首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Avena storigosa Schereb. (bristle oat) is used as a green manure in crop rotations and as an antagonist of nematodes in Nagano Prefecture, Japan. In 2011, necrotic, brown, water-soaked lesions were observed on young bristle oat plants. A pathogenic bacterium was isolated from symptomatic leaves of infected plants and produced the same symptoms after inoculation. Bacteriological properties of the bacterial isolates from bristle oat matched those of Pseudomonas syringae pathovars. The host range of the bristle oat isolates was identical to that of P. syringae pv. alisalensis. This is the first report of bristle oat disease caused by P. syringae pv. alisalensis.  相似文献   

2.
 The root endophytic fungus Heteroconium chaetospira isolate OGR-3 was tested for its ability to induce systemic resistance in Chinese cabbage against bacterial leaf spot caused by Pseudomonas syringae pv. maculicola and Alternaria leaf spot caused by Alternaria brassicae of the foliar diseases. Chinese cabbage seedlings planted in soil infested with an isolate of H. chaetospira were incubated in a growth chamber for 32 days. The first to fourth true leaves of the seedlings were challenge-inoculated with P. syringae pv. maculicola or A. brassicae. Chinese cabbage planted in soil infested with H. chaetospira showed significant decreases in the number of lesions of bacterial leaf spot or Alternaria leaf spot when compared to the control plants not treated with H. chaetospira. The results indicated that colonization of roots by H. chaetospira could induce systemic resistance in Chinese cabbage and reduce the incidence of bacterial leaf spot and Alternaria leaf spot. Received: April 24, 2002 / Accepted: August 9, 2002  相似文献   

3.
Bacterial leaf spot and blight diseases caused by Pseudomonas syringae pv. maculicola (Psm) and P. cannabina pv. alisalensis (Pcal) are becoming a significant concern for producers of crucifer crops worldwide. Since Psm was first described in 1911, many have reported on its diverse phenotypic, genetic and pathogenic characteristics. Japanese isolates of Psm are also heterogeneous and differ in their host preferences. Pcal was first described in 2002 and has quickly spread globally. Recent work demonstrated that some isolates that had been identified as Psm are actually Pcal. Pcal was also shown to be split into two groups, A and B, based on bacteriological properties, genetic traits and pathogenicity. Group A of Pcal consists mostly of isolates from Japanese radish and radish, isolated before 1990s, that are more aggressive on radish leaves but less aggressive on other Brassica plants compared with group B. Group B of Pcal consists of recent isolates from various crucifer plants including the pathotype of Pcal. In this review, we suggest that group A of Pcal may have existed since the 1950s and survived as a relatively minor pathogen on radish or Japanese radish, whereas group B emerged in the late 1990s, causing global epidemics because of its stronger virulence on various Brassica crops. We also suggest that emergence of a new group of a pathogenic bacterium may cause a re-emergence or new epidemics of a disease that previously was of minor importance.  相似文献   

4.
In 1972, bacterial leaf spot of onion (BLSO) was first recorded in Japan by Goto. The pathogen was considered as a pathovar of Pseudomonas syringae specifically causing disease on onion and Welsh onion, but it has not been taxonomically investigated in detail. In 2012 and 2014, a disease suspected as BLSO re-emerged on onion in Shizuoka and Hyogo Prefectures, Japan, respectively. A pathogenic bacterium isolated from the infected onions was thought to be the BLSO agent after preliminary examinations. Strains isolated from BLSO in 1969, 1986, 1987, 2012 and 2014 were characterized and compared with the causal agent of bacterial blight of leek (P. syringae pv. porri), which causes similar symptoms on Allium plants. The result of rep-PCR distinguished the BLSO agent from P. syringae pv. porri. Multilocus sequence analysis on housekeeping genes and hrp genes encoding the type-III secretion system revealed that the strains of the BLSO agent clustered independently of P. syringae pv. porri. The BLSO agent and P. syringae pv. porri also differed in utilization of erythritol, dl-homoserine, glutaric acid and other bacteriological characteristics and caused different reactions on onion, Welsh onions, chives, shallot, rakkyo, leek, garlic and Chinese chive. Thus, the BLSO agent clearly differs from P. syringae pv. porri and is considered to be a new pathovar of P. syringae. The name P. syringae pv. alliifistulosi is proposed with pathotype strain ICMP3414.  相似文献   

