和群体蒸散量的估算精度。研究可为不同空间尺度蒸散量转换方法的选择以及尺度提升理论模型的构建提供借鉴。 相似文献
6.
为厘清东北地区玉米春季渍害的评价指标及变化特征,该研究利用东北地区164个气象站点1981-2020年逐日气象资料和历史灾情资料,采用相关分析和逐步回归方法,分析玉米春季播种-出苗期降水和温度对渍害等级的影响效应,建立当量降水量和当量温度,在此基础上构建渍害等级指标,探讨东北地区玉米春季渍害的时空分布特征。结果表明:1)玉米春季渍害指标验证基本一致率达82%,能较好地反映东北地区玉米播种-出苗期渍害的实际受灾情况。2)1981-2020年东北地区玉米播种-出苗期渍害的发生存在明显空间差异,高发区集中在辽宁省东部、吉林省东南部以及黑龙江省三江平原地区,渍害频率最高可达45%,轻度渍害发生范围明显扩大;玉米不同程度渍害发生频率存在差异,表现为轻度>中度>重度。3)玉米渍害发生频率总体呈上升趋势,但上升趋势不显著,其中2001年、2002年、2004年为显著突变年。研究结果能够为揭示气候变化背景下东北地区玉米春季渍害灾变机制和时空演变规律提供理论依据。 相似文献
7.
缙云山典型树种树干液流径向变化及单株日蒸腾量估算 总被引:1,自引:0,他引:1
为分析树干液流速率径向变化,准确估算单木蒸腾量,运用Granier热扩散探针方法于2015年7-9月对重庆缙云山自然保护区内2个典型树种(杉木、四川山矾)树干木质部3个深度(10mm,30mm,50mm)的液流速率(V)进行测定。结果表明:杉木树干液流速率径向分布规律为:V_(30~50mm)V_(10~30mm)V_(0~10mm),V_(30~50mm)是V_(0~10mm)的1.65倍,V_(10~30mm)是V_(0~10mm)的1.12倍。四川山矾树干液流速率径向分布规律为:V_(10~30mm)V_(0~10mm)≈V_(30~50mm),V_(10~30mm)约为V_(0~10mm)和V_(30~50mm)的2.6倍;各深度处的液流速率之间呈显著线性相关关系;树干木质部不同深度处液流速率日变化规律呈单峰或双峰走势;7月份液流速率值最大,树木蒸腾出现午休现象;液流启动及到达峰值的时间在时间和空间上都存在差异。7月份液流启动时间和到达峰值时间早于8,9月份。径向上液流速率最大的位置,液流启动时间最早,到达峰值时间最晚;运用3个深度的液流速率分区域计算得到的杉木日蒸腾量为7 274.815g,四川山矾日蒸腾量为12 481.494g;忽略树干液流径向差异,以单一深度处液流速率估算日蒸腾量,对杉木产生的误差为10.29%~22.60%,变异系数CV为37%~60%,对四川山矾产生的误差为42.41%~66.88%,变异系数CV为19%~26%。 相似文献
8.
应用CropSyst模型模拟东北黑土区春小麦生长 总被引:1,自引:0,他引:1
WANG Zong-Ming ZHANG Bai LI Xiao-Yan SONG Kai-Shan LIU Dian-Wei ZHANG Shu-Qing 《土壤圈》2006,16(3):354-361
Available water and fertilizer have been the main limiting factors for yields of spring wheat, which occupies a large area of the black soil zone in northeast China; thus, the need to set up appropriate models for scenario analysis of cropping system models has been increasing. The capability of CropSyst, a cropping system simulation model, to simulate spring wheat growth of a widely grown spring cultivar, ‘Longmai 19', in the black soil zone in northeast China under different water and nitrogen regimes was evaluated. Field data collected from a rotation experiment of three growing seasons (1992- 1994) were used to calibrate and validate the model. The model was run for 3 years by providing initial conditions at the beginning of the rotation without reinitializing the model in later years in the rotation sequence. Crop input parameters were set based on measured data or taken from CropSyst manual. A few cultivar-specific parameters were adjusted within a reasonable range of fluctuation. The results demonstrated the robustness of CropSyst for simulating evapotranspiration, aboveground biomass, and grain yield of 'Longmai 19' spring wheat with the root mean square errors being 7%, 13% and 13% of the observed means for evapotranspiration (ET), grain yield and aboveground biomass, respectively. Although CropSyst was able to simulate spring production reasonably well, further evaluation and improvement of the model with a more detailed field database was desirable for agricultural systems in northeast China. 相似文献
9.
10.
川中丘陵春玉米适宜钾肥用量研究 总被引:4,自引:0,他引:4
【目的】采用两年田间定位试验,探讨施钾量对川中丘陵春玉米产量、 钾素吸收和利用特性的影响规律,以期为川中丘陵高产春玉米的钾肥管理提供科学依据。【方法】以正红505为试验材料,在施N 225 kg/hm2、 P2O5 90 kg/hm2的基础上,设置5个施钾量(K2O)处理,分别为0、 45、 90、 135、 180 kg/hm2,每个处理3次重复,完全随机区组设计。在玉米大喇叭口期、 吐丝期、 灌浆期(吐丝后21天)和成熟期采集植株样品,测定干物质积累量和器官含钾量,并计算植株钾积累量、 钾素利用和转运,在玉米成熟期测定玉米产量。【结果】随施钾量的增加春玉米产量、 钾素农学利用率先升高后逐渐降低,钾生理效率、 钾素利用效率和钾素当季回收率随施钾量的增加呈降低趋势,钾素吸收效率、 钾肥偏生产力随施钾量的增加显著降低,增施钾肥对钾素收获指数影响不显著。通过二次曲线模拟,在施钾量为K2O 96.1 kg/hm2时玉米产量最高,达到最高产量时,每生产100 kg玉米籽粒需吸收K2O 1.55 kg。玉米植株对钾素的吸收主要在吐丝之前,其吸收量占全生育期总量的72.7%~88.9%,灌浆初期也仍有较大量的吸收积累; 籽粒中的钾素大部分来源于营养器官的转移,施用钾肥促进了钾素向籽粒的转运。【结论】本试验条件下,川中丘陵春玉米施K2O为90 kg/hm2左右时,可获得较高钾肥利用率,并获得高产。 相似文献