首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Landscape-level thresholds of habitat cover for woodland-dependent birds   总被引:3,自引:0,他引:3  
Theory suggests that a disproportionate loss of species occurs when total habitat cover decreases to 10-30% of the landscape. To date, little empirical evidence has been collected to test for such thresholds in habitat cover, especially at the landscape scale. Here, we present empirical data on the species richness of woodland-dependent birds collected systematically from 24 landscapes (each 100 km2) that sample a gradient in habitat cover from <2% to 60%. To compare the relative effects of habitat cover and habitat configuration, landscapes with similar amounts of habitat but contrasting configuration (i.e., aggregated versus dispersed) were surveyed and the richness of woodland-dependent birds collated for each landscape. The relationship between species richness, habitat cover and habitat configuration was examined using analysis of co-variance (ANCOVA), multiple linear regression and univariate non-linear modelling. There was a significant effect of habitat cover (co-variate) in the ANCOVA, but the main treatment effect of configuration was not significant. However, comparison of non-linear models indicated that the shape of the response curve of species loss with decreasing habitat cover differed between aggregated and dispersed landscapes. Species richness was significantly related to habitat cover in all analyses, explaining between 55% and 60% of the variance in regression models. Mean patch shape complexity and the extent of habitat aggregation were also significant explanatory variables, but explained less than 10% of the variance in richness of woodland birds. Biogeographic variables (range in elevation and geographic location) explained up to 14% of the variance in species richness. There was strong evidence for a threshold response in species richness: non-linear models (broken-stick, exponential, inverse) exhibiting a sharp decline in species richness in landscapes with less than 10% habitat cover provided a better fit to the observed data than linear models. To our knowledge, this is the first empirical demonstration of landscape-level thresholds in species richness. We emphasise that thresholds in species richness denote multiple species’ extinction events, the end point of the process of species decline. For viable populations, habitat cover must be maintained well above the threshold level. Finally, thresholds of assemblage measures, such as species richness, potentially mask compositional changes in the avifauna community and may also conceal the loss of species with greater sensitivity to landscape change.  相似文献   

2.
Aspen has a high conservation value and has been targeted as a priority species in sustainable forest management. However, sustained and intense browsing pressure by ungulates has raised concerns about the recruitment of aspen to mature growth stages. Here we investigate the influence of ungulate browsing on the demographic structure of European aspen populations in two managed boreal forest areas in Sweden with contrasting amounts of aspen and high densities of ungulates. The contrast in size distribution of ramets in the two areas was striking. The aspen-poor environment contained a much lower density of small-sized ramets than the aspen-rich environment. Ramet abundance was strongly associated with the abundance of ramets in the smaller size classes in both areas, reflecting demographic inertia in these populations. Ungulate use was most strongly associated with abundance of medium-sized aspen saplings growing in forest interiors. Otherwise, use of ungulates was only weakly correlated with aspen population parameters. The strong demographic momentum exhibited by these populations suggests that aspen conservation and management should pay more attention to additional factors than browsing to promote ramet establishment. Large variation in abundance of ramets in the smallest size-class shows that some aspen stands have a disproportionate effect on aspen recruitment, particularly in areas where aspen is less abundant. Identifying aspen stands with a large capacity for self regeneration may be the key to meet aspen conservation goals.  相似文献   