5.
During the period 2006–2011, Pseudomonas syringae pv. syringae caused a bacterial inflorescence rot (BIR) epidemic in an Australian cool climate viticultural region. Molecular multilocus sequence typing of ‘housekeeping’ genes (MLST), biochemical testing and analysis of molecular variance (AMOVA) were used to characterize the genotypes and phenotypes of P. syringae pv. syringae grapevine isolates. Comparison of the MLST data with exemplars of phylogroups available at PAMDB demonstrated that the BIR isolates formed a new clade within P. syringae pv. syringae phylogroup 2 (PG02): putatively designated PG02f. Analysis of the MLST and phenotypic data by AMOVA demonstrated some genetic differences between the BIR isolates and the general vineyard P. syringae pv. syringae population. Isolates positive for syringopeptin, syringomycin and tyrosinase, tobacco leaf hypersensitivity reaction (HR), ampicillin resistance and grapevine leaf pathogenicity were genetically distinct from those negative for these factors. This study has shown that, generally, the core genome of P. syringae pv. syringae is only weakly associated with the virulence-associated traits. As the new phylogroup PG02f consists of the epidemic BIR isolates and nonpathogenic grapevine isolates, these genetically similar isolates differ greatly in pathogenicity and most of the other tested phenotypic traits. However, within the PG02f group, tobacco leaf HR and presence of sylC (the gene for phytotoxin syringolin A) are associated with the BIR and bacterial leaf spot (BLS) isolates, and negative for the nonpathogens, indicating that these two virulence factors may be associated with vineyard pathogenicity within the new Australian phylogroup.  相似文献   

6.
Bacterial leaf spot disease of hemp was observed in Tochigi Prefecture, Japan in 1982 and characterized by necrotic lesions ca. 1–2 mm diameter on leaves with a yellow halo 2–3 mm wide. In this report, we describe the pathological, physiological and genetic properties of the causal bacterium. Our results indicated that this bacterium is identical with Xanthomonas campestris pv. cannabis reported in Romania.  相似文献   

7.
Pseudomonas syringae pv. actinidiae, the causal bacterium of kiwifruit canker, induces the formation of chlorotic halo lesions on infected leaves and inhibits the growth of Escherichia coli. The inhibition ofE. coli growth was shown to be reversed by L -arginine or L -citrulline, but not by L -glutamine, suggesting that the pathogen produces a toxin similar to phaseolotoxin, which inhibits ornithine carbamoyltransferase. The toxin was purified from culture broth of P. syringae pv. actinidiae strain Kw11, and was shown by nuclear magnetic resonance to be identical to phaseolotoxin. Assays based on inhibition of E. coli growth and on amplification of a phaseolotoxin fatty acid desaturase gene (ptx) fragment revealed that, among the plant pathogenic bacteria examined, the production of phaseolotoxin is restricted to strains of P. syringae pv. phaseolicola and pv.actinidiae . A non-toxigenic mutant of strain Kw11 generated by disruption of the ptx gene induced the formation of necrotic lesions on kiwifruit leaves; however, the lesions were not surrounded by a chlorotic halo as were those induced by the parent strain. The growth rate of the non-toxigenic mutant in leaf tissue was similar to that of the parent strain. These results suggest that phaseolotoxin production contributes to the formation of chlorotic halo lesions in kiwifruit canker but is not required for multiplication of the pathogenic bacterium during infection.  相似文献   

