首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Open‐cast mining reclamation strategies are focused on the identification of the environmental factors at different scales that facilitate the vegetation establishment and development. Here, we characterised the environmental factors at macro‐scale and micro‐scale that influenced the herbaceous richness and biomass accumulation patterns trough a 32‐year chronosequence. Herbaceous richness and biomass were influenced at macro‐scale by successional and soil development gradients whereas at micro‐scale by shrub cover and coarseness gradients. Indeed, certain environmental factors at macro‐scale and micro‐scale contributed simultaneously to determine these gradients. Explicitly, the successional gradient was related to carbon and nitrogen ratio, grazing intensity and Shannon diversity. Across this successional gradient, total herb biomass and Fabaceae biomass were reduced as well as main taxonomical groups richness. Soil development gradient was related to total nitrogen, pH and erosion severity. This gradient only influenced species richness and produced a richness reduction when pH and erosion severity increased. At micro‐scale, the shrub cover gradient was related to organic matter thickness, producing a Poaceae biomass and bryophytes cover increase when shrub cover and organic matter increased. The coarseness gradient was related to the cover of rocks and bare soil, producing a reduction of herb biomass and richness when rocks and bare soil increased. These results emphasise the need to incorporate in the management plans the influence of soil development, successional, shrub cover and coarseness gradients over herbaceous richness and biomass to improve mine reclamation strategies. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
Declines of West-European farmland biodiversity have been associated with intensive agricultural practices, Central and Eastern European grasslands still harbour a diverse and unique arthropod community. However, our understanding of the effects of farmland management both at local and landscape levels is rather limited there. A paired field approach was used to compare extensively (0.5 cows/ha) and intensively (>1 cows/ha) grazed pastures in 42 fields in three distinct biogeographic regions within Hungary. Spiders belonging to the hunting and web-building communities were sampled using funnel traps. We found no management effect either on richness and abundance or on species composition, which shows that both forms of grazing management at the intensity levels studied support valuable spider fauna. At the local scale plant and litter cover were the two most important variables that significantly affected the communities overall, meaning both the hunting and to some degree the web-building communities. No significant landscape effects were found in the analyses on spider richness and abundance, but community structure was affected by two landscape level factors (grassland patch density and grassland percentage). We suggest that to protect the valuable spider and other fauna of these regions, the recently launched national agri-environmental program should be further supported and enlarged to maintain and reintroduce the traditional grazing management on these semi-natural grasslands.  相似文献   

3.
In the coastal grasslands of western France, extensive mixed grazing by cattle and horses has been practised for many centuries. The vegetation of these old embanked grasslands varies along a topographical gradient with a hygrophilous plant community in low-lying depressions seasonally flooded, a mesophilous community on high level flats that are never flooded, and a meso-hygrophilous community on slopes where the soil remains saline. Recently, fewer horses have been grazed on these pastures and so a 6-year study was designed to investigate the effects of monospecific and mixed grazing by horses and cattle on plant community structure, composition and diversity. Mixed grazing produced the most species-rich and structurally diverse swards. Mixed grazing enhanced the development of rosette, sub-halophyte and halophyte species where the soil is saline, due to additive effects between the two herbivore species. Mixed grazing also limited the strongly competitive Elymus repens and Agrostis stolonifera on horse latrine areas, cattle grazing, thus showing a compensatory effect. The combination of additive and compensatory effects with mixed grazing could be used to manage plant diversity, heterogeneity in vegetation structure and communities of conservation value at the scale of the grassland ecosystem.  相似文献   