3.
The loss, fragmentation and degradation of native vegetation are major causes of loss of biodiversity globally. Extinction debt is the term used to describe the ongoing loss of species from fragmented landscapes long after the original loss and fragmentation of habitat. However, losses may also result from habitat changes that are unrelated to fragmentation, which reduce breeding success and recruitment. Many woodland birds have declined in fragmented landscapes in Australia, probably due to loss of small, isolated populations, though the ecological processes are poorly understood. We record the progressive regional loss of two ground-foraging, woodland birds, the Brown Treecreeper Climacteris picumnus and Hooded Robin Melanodryas cucullata, in northern New South Wales, over 30 years. This has happened despite most habitat loss occurring over 100 years ago, suggesting the payment of an extinction debt. Our observations suggest that several ecological processes, caused by habitat loss, fragmentation or degradation, and operating over different time scales, have led to both species’ declines. Female Brown Treecreepers disperse poorly among vegetation remnants, leaving only males in isolated populations, which then go extinct. In contrast, Hooded Robins suffer high nest predation in fragmented landscapes, producing too few recruits to replace adult mortality. Foraging by both species may also be affected by regrowth of ground vegetation and shrubs. We found little support for a major role played by drought, climate change or aggressive Noisy Miners Manorina melanocephala. We propose that both extinction debt in the classical sense and ongoing habitat change frequently contribute to species’ decline in modified landscapes. Management to arrest and reverse such declines needs to consider these multiple causes of decline. For instance, reconnecting isolated populations may be inadequate alone, and activities such as appropriate grazing, fires and the addition of woody debris may also be required.  相似文献   

4.
Small aspen stands are disappearing from the landscape in the Southwest, so it is important to understand their contribution to the avian community. We sampled birds in 53 small, isolated aspen stands and 53 paired plots within the ponderosa pine forest in northern Arizona, during the 1996 and 1997 breeding seasons. Bird species richness and abundance were higher in aspen than in pine. However, bird species richness and abundance did not vary with size of the aspen patch or isolation index. In addition, direct ordination of species distributions with habitat factors suggested no distinct avian communities. This suggests that aspen stands do not harbor separate populations, but rather are locations where the regional avifauna reaches high local density and richness and may be crucial to birds in years of resource scarcity. Thus it is important for avian conservation to maintain many aspen stands across the landscape, encompassing a diversity of vegetation structure and composition.  相似文献   

5.
Amphibian ecology and conservation in the urbanising world: A review   总被引:1,自引:0,他引:1  
Urbanisation currently threatens over one-third of the world’s known amphibian species. The main threats of urbanisation to amphibian populations are habitat loss, habitat fragmentation and isolation, and degradation of habitat quality. A complex array of interacting biotic and abiotic factors impact amphibians in urban and urbanising landscapes. These can lead to a decrease in species richness and the abundance of individual species towards the centre of cities and towns. The ability of amphibians to disperse can be significantly reduced in urban and suburban landscapes. However, different species exhibit markedly different responses to urbanisation. Amphibian species that are habitat generalists or have relatively low dispersal requirements appear to be better able to survive in urban and suburban landscapes. There is insufficient information on the ecology of amphibians in urban and suburban areas, particularly in the tropics and sub-tropics, despite worldwide declines reported over past decades. Future research of amphibians in urban and suburban landscapes would greatly benefit by using long-term studies at sites along urban-rural gradients, conducted at both local and landscape scales. Research needs to be directed to the developing world in the tropics and sub-tropics, which has the highest rates of urbanisation. Research into amphibian ecology and conservation in the urbanising world would be improved through experimental approaches to determine the proximate causes of species’ responses to human modification of the landscape. Maintaining viable populations of amphibians in urban and suburban landscapes will require conservation strategies that consider key urbanisation processes (i.e. habitat availability and habitat quality) and the key responses and adaptations to urbanisation (i.e. species availability and species response). Conservation strategies for amphibians in urban and suburban landscapes need to include actions to prevent further loss and degradation of both terrestrial and aquatic habitat, and to reconnect the landscape to facilitate dispersal and long-term regional persistence of amphibian populations and communities.  相似文献   