8.
Lycopersicon esculentum cultivar Micro-Tom is a miniature tomato with many advantages for studies of the molecular biology and physiology of plants. To evaluate the suitability of Micro-Tom as a host plant for the study of pathogenesis, Micro-Tom plants were inoculated with 16 well-known fungal, bacterial, and viral pathogens of tomato. Athelia rolfsii, Botryotinia fuckeliana, Oidium sp., Phytophthora infestans, and Sclerotinia sclerotiorum caused typical symptoms and sporulated abundantly on Micro-Tom. Micro-Tom was resistant to Alternaria alternata, Corynespora cassiicola, and Fusarium oxysporum. When Micro-Tom was inoculated with 17 isolates of Ralstonia solanacearum, many isolates induced wilt symptoms. Agrobacterium tumefaciens also was pathogenic, causing crown galls on stem tissue after needle prick inoculation. In Micro-Tom sprayed with Pseudomonas syringae pv. tomato, P. s. pv. tabaci, or P. s. pv. glycinea, bacterial populations did not increase, and yellow lesions appeared only on leaves sprayed with P. s. pv. tomato. Tomato mosaic virus, Tomato aspermy virus, and Cucumber mosaic virus systemically infected Micro-Tom, which developed symptoms characteristic of other cultivars of tomato after infection with the respective virus. These results indicated that Micro-Tom was generally susceptible to most of the important tomato pathogens and developed typical symptoms, whereas certain pathogens were restricted by either hypersensitive resistance or nonhost resistance on Micro-Tom. Therefore, an assortment of Micro-Tom–pathogen systems should provide excellent models for studying the mechanism of susceptible and resistant interactions between plants and pathogens.  相似文献   

9.
Pseudomonas syringae pv. aptata is the causal agent of bacterial leaf spot disease of sugar beet (Beta vulgaris). During 2013, 250 samples were collected from leaf lesions with typical symptoms of bacterial leaf spot in commercial fields of sugar beet in Serbia, and 104 isolates of Psyringae pv. aptata were obtained. Identification and characterization was performed using biochemical, molecular and pathogenicity tests. Identification included LOPAT tests and positive reactions using primers Papt2F and Papt1R specific for Psyringae pv. aptata. Repetitive (rep) sequence‐based PCR typing with ERIC, REP and BOX primers revealed high genetic variability among isolates and distinguished 25 groups of different fingerprinting profiles. Pulse‐field gel electrophoresis (PFGE) and multilocus sequence analysis (MLSA) of representative isolates showed higher genetic variability than in rep‐PCR analysis and distinguished three and four major genetic clusters, respectively. A pathogenicity test performed with 25 representative isolates on four cultivars of sugar beet confirmed the occurrence of leaf spot disease and showed correlation between the most aggressive isolates and the genetic clusters obtained in MLSA. All these findings point to the existence of several lines of Psyringae pv. aptata infection in Serbia that are genetically and pathologically different.  相似文献   

10.
A total of 298 bacterial isolates were collected from pea cultivars, landraces and breeding lines in North-Central Spain over several years. On the basis of biochemical-physiological characteristics and molecular markers, 225 of the isolates were identified as Pseudomonas syringae, either pv. pisi (110 isolates) or pv. syringae (112), indicating that pv. syringae is as frequent as pv. pisi as causal agent of bacterial diseases in pea. Most strains (222) were pathogenic on pea. Further race analyses of P. syringae pv. pisi strains identified race 4 (59.1% of the isolates of this pathovar), race 2 (20.0%), race 6 (11.8%), race 5 (3.6%) and race 3 (0.9%). Five isolates (4.6%) showed a not-previously described response pattern on tester pea genotypes, which suggests that an additional race 8 could be present in P. syringae pv. pisi. All the isolates of P. syringae pv. syringae were highly pathogenic when inoculated in the tester pea genotypes, and no significant pathogenic differences were observed. Simultaneous infections with P. syringae pv. pisi and pv. syringae in the same fields were observed, suggesting the importance of resistance to both pathovars in future commercial cultivars. The search for resistance among pea genotypes suitable for production in this part of Spain or as breeding material identified the presence of resistance genes for all P. syringae pv. pisi races except for race 6. The pea cultivars Kelvendon Wonder, Cherokee, Isard, Iceberg, Messire and Attika were found suitable sources of resistance to P. syringae pv. syringae.  相似文献   