4.
Earthworms are widespread soil organisms that contribute to a wide range of ecosystem services. As such, it is important to improve our knowledge, still scanty, of the factors that drive the assembly of earthworm communities. The aim of the present study was to conjointly evaluate the effects on the assembly of earthworm communities of i) soil properties (texture, organic matter content, and pH), ii) grassland management (grassland age, livestock unit, and type of fertilization), iii) landscape diversity (richness, diversity of surrounding habitats, and grassland plant diversity), and iv) presence of hedgerows. The study was conducted in temperate grasslands of Brittany, France. Earthworms were sampled in 24 grasslands and, in three of these grasslands, they were sampled near a hedgerow or near a ditch (control without a hedgerow). Soil properties explained the larger portion of the variation in the earthworm community parameters compared to grassland management or landscape diversity. The increase in soil organic matter content and pH were the most favorable factors for earthworm abundance and biomass, in particular for endogeic species. Regarding grassland management, the increase in the livestock unit was the most damaging factor for earthworm communities, in particular for the anecic earthworm biomass and endogeic species richness. Surprisingly, landscape diversity negatively affected the total earthworm abundance and epigeic earthworm biomass, but it was related to an increase in the epi-anecic species. At a finer scale, we also demonstrated that the presence of hedgerows surrounding grasslands enhanced earthworm species richness, especially within the epigeic and anecic ecological categories. This study highlights that the earthworm ecological categories respond specifically to environmental filters; further studies need to be conducted to elucidate the factors that drive the assembly of earthworm communities at this ecological category level. We recommend that policymakers should act on landscape management to favor earthworm diversity in order to improve the ecosystem services they drive.  相似文献   

5.
Grazing modifies the aboveground soil and plants of rangeland ecosystems. This study was conducted to determine the effects of various grazing intensity levels on soil bulk density, soil pH, soil electrical conductivity (EC), soil total organic carbon (TOC), aboveground biomass production, plant community richness (N), and vegetation diversity (H) in Gian Rangeland, Hamedan Province, Iran. Soil and vegetation samplings were conducted based on the randomized systematic method. Soil and vegetation samplings were carried out along 100-m-long transects placed at 100, 200, 400, 800, and 1600 m running perpendicular to six sheep corrals. The effects of various grazing intensities on studied parameters were detected by analysis of variance (ANOVA) (at α = 0.05). Results of this study indicated the soil bulk density, EC, TOC, aboveground biomass production, plant community richness, and vegetation diversity values were altered significantly at different distances from the sheep corrals. However, soil pH was not significantly affected by various grazing intensities.  相似文献   

6.
The effects of grazing intensity on plant and insect diversity were examined in four different types of grassland (intensively and extensively cattle-grazed pastures, short-term and long-term ungrazed grassland; 24 study sites). Vegetation complexity (plant species richness, vegetation height, vegetation heterogeneity) was significantly higher on ungrazed grasslands compared to pastures but did not differ between intensively and extensively grazed pastures. However, insect species richness was higher on extensively than on intensively grazed pastures, established by suction sampling of four insect taxa (Auchenorrhyncha, Heteroptera, Coleoptera, Hymenoptera Parasitica). This may be due to intensive grazing disrupting plant-insect associations as predicted by a “trophic-level” hypothesis. Local persistence and small-scale recolonization of insects on plants appeared to be difficult in the highly disturbed environment of intensive grazing. Insect diversity increased across the four treatments in the following order: intensively grazed<extensively grazed<short-term ungrazed<long-term ungrazed. The major predictor variable of differences in species diversity was found to be vegetation height. Predator-prey ratios within the investigated insect groups were not affected by grazing intensity.  相似文献   

7.
Edaphic fauna contributes to important ecosystem functions in grassland soils such as decomposition and nutrient mineralization. Since this functional role is likely to be altered by global change and associated shifts in plant communities, a thorough understanding of large scale drivers on below-ground processes independent of regional differences in soil type or climate is essential. We investigated the relationship between abiotic (soil properties, management practices) and biotic (plant functional group composition, vegetation characteristics, soil fauna abundance) predictors and feeding activity of soil fauna after accounting for sample year and study region. Our study was carried out over a period of two consecutive years in 92 agricultural grasslands in three regions of Germany, spanning a latitudinal gradient of more than 500 km. A structural equation model suggests that feeding activity of soil fauna as measured by the bait-lamina test was positively related to legume and grass species richness in both years. Most probably, a diverse vegetation promotes feeding activity of soil fauna via alterations of both microclimate and resource availability. Feeding activity of soil fauna also increased with earthworm biomass via a pathway over Collembola abundance. The effect of earthworms on the feeding activity in soil may be attributed to their important role as ecosystem engineers. As no additional effects of agricultural management such as fertilization, livestock density or number of cuts on bait consumption were observed, our results suggest that the positive effect of legume and grass species richness on the feeding activity in soil fauna is a general one that will not be overruled by regional differences in management or environmental conditions. We thus suggest that agri-environment schemes aiming at the protection of belowground activity and associated ecosystem functions in temperate grasslands may generally focus on maintaining plant diversity, especially with regard to the potential effects of climate change on future vegetation structure.  相似文献   