6.
Traits such as poor dispersal ability and high habitat specificity are thought to predispose some species to a greater risk of extinction than others. Habitat preferences and morphological features associated with dispersal ability were compared between red-listed species and common congenerics co-occurring in boreal forests in northern Sweden. Measurements of body size, wing loading and wing aspect ratio were used to compare dispersal abilities, while catches from experimental treatments of dead wood were used to compare habitat preferences. We also compared how restricted red-listed species were to particular sites or habitats relative to common species. The red-listed Epuraea longipennis was longer and wider, while Epuraea. deubeli weighed less than common Epuraea species. In contrast to expectations, these red-listed species had a larger wing area (relative to their body mass) and thus a lower wing-loading than congeneric species, suggesting superior dispersal abilities. The red-listed Tachinus elegans possessed intermediate morphological characteristics, compared with common congenerics. However, the relationships between the risk of extinction in fragmented habitats and size and dispersal ability are likely to be scale-dependent, so intermediate or superior dispersal abilities may increase extinction risk at some scales. Red-listed species were not found in fewer sites or habitat types than congenerics so were not more likely to be habitat specialists. However, some red-listed species preferred deeply shaded and Fomitopsis pinicola-inoculated logs, relative to congenerics, suggesting that specificity to these particular microhabitats may be connected with extinction risk.  相似文献   

7.
The concept of critical thresholds of habitat loss has recently received considerable attention in conservation biology and landscape ecology, yet empirical examples of thresholds are scarce. Threatened species management could benefit from recognition of thresholds because conditions under which populations are at risk can be specified. In this study, 56 woodland patches in north-west Victoria were surveyed for the white-browed treecreeper Climacteris affinis, a threatened insectivorous bird of the semi-arid zone of southern Australia. Comparisons with historic records indicate the species’ range is contracting in Victoria. Using logistic regression and hierarchical partitioning, two models of patch occupancy were developed. Tree species composition was an important factor in both models, confirming the treecreepers’ affinity for belah Casuarina pauper and slender cypress-pine Callitris gracilis-buloke Allocasuarina luehmannii woodlands in north-west Victoria. The first model emphasized the importance of demographic isolation: probability of patch occupancy decreased with distance to the nearest occupied patch. A threshold response in demographic isolation was apparent. In agricultural landscapes, most suitable woodland patches within 3 km of an occupied patch were occupied, whereas patches beyond the threshold were vacant. The threshold distance increased to a minimum of 8 km in a matrix of native vegetation, suggesting landscape context affects the response of white-browed treecreepers to habitat fragmentation. Demographic isolation is a quasi-dependent variable and therefore a second model was developed using surrogate variables for demographic isolation. A positive relationship with the proportion of woodland cover in the landscape (100 km2) emerged as the pre-eminent explanatory factor. Depending on woodland quality, a threshold of patch occupancy was apparent at levels of woodland cover between 15 and 25%. However, belah and slender cypress-pine-buloke woodlands now cover only 10% of their original extent in the region. These results highlight the inter-dependence of patch isolation with the amount and quality of habitat in the landscape and the implications this has for maintaining functional connectivity. The retention (or restoration) of suitable habitat is the critical issue for conservation of the white-browed treecreeper, but in landscapes below the threshold of habitat cover, viability of local populations may be influenced by the configuration and quality of remaining habitat.  相似文献   

8.
Habitat loss is not randomly distributed across modified landscapes, yet spatial patterns of habitat cover are not routinely combined with biodiversity data when assessing or predicting the biodiversity impacts of land use change. Here, we convert point observations of more than 28,000 beetles from 851 species into a continuous biodiversity surface representing the similarity of ecological communities relative to that of pristine forest, effectively integrating on-the-ground biodiversity data with remotely sensed land cover data to predict the magnitude of community change in a modified landscape. We generated biodiversity surfaces for both present-day and pre-human landscapes to map spatial patterns of change in a diverse ecological community to calculate the combined biodiversity impacts of habitat loss and fragmentation that accounts for the exact spatial pattern of deforestation. Our spatially-explicit, landscape-scale index of community change shows how the fine-scale configuration of habitat loss sums across a landscape to determine changes in biodiversity at a larger spatial scale. After accounting for naturally occurring within-forest heterogeneity, we estimate that the conversion of 43% of forest to grassland in a 1300 km2 landscape in New Zealand resulted in a 47% change to the beetle community.  相似文献   