11.
12.
The susceptibility of thirty-three pear cultivars and two pear rootstocks to four virulent strains of Pseudomonas syringae pv. syringae was evaluated by inoculating detached immature fruits and young leaves. The four strains were similarly virulent and did not show cultivar specificity although they were isolated from different pear cultivars and exhibited different biochemical profiles. The most frequently planted pear cultivars, Conference, Abate Fetel, General Leclerc, Williams, D. Comice, El Dorado, Alexandrine, B. Anjou, Passe Crassane and the rootstock OHxF 333 were susceptible to P. syringae pv. syringae. Maximal severity values were obtained on 'Preguystar' leaves (about 90%). The rootstock Winter Nelis was less susceptible. Results with immature fruit and detached leaf assays agreed with field observations on cultivar susceptibility to bacterial blast. However, the detached leaf test gave a more accurate prediction and has the advantages that symptoms develop quickly (48 h), and leaves are available for a longer period of time than fruits. This method is proposed as a rapid and reproducible screening system of cultivar susceptibility to bacterial blast of pear.  相似文献   

13.
Bacterial canker caused by Pseudomonas syringae pv. syrinage (Pss) in apricot has widely spread in Turkey, especially in Malatya province, in recent years. The main objective of this study was to determine resistance of apricot cultivars to bacterial canker caused by Pss in apricot cultivars grown in Turkey. During the 2006–2007 growing period, bacterial isolations were taken from diseased apricot trees in Malatya and 53 Pseudomonas syringae isolates were obtained. Forty-two isolates were determined as Pseudomonas syringae pv. syringae and 11 isolates as pv. morsprunorum. In a pathogenicity test, leaves of cv. Hacihalilo?lu were used and five Pss isolates (K24, K25, K43, K47 and K51) were detected to be the most virulent and were used to test for cultivar resistance to Pss. Leaves of fifteen apricot cultivars (Alyanak, Çatalo?lu, Çölo?lu, Erken A?erik, Hacihalilo?lu, Hasanbey, ?smaila?a, Kabaa?i, Karacabey, Sakit 2, So?anci, ?am, ?ekerpare, Tokalo?lu (Erzincan) and Turfanda Eski Malatya) were tested for resistance to Pss. Green shoots were spray-inoculated with a concentration of 108 cfu ml?1 Pss mixed culture. Sprayed shoots were covered with moist plastic bags for 3 days and maintained in the growth chamber and monitored for symptom development. Hasanbey, Çölo?lu, So?anci and ?ekerpare apricot cultivars were resistant and ?am, Tokalo?lu (Erzincan) and Erken A?erik apricot cultivars were susceptible to Pss. This is the first report of a resistance source in apricot cultivars grown in Turkey against Pss.  相似文献   

14.
Bacterial speck caused byPseudomonas syringae pv.tomato is an emerging disease of tomato in Tanzania. Following reports of outbreaks of the disease in many locations in Tanzania, 56 isolates ofP. syringae pv.tomato were collected from four tomato- producing areas and characterized using pathogenicity assays on tomato, carbon source utilization by the Biolog Microplate system, polymerase chain reaction and restriction fragment length polymorphism (RFLP) analysis. All theP. syringae pv.tomato isolates produced bacterial speck symptoms on susceptible tomato (cv. ‘Tanya’) seedlings. Metabolic fingerprinting profiles revealed diversity among the isolates, forming several clusters. Some geographic differentiation was observed in principal component analysis, with isolates from Arusha region being more diverse than those from Iringa and Morogoro regions. The Biolog system was efficient in the identification of the isolates to the species level, as 53 of the 56 (94.6%) isolates ofP. syringae pv.tomato were identified asPseudomonas syringae. However, only 23 isolates out of the 56 (41.1%) were identified asPseudomonas syringae pv.tomato. The results of this work indicate the existence ofP. syringae pv.tomato isolates in Tanzania that differ significantly from those used to create the Biolog database. RFLP analysis showed that the isolates were highly conserved in theirhrpZ gene. The low level of genomic diversity within the pathogen in Tanzania shows that there is a possibility to use resistant tomato varieties as part of an effective integrated bacterial speck management plan. http://www.phytoparasitica.org posting August 8, 2008.  相似文献   