8.
The relationship between biodiversity and ecosystem functioning is of major scientific concern today. Few studies though have measured the interactions between soil microorganisms and plant diversity, the purpose of this study was to examine the link between plant diversity and microbial communities in fertilized versus unfertilized grasslands. Experiments were carried out on a permanent grassland in north-eastern France where agricultural practices had remained unchanged for the last 13 years. The experimental design included two plots of 300 m2 (fertilized at 120 kg N ha−1 or non-fertilized). Plots were replicated into three equal sub-plots (100 m2). From each sub-plot, six samples of soil and vegetation were taken at three dates during floristic development. At sampling, ground cover of each species was estimated, and total amount of C and N was determined in aboveground and root biomass. Soil samples were analyzed in order to measure the metabolic fingerprints of microorganisms using Biolog® GN2 microplates. Floristic composition and carbon substrate utilization patterns of rhizobacterial communities were more diversified in unfertilized than fertilized plots. In unfertilized plots, the development of Convolvulus arvensis and two legumes (Trifolium pratense and Trifolium repens) may help maintain observed floristic diversity. Moreover, an inversion of C and N distribution between aboveground and root biomass during the vegetation cycle probably induced a variation of rhizodeposition. This phenomenon could explain the differences of rhizobacterial metabolic fingerprints observed between experimental plots.  相似文献   

9.
The study explores whether small-scale species diversity, species evenness and species richness in semi-natural grassland communities are similarly associated with present management regime and/or present and historical landscape context (percentage of different land-cover types in the surroundings). Species diversity, evenness and richness were recorded within 441 50 × 50 cm grassland plots in 4.5 × 4.5 km agricultural landscape on Öland, Sweden. Recent and historical land-cover maps (years 2004, 1959, 1938, 1835, and 1800) were used to characterize the present and past landscape context of the sampled vegetation plots. Partial regression and simultaneous autoregressive models were used to explore the relationships between species diversity measures (Shannon diversity, richness and evenness) and different explanatory variables while accounting for spatial autocorrelation in the data. The results indicated that species richness was relatively sensitive to grassland isolation, while the response of species evenness to isolation was characterized by a degree of inertia. Because the richness and evenness components of species diversity may respond differently to habitat fragmentation, we suggest that monitoring projects and empirical studies that focus on changes in biodiversity in semi-natural grasslands should include the assessment of species evenness - as a complement to the assessment of species richness. In addition, our results indicated that the development and persistence of a species-rich and even grassland vegetation was favoured in areas that have historically (in the 19th century) been surrounded by grasslands. Information on landscape history should, whenever possible, be incorporated into the planning of strategies for grassland conservation.  相似文献   