9.
The rufous treecreeper (Climacteris rufa) has declined in abundance in the agricultural regions of southwestern Australia. The patterns of decline are well documented, but the processes that threaten population persistence are poorly understood. I compared the reproductive success and survival of the treecreeper between three sites in an unfragmented landscape and four remnant categories (large, small, grazed and ungrazed) in a fragmented, agricultural landscape. Nest success and annual productivity were significantly higher in the unfragmented landscape, but varied between sites and remnant categories within landscapes. Nest success was lowest in grazed remnants and annual productivity was positively associated with territory size in the fragmented landscape. Fledgling survival rates did not differ between landscapes, but there was a trend for juvenile survival rates to be higher in the unfragmented landscape. I used artificial nests to compare relative predation rates between landscapes, and provisioning rates and prey biomass brought to nestlings to assess differences in food availability. There were no landscape differences in predation rates, but provisioning rates to nestlings and total prey biomass were significantly lower in the fragmented landscape. Mean habitat quality was also lower in the fragmented landscape, although it differed between remnant categories. Reduced reproductive success, juvenile survival, food availability and habitat quality may threaten the viability of the rufous treecreeper population living in the fragmented landscape. Limiting the modification of remaining habitat (e.g. removing stock grazing) and improving habitat quality are required to assist in the conservation of this species.  相似文献   

10.
In the boreal forest landscape, aspen has been effectively selected against in favour of conifers. The decrease in aspen is of particular concern since it has more host-specific species associated with it than any other boreal tree species. Recently forest management systems have begun to include green-tree retention in order to maintain structural diversity. We initiated this study in order to investigate whether retained aspen trees provide suitable habitats for epiphytic lichens and, if so, whether this varies according to species characteristics, such as morphology and photobiont. We chose to investigate the abundance and vitality of five species: three foliose cyanobacterial lichens (Collema curtisporum, Collema furfuraceum and Leptogium saturninum) and two crustose green-algal lichens (Biatora epixanthoides and Mycobilimbia carneoalbida). These lichens were examined on aspen within forest stands and on remnant aspen in clear-cuts at eight localities, in northern Sweden. Our results show that the response to exposure following clear-felling differs between species according to their morphology. The two crustose lichens were more abundant in the forest stands compared to the clear-cuts. In the clear-cuts, they mainly occurred on the northern sides of the trunks. Even 24 years after cutting, the three cyanolichens were equally or even more abundant on trees in the clear-cuts than in the forest stands. However, they were mainly found on the northern sides of the remnant aspen. We suggest that remnant aspen trees may function as suitable substrate and as stepping stones for colonisation of new stands, at least for the cyanolichens studied here.  相似文献   

11.
Despite the fact that Madagascar is classified a biological `hotspot' due to having both high levels of species endemism and high forest loss, there has been no published research on how Madagascan bird species respond to the creation of a forest edge or to degradation of their habitat. In this study, we examined how forest bird communities and different foraging guilds were affected by patch habitat quality and landscape context (forest core, forest edge and matrix habitat) in the threatened littoral forests of coastal southeastern Madagascar. We quantified habitat use and community composition of birds by conducting 20 point counts in each landscape contextual element in October and November 2002. We found that littoral forest core habitats had significantly (p<0.01) more bird species than forest edge and matrix habitats. Thirty-one (68%) forest dependent species were found to be edge-sensitive. Forest edge sites had fewer species, and a higher representation of common species than forest interior sites. Twenty-nine species were found in the matrix habitat, and the majority of matrix-tolerant forest species had their greatest abundance within littoral forest edge habitats. Guild composition also changed with landscape context. Unlike other tropical studies with which we are familiar, we found that frugivorous species were edge-sensitive while sallying insectivores were edge-preferring. The majority of canopy insectivores (n=15, 88%), including all six endemic vanga species, were edge-sensitive. When habitat quality was assessed, the distributions of nine edge-sensitive species were significantly (p<0.01) affected by changes in habitat complexity and vegetation vertical structure in core or edge point counts. Therefore, we believe that changes in vegetation structure at the edge of littoral forest remnants may be a key indicator of mechanisms involved in edge sensitivity of forest dependent species in these forests. Our findings indicate that habitat fragmentation and degradation affect Madagascan bird communities and that these processes threaten many species. With continued deforestation and habitat degradation in Madagascar, we predict the further decline of many bird species.  相似文献   