15.
Bacterial canker is one of the most important diseases of cherry (Prunus avium). This disease can be caused by two pathovars of Pseudomonas syringae: pv. morsprunorum and pv. syringae. Repetitive DNA polymerase chain reaction-based fingerprinting (rep-PCR) was investigated as a method to distinguish pathovars, races and isolates of P. syringae from sweet and wild cherry. After amplification of total genomic DNA from 87 isolates using the REP (repetitive extragenic palindromic), ERIC (enterobacterial repetitive intergenic consensus) and BOX primers, followed by agarose gel electrophoresis, groups of isolates showed specific patterns of PCR products. Pseudomonas syringae pv. syringae isolates were highly variable. The differences amongst the fingerprints of P. syringae pv. morsprunorum race 1 isolates were small. The patterns of P. syringae pv. morsprunorum race 2 isolates were also very uniform, with one exception, and distinct from the race 1 isolates. rep-PCR is a rapid and simple method to identify isolates of the two races of P. syringae pv. morsprunorum; this method can also assist in the identification of P. syringae pv. syringae isolates, although it cannot replace inoculation on susceptible hosts such as cherry and lilac.  相似文献   

16.
The genetic diversity of Xanthomonas campestris pv. campestris isolates from South Africa was evaluated using 28 isolates obtained from the Johannesburg Fresh Produce Market. Samples were collected from cabbage supplies from farms in Gauteng, Mpumalanga and North West Provinces. Strains were isolated from small sections of infected cabbage leaf samples and cultured on Yeast Dextrose Agar. Isolates identity was confirmed by ELISA and Pathogenicity test. Pathogenicity tests were performed by inoculating leaves of known susceptible cabbage seedlings. Infection symptoms induced could be categorized into three groups, ranging from typical to non-typical black rot symptoms. Four differential Brassica cultivars with known avirulence genes were used for race typing done by spray inoculation. Four races, namely 1, 3, 4 and 6, were identified. Of the 28 isolates, four were identified as race 1, two as race 3, 19 as race 4 and three as race 6. Repetitive DNA polymerase chain reaction-based fingerprinting using Eric- and Box-primers was used to assess the genetic diversity. Generated fingerprints of X. c pv. campestris were relatively similar. Cluster analysis could not strictly group isolates by their geographical origin, suggesting limited diversity of Xanthomonas campestris pv. campestris strains within cabbage producing regions in South Africa.  相似文献   

17.
广东南瓜细菌性叶枯病及其病原鉴定   总被引:1,自引:0,他引:1  
 在广东省雷州市发生一种南瓜(Cucurbita moschata)叶枯病,病株叶片边缘开始出现水渍状病斑,逐步发展成大病斑,后期病斑焦枯;在叶片上也可形成近圆形水渍状病斑,伴有黄色晕圈,后期病斑联合形成不规则大枯斑;叶柄和匍匐茎被侵染后呈水渍状腐烂。从病斑上分离到一种细菌,在KB培养基上,菌落为椭圆形,乳白色,半透明,边缘参差不齐,紫外灯照射下产生荧光反应。致病性测定结果表明,该病原细菌可侵染6个南瓜品种引起与田间症状相同的叶枯病。生理生化试验结果表明,该病原细菌与丁香假单胞丁香致病变种(Pseudomonas syringae pv. syringae)的特性一致。应用假单胞菌属特异引物Ps-for/Ps-rev和丁香假单胞丁香致病变种组群特异性引物Group III-F/Group III-R,可从该病原细菌中扩增出预期大小分别为1 018 bp和750 bp的目的片段。应用丁香致病变种syrB基因特异性引物B1/B2,可从该病原菌中扩增出预期大小为750 bp的丁香霉素基因片段。基于16S rDNA与gyrB基因序列系统进化分析均表明,南瓜叶枯病菌株与已报道的P. syringae pv. syringae菌株HS191(CP006256)亲缘关系最近,二者聚类在一起形成一个小分支。人工接种条件下,该病原细菌还可侵染西葫芦、丝瓜、茄子、番茄、菜豆、扁豆等植物。这些结果表明,引起广东省南瓜叶枯病的病原为丁香假单胞丁香致病变种(Pseudomonas syringae pv. syringae)。这是首次在中国发现丁香假单胞丁香致病变种引起南瓜叶枯病。  相似文献   