10.
Approximately 70,150 dry Mg of biosolids from over 450 wastewater treatment facilities are applied to the semi-arid rangelands of Colorado every year. Research on semi-arid grassland responses to biosolids has become vital to better understand ecosystem dynamics and develop effective biosolids management strategies. The objectives of this study were to determine the long-term (∼12 years) effects of a single biosolids application, and the short-term (∼2 years) effects of a repeated application, on plant and microbial community structure in a semi-arid grassland soil. Specific attention was paid to arbuscular mycorrhizal fungi (AMF) and linkages between shifts in plant and soil microbial community structures. Biosolids were surface applied to experimental plots once in 1991 (long-term plots) and again to short-term plots in 2002 at rates of 0, 2.5, 5, 10, 21, or 30 Mg ha−1. Vegetation (species richness and above-ground biomass), soil chemistry (pH, EC, total C, total N, and extractable P, NO3-N, and NH4-N), and soil microbial community structure [ester-linked fatty acid methyl esters (EL-FAMEs)], were characterized to assess impacts of biosolids on the ecosystem. Soil chemistry was significantly affected and shifts in both soil microbial and plant community structure were observed with treatment. In both years, the EL-FAME biomarker for AMF decreased with increasing application rate of biosolids; principal components analysis of EL-FAME data yielded shifts in the structure of the microbial communities with treatment primarily related to the relative abundance of the AMF specific biomarker. Significant (p≤0.05) correlations existed among biomarkers for Gram-negative and Gram-positive bacteria, AMF and specific soil chemical parameters and individual plant species' biomass. The AMF biomarker was positively correlated with biomass of the dominant native grass species blue grama (Bouteloua gracilis [Willd. ex Kunth] Lagasca ex Griffiths) and was negatively correlated with western wheatgrass (Agropyron smithii Rydb.) biomass. This study demonstrated that applications of biosolids at relatively low rates can have significant long-term effects on soil chemistry, soil microbial community structure, and plant community species richness and structure in the semi-arid grasslands of northern Colorado. Reduced AMF and parallel shifts in the soil microbial community structure and the plant community structure require further investigation to determine precisely the sequence of influence and resulting ecosystem dynamics.  相似文献   

11.
The effects of grazing on the richness of understorey plant communities are predicted to vary along gradients of resources and tree cover. In temperate Australia livestock management has involved phosphorus addition and tree removal but little research has examined how the effects of grazing on plant species richness may vary with these management regimes. Patterns of understorey plant species richness were examined in 519, 0.09 ha quadrats in grazed pastures and remnant grassy forests and woodlands in southern Australia. Sheep grazing was the primary land use and sites varied widely in grazing frequency and density, tree cover and phosphorus fertiliser history. Using an information theoretic approach the available data provides strong evidence that the effect of grazing on total species richness varies according to available phosphorus and tree cover. Intermittent grazing and no grazing were associated with high total and native plant richness, but only at low phosphorus concentrations. Phosphorus was strongly negatively correlated with richness, particularly at low grazing frequency. Total species richness was positively correlated with tree cover except under frequent grazing at high stocking rates, suggesting that heavy grazing eliminates spatial and temporal heterogeneity imposed by trees. Native plant species richness was negatively correlated with a history of cultivation, positively correlated with tree cover and varied according to landscape position and geological substrate. Frequent high density grazing, particularly when associated with clearing, cultivation and fertiliser addition, was associated with the persistence of very few native plant species. In contrast, the richness of exotic plant species was relatively invariant and performance of the best model was low. While several studies have highlighted the importance of the grazed and cleared matrix for the conservation of native plant species, this benefit may be limited in landscapes where intensive grazing management systems dominate. Strong evidence for interactions between grazing, phosphorus and tree cover suggest that failure to consider other land use practices associated with grazing management systems could lead to erroneous conclusions regarding vegetation responses to livestock grazing.  相似文献   

12.
Socio-economically motivated land use changes are a major threat for species diversity of grasslands throughout the world. Here, we comprehensively explore how plant species diversity of grasslands in the species-rich cultural landscape of the Swiss Alps depends on recent land use changes, and, neglected in previous studies, on old cultural traditions. We studied diversity in 216 grassland parcels at three altitudinal levels in 12 villages of three cultural traditions (Romanic, Germanic, and Walser). In valleys of Romanic villages more different parcel types tended to occur than in those of Germanic and Walser villages, suggesting that socio-economic differences among cultural traditions still play a role in shaping landscape diversity. Moreover, at the village level, higher man-made landscape diversity was associated with higher plant species richness. All observed changes in land use reduced the farmers’ workload. Plant species richness was lower in fertilized than in unfertilized parcels and in abandoned compared with used parcels. Grazing slightly reduced species richness compared with mowing among unfertilized parcels, while in fertilized parcels it had a positive influence. The highest species diversity was found in mown unfertilized subalpine grasslands. Nevertheless, moderate grazing of former meadows can be a valuable alternative to abandonment. We conclude that the ongoing changes in land use reduce plant species richness within parcels and at the landscape level. To preserve plant species diversity at the landscape level a high diversity of land use types has to be maintained.  相似文献   