12.
Anecdotal observations suggest that some vertebrates follow plantation rows when crossing between habitat patches in fragmented landscapes, but the frequency of such behavior was never formally tested despite its potential implications for landscape management. We experimentally tested if the didelphid marsupials Didelphis aurita and Philander frenatus use plantation rows as guidelines when searching for habitat patches in a landscape of fragmented Atlantic Forest in Brazil. Thirty-seven individuals of P. frenatus and 24 of D. aurita were captured in forest fragments and released carrying spool-and-line tracking devices at four distances (30-200 m) from a forest fragment, in a matrix of manioc plantations. Animals of both species used plantation rows to orient their initial movements and used rows as guidelines along their paths for navigating in the matrix. By moving predominantly parallel to the plantation rows animals reduced the tortuosity of their paths and obtained an unobstructed view of the landscape ahead. These results demonstrate that the orientation of linear plantations can strongly influence functional connectivity between habitat fragments. Plantation rows should be oriented to maximize connection between nearby fragments, enhancing dispersal success of these species and probably many other terrestrial vertebrates in agricultural landscapes.  相似文献   

13.
Habitat loss and fragmentation are among the largest threats to amphibian populations. However, most studies have not provided clear insights into their population-level implications. There is a critical need to investigate the mechanisms that underlie patterns of distribution and abundance. In order to understand the population- and species-level implications of habitat loss and fragmentation, it is necessary to move from site-specific inferences to assessments of how the influences of multiple factors interact across extensive landscapes to influence population size and population connectivity. The goal of this paper is to summarize the state of knowledge, identify information gaps and suggest research approaches to provide reliable knowledge and effective conservation of amphibians in landscapes experiencing habitat loss and fragmentation. Reliable inferences require attention to species-specific ecological characteristics and their interactions with environmental conditions at a range of spatial scales. Habitat connectivity appears to play a key role in regional viability of amphibian populations. In amphibians, population connectivity is predominantly effected through juvenile dispersal. The preponderance of evidence suggests that the short-term impact of habitat loss and fragmentation increases with dispersal ability. However, species with limited dispersal abilities are likely to be equally imperiled by habitat loss and fragmentation over longer time periods. Rigorous understanding of the effects of habitat loss and fragmentation on amphibians will require species-specific, multi-scale, mechanistic investigations, and will be benefit from integrating large empirical field studies with molecular genetics and simulation modeling. Molecular genetic methods are particularly suited to quantifying the influences of habitat structure across large spatial extents on gene flow and population connectivity. Conservation strategies would benefit by moving from generalizations to species and process specific recommendations and by moving from site-specific actions to implementing conservation plans at multiple scales across broad landscapes.  相似文献   

14.
The ability to make a priori assessments of a species' response to fragmentation, based on its distribution in the landscape, would serve as a valuable conservation and management tool. During 1997-1999, we monitored 717 scent stations to examine seasonal use of forest patches, corridors, and crop fields by coyotes (Canis latrans), domestic cats (Felis catus), foxes (Vulpes vulpes and Urocyon cinereoargenteus), raccoons (Procyon lotor), striped skunks (Mephitis mephitis), opossums (Didelphis virginiana), and long-tailed weasels (Mustela frenata). For each species we developed landscape-based ecologically scaled landscape indices (ELSI), and we modeled species spatial distribution across three spatial scales (landscape-level, element-level, and local habitat-level). Our results suggest that these predators view landscape fragmentation at different spatial scales and demonstrate strong interspecific differences in their response to elements of the landscape. All species except coyotes and domestic cats avoided agricultural fields. In general, predator species that were more mobile (i.e. high ESLI for landscape connectivity; coyotes) were characterized by landscape- and element-based logistic models. In contrast, models including local habitat features generally were most appropriate for less mobile or more stenophagous predators (e.g. long-tailed weasels). Our analysis extends the application of the ESLI concept to species assemblages that do not appear to function as metapopulations, and it highlights the importance of examining spatial scale and species-specific responses to habitat fragmentation. We discuss the relevance of these findings for defining ecological landscapes, understanding predator-prey interactions at multiple spatial scales, and conserving predator and prey populations in fragmented landscapes.  相似文献   