18.
A rapid detection method based on PCR amplification of Pseudomonas syringae pv. tomato chromosomal sequences was developed. Primer design was based on the P. syringae DC3000 hrpZPst gene, which maps on a pathogenicity-associated operon of the hrp/hrc pathogenicity island.A 532 bp product corresponding to an internal fragment of hrpZPst was amplified from 50 isolates of P. syringae pv. tomato belonging to a geographically representative collection. The amplification product was also obtained from three coronatine-deficient strains of P. syringae pv. tomato.On the other hand, PCR did not produce any such products from 100 pathogenic and symbiotic bacterial strains of the genera Pseudomonas, Xanthomonas, Erwinia, and Rhizobium and 75 unidentified bacterial saprophytes isolated from tomato plants. The method was tested using leaf and fruit spots from naturally-infected tomato plants and asymptomatic nursery plants and artificially contaminated tomato seeds. The results confirmed the high specificity observed using pure cultures.  相似文献   

19.
A survey in 1987 and 1988 revealed that basal glume rot, caused by Pseudomonas syringae pv. atrofaciens, occurred nearly everywhere in FRG. The symptoms of the disease usually consisted of water-soaked dark green to brown lesions on unripe wheat heads, mainly at the basal end of the glumes, which later became dark brown. Forty-six isolates of P.s. atrofaciens were obtained from glumes, seeds and leaves of wheat and barley. For a fast identification of the isolated bacteria, a bio-assay was developed. Four to five-day-old wheat seedlings, grown on wet filter paper in Petri dishes, were pricked at two-three sites with a dissecting needle contaminated with bacteria. After 2–3 days, pathogenic isolates induced brown to black spots. The bacterial isolates from wheat inhibited the growth of several fungi grown on potato dextrose agar. In contrast, an authentic isolate of P.s. syringae obtained from wheat showed no inhibitory effect. During screening for resistance, several cultivars of spring and winter wheat were tested in the greenhouse and/or field tests. The results revealed marked differences in the susceptibility of different cultivars.  相似文献   

20.
A survey of wild cherry (Prunus avium) woodland plantations and nurseries was carried out in 2000/01. Trees with symptoms of bacterial canker were found in 20 of the 24 plantations visited and in three of seven nurseries. Fifty-four Pseudomonas syringae isolates from wild cherry together with 22 representative isolates from sweet cherry and 13 isolates from other Prunus spp., pear and lilac were characterised by physiological, biochemical, serological and pathogenicity tests. Isolates from wild cherry were predominantly P. syringae pv. syringae (Pss), but P. syringae pv. morsprunorum (Psm) races 1 and 2 were also found. Physiological and biochemical tests discriminated Psm races 1 and 2 from other P. syringae isolates. Agglutination and indirect-enzyme-linked immunosorbent assay tests with three different antisera showed that Psm race 1 and race 2 were very uniform and indicated high variability amongst other P. syringae isolates. However, pathogenic Pss isolates could not be distinguished from non-pathogenic isolates of P. syringae on the basis of physiological, biochemical or serological tests. Pathogenicity tests on rooted lilac plants and on micropropagated plantlets of lilac and two wild cherry clones differentiated Pss and Psm isolates and demonstrated a range of aggressiveness amongst Pss isolates. Serological tests could be used as an alternative to the classical physiological and biochemical tests to increase the speed of detection and discrimination of isolates, but pathogenicity tests are still necessary to discriminate the pathogenic Pss isolates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号