13.
Calcareous grasslands, most of which are man made and therefore depend on some kind of human interference for their maintenance, are among the most species-rich communities on Earth at a small scale. For many centuries, most of these grasslands have been used as extensive pasture. However, after 1900, and particularly from 1940 onwards, livestock grazing has declined throughout Europe leading to the abandonment of low intensity grasslands over large areas. To conserve the remaining grasslands or to restore recently abandoned grasslands, better insights about the effects of grassland management on above and belowground species diversity are needed. Here, we describe the results of an 11-year experiment to investigate the role of grassland management (grazing, mowing and abandonment) in determining species composition and diversity both in the aboveground vegetation and the seed bank of a calcareous grassland in Belgium. Species diversity declined by about 60% 11 years after abandonment, from 29 species m−2 to as few as 12 species m−2. Plots that were grazed remained constant in species richness, whereas mown sites lost about 20% of their original species. Abandoned plots were largely dominated by a few grass species, in particular Festuca rubra. Concomitant with changes in the aboveground vegetation, both the number of species found in the seed bank and seed density (number of seeds m−2) had changed significantly 11 years after abandonment. Species diversity and seed density were significantly lower in abandoned plots than in grazed or mown plots. We conclude that abandonment of calcareous grasslands may lead to rapid decline of plant species diversity both in the aboveground vegetation and in the seed bank. As a result, seed banks probably have a limited role to play in the restoration of recently abandoned grasslands.  相似文献   

14.
胡靖  何贵勇  闫俊  陈晗  尹鑫  李兰平  杜国祯 《土壤学报》2016,53(6):1506-1516
不同强度、季节的放牧是草地生态系统中主要的放牧管理措施,在生物多样性维持以及生态过程发挥中起着重要的作用,然而,关于青藏高原东缘高寒草甸地区放牧对土壤线虫群落的研究甚少。本文调查了放牧(轻度、中度和重度)对植物群落、土壤理化性质和线虫群落的影响。结果表明:植物群落、土壤理化性质和线虫群落受到放牧、时间以及放牧和时间共同作用的影响;食细菌线虫、植物凋落物生物量、根生物量、土壤含水量、土壤有机碳含量在轻度放牧草地内最高(p<0.05);杂类草生物量在中度放牧草地内最高;杂食线虫数量在重度放牧地内最低(p<0.05)。植物群落和土壤特性与土壤线虫群落有明显的相关关系(p<0.05)。结构方程模型显示食草动物主要通过植物群落影响植食和食细菌线虫,进一步的研究应针对植物群落多样性以及个体特征对线虫群落的影响。  相似文献   

15.
Calcareous grasslands are an important habitat for floral and faunal communities in the UK and Europe. Declines due to changes in management, scrub invasion and agricultural improvement have left much of the remnants of this habitat in a degraded and fragmented state. Grazing, by cattle or sheep, is one of the main management practices used to maintain and improve the floral and faunal quality of calcareous grassland. The long-term impacts of different grazing regimes, however, are poorly understood, particularly in terms of the invertebrate communities. This study contrasted the impacts of recently introduced and long-term sheep or cattle grazing on beetle communities present on one of the largest areas of calcareous grassland in Europe, the Salisbury Plain military training Area, UK. No effects of grazing management on beetle abundance, species richness or evenness were found, but plant diversity and overall percentage cover of grasses did influence beetle diversity. Proportions of the total number of individuals and overall species richness within beetle guilds (predatory, phytophagous, flower/seed feeders, root feeders and foliage feeders) were strongly influenced by both the duration and type of grazing animal. At the species level, beetle community structure showed significant differences between ungrazed, long-term cattle and long-term sheep grazing treatments. Changes in plant community structure were found to influence beetle community structure. The significance of these results is discussed in terms of the long-term impacts of grazing on beetle community structure, and the benefits of different grazing regimes for the conservation management of calcareous grasslands.  相似文献   

16.
Loss of semi-natural grasslands and reduction of habitat diversity are considered major potential threats to arthropod diversity in agricultural landscapes. The main aim of this study was to investigate how area and habitat diversity, mediated by shrub encroachment after grassland abandonment, affect species richness of orthopterans in island-like grasslands, and how contrasting mobility might alter species richness response to both factors. We selected 35 isolated patches in landscapes dominated by arable land (durum wheat) in order to obtain two statistically uncorrelated gradients: (i) one in habitat area ranging from 0.2 to 55 ha and (ii) one in habitat diversity ranging from patches dominated by one habitat (either open grasslands or shrublands) to patches with a mosaic of different habitats. Habitat loss due to land-use conversion into arable fields was associated with a substantial loss of species with a positive species-area relationship (SAR), with sedentary species having a steeper and stronger SAR than mobile species. Halting habitat loss is, therefore, needed to avoid further species extinctions. Shrub encroachment, triggered by abandonment, presented a hump-shaped relationship with habitat diversity. An increase in habitat diversity enhanced species richness irrespective of patch area and mobility. Maintaining or enhancing habitat diversity, by cutting or burning small sectors and by reintroducing extensive sheep grazing into abandoned grassland, are suggested as complementary strategies to mitigate further decline of orthopteran diversity in the remnant patches. This would be equally important in both small and large patches.  相似文献   

17.
Grasslands are often characterized by small-scale spatial heterogeneity due to the juxtaposition of grass tufts and bare ground. Although the mechanisms generating plant spatial patterns have been widely studied, few studies concentrated on the consequences of these patterns on belowground macrofauna. Our objective was to analyze the impact of grass tuft (Brachiaria bryzantha cv. marandu) spatial distribution on soil macrofauna diversity in Amazonian pastures, at a small scale (less than 9 m2). Soil macrofauna was sampled among B. bryzantha tufts, which showed a variable spatial distribution ranging from dense to loose vegetation cover. The vegetation configuration explained 69% of the variation in total soil macrofauna density and 68% of the variation in total species richness. Soil macrofauna was mainly found in the upper 10 cm of soil and biodiversity decreased with increasing distances to the nearest grass tuft and increased with increasing vegetation cover. The size of the largest grass tuft and the micro-landscape connectivity also had a significant effect on biodiversity. The density and species richness of the three principal soil ecological engineers (earthworms, ants and termites) showed the best correlations with vegetation configuration. In addition, soil temperature significantly decreased near the plants, while soil water content was not influenced by the grass tufts. We conclude that soil macrofauna diversity is low in pastures except close to the grass tufts, which can thus be considered as biodiversity hotspots. The spatial arrangement of B. bryzantha tussocks influences soil macrofauna biodiversity by modifying soil properties in their vicinity. The possible mechanisms by which these plants could affect soil macrofauna are discussed.  相似文献   

18.
放牧对荒漠草原植物生物量及土壤养分的影响   总被引:3,自引:1,他引:2  
以宁夏荒漠草原为研究对象,探讨放牧对荒漠草原植物多样性、 生物量及土壤养分特征的影响。结果表明, 放牧对荒漠草原植物群落多样性、 均匀度和丰富度影响显著。植物群落多样性和均匀度随着放牧强度的增加均呈先增加后降低的趋势,在轻度放牧达到最大值。同围封禁牧相比,重度、 中度和轻度放牧草地的植物地上和地下部生物量显著降低,分别降低了43.8%、 42.0%、 15.4% 和 27.7%、16.2%、11.9%。土壤有机碳随着放牧强度的增加而降低,而土壤全氮含量随着放牧强度的增加呈先增加后降低的趋势。围封禁牧草地土壤有机碳比重度放牧增加了18.1%,而土壤全磷、 速效磷和全钾含量分别降低了 21.1%、 51.9% 和 11.0%。土壤有机碳含量对植物群落地上和地下部生物量的影响大于土壤全氮、 全磷、 全钾、 速效磷和速效钾。放牧干扰下荒漠草原土壤环境及其养分含量,能在一定程度上反映植物群落多样性和生物量的变化。  相似文献   

19.
《Applied soil ecology》2006,31(1-2):62-72
The aim of this study was to determine whether the spatial heterogeneity of grassland vegetation structure would lead to spatial heterogeneity in the net nitrogen mineralisation process in the soil and therefore in the quantity of mineral nitrogen available for the plants. The net nitrogen mineralisation in the soil was compared between different vegetation patches generated by grazing, on two different types of plant communities: mesophilous and meso-hygrophilous.In ungrazed conditions, the net soil nitrogen mineralisation rates did not vary significantly between the two plant communities and remained relatively constant with time. Grazing by cattle or horses appeared to have two effects on the process of net soil nitrogen mineralisation. Firstly, it significantly stimulated net nitrogen mineralisation compared to ungrazed conditions and secondly, it led to spatial heterogeneity in mineralisation rates in the grazed enclosures. This spatial heterogeneity of nitrogen available for plants occurred both between and within plant communities.In the meso-hygrophilous plant community, net nitrogen mineralisation increased with grazing pressure. We suggest that a decrease of C inputs to the soil, concomitant with increasing grazing pressure, could decrease microbial nitrogen immobilisation.By contrast, in the mesophilous plant community net nitrogen mineralisation did not vary with grazing pressure. These differences in the functional responsiveness to grazing and biomass between the two plant communities could be related to the differences in the functional traits characterizing their dominant species along the grazing gradient. In the meso-hygrophilous community, the species composition switch with grazing intensity gradient led to the replacement of the perennial plant species by annual plant species which could lead to an improvement in the litter nitrogen content and an acceleration in the litter decomposition rate. By contrast, in the mesophilous plant community, the perennial species remained dominant along the grazing intensity gradient and could explain the absence of effect on the net nitrogen mineralisation rates.We suggest that at the scale of the vegetation patch, the decrease in plant biomass linked to grazing could regulate soil microorganism activity, in relation with shift in plant functional traits which improve litter decomposability.  相似文献   

20.
European wet grasslands are characterized by high diversity of plant and animal species but are threatened by intensive land use. Although preservation or restoration of species-rich wet grasslands requires low nutrient availability that could be achieved by long-term management, studies monitoring nutrient removal are lacking. Our objective was to assess the long-term effect of management (mowing twice a year without or with PK fertilization for 20 years) on (i) productivity and nutrient removal with the harvest, (ii) the type of nutrient limitation, and (iii) plant species richness in wet grasslands in north-western Germany considering the differences between organic and mineral soils.Initially low nutrient availability in soil led to decreased productivity and base cation removal with harvest particularly on mineral soils after six years of mowing twice a year without fertilization. On mineral soils, N:K ratios indicated limitation of plant growth by K. On organic soils, neither productivity nor K removal with the harvest changed with time suggesting additional K input probably caused by rising groundwater. On organic soils, K:P ratios and a significant decrease of productivity with increasing N:P ratios suggested P limitation. Plant species richness was maintained or even slightly increased by mowing twice a year without fertilization but mainly comprised species that were already present at the study sites.Productivity and N, P, K, and Mg removal with the harvest was significantly increased by mowing twice a year with PK fertilization while species richness was maintained. After 10 years, N:K ratios indicate K limitation even for mowing twice a year with PK fertilization. In case of initially low nutrient availability in soil, cautious PK fertilization and mowing can be recommended to meet demands of agriculture and nature conservation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号