15.
The landscape context is crucial for forest conservation in regions where the natural forest is fragmented. The focus of practical conservation is currently shifting from local stands to a landscape perspective, but few studies have tested the relative effect of different spatial and temporal scales for occurrence and persistence of species of conservation concern. We studied Red Data Book and Indicator species (the latter proposed to indicate presence of Red Data Book species) of vascular plants, lichens, bryophytes and wood-inhabiting fungi in 22 old temperate broadleaved forests in southern Sweden. We analysed at which scales these species respond to habitat proportion in surrounding landscape. The proportion of suitable habitat was measured at two temporal scales (present-day and historic) and at two spatial scales (about 0-1 km and 1-5 km of study sites). Local density of Red Data Book species increased with increasing proportion of suitable habitat in the current landscape (within 1-5 km of study sites) while Indicator species were unaffected. The response to landscape differed between organism groups. Vascular plants (near significantly) and wood-inhabiting fungi showed a time delay of 120 years in their response, indicating a possible regional extinction debt. An appropriate minimum landscape scale for conservation of Red Data Book species in temperate broadleaved forests in Sweden seems to be about 5 km (radius), but smaller landscapes may be important for vascular plants and wood-inhabiting fungi of conservation concern. In addition, restoration is urgent to counteract the effect of time delays in species responses to recent habitat loss.  相似文献   

16.
Quick biodiversity studies on poorly studied taxa and areas are increasingly popular for setting conservation priorities over a wide range of spatial scales. However, the implementation of such studies is complicated by the variable extent to which the different criteria used in prioritisation are correlated to each other. Using methods of constrained ordination, we examined the species-habitat relationships of carabid beetles based on ground beetle assemblages from 22 sites in the Picos de Europa National Park, northern Spain. We found characteristic species assemblages for subalpine meadows, Genista shrublands, and pastures, whereas mown meadows, heathlands, beech and riparian woodlands were occupied by more habitat generalist species. Species associated with subalpine meadows and Genista shrublands tended to be mostly brachypterous and to have geographic ranges restricted to northern Spain. In contrast, we found no relationship between the degree of species' association with pastures and geographic range-wing size type. Although the species richness was higher in riparian woodlands and mown meadows, we suggest a higher conservation value for subalpine meadows and Genista shrublands across the landscape because they sustain characteristic assemblages dominated by species with restricted ranges and reduced powers of dispersal. Our study suggests that preserving areas in the landscape supporting higher biodiversity will not necessarily preserve those species potentially more susceptible to habitat loss and fragmentation. It also supports the feasibility of biodiversity studies based on multivariate techniques for setting conservation priorities over complex landscapes.  相似文献   

17.
Climate change presents a potentially severe threat to biodiversity. Species will be required to disperse rapidly through fragmented landscapes in order to keep pace with the changing climate. An important challenge for conservation is therefore to manage landscapes so as to assist species in tracking the environmental conditions to which they are adapted. Here we develop a stochastic spatially explicit model to simulate plant dispersal across artificial fragmented landscapes. Based on certain assumptions as to the dispersal mechanism, we assess the impact that varying potential for rare long-distance dispersal (LDD) has on the ability to move over landscapes with differing spatial arrangements of suitable habitat (clumped versus fragmented). Simulations demonstrate how the relative importance of landscape structure in determining migration ability may decrease as the potential for LDD increases. Thus, if LDD is the principal mechanism by which rapid large-scale migrations are achieved, strategically planned networks of protected habitat may have a limited impact on rates of large-scale plant migrations. We relate our results to conventional principles for conservation planning and the geometric design of reserves, and demonstrate how reversal of these principles may maximise the potential for conservation under future climates. In particular, we caution against the justification of large-scale corridors on grounds of climate change since migration along corridors by standard dispersal mechanisms is unlikely to keep pace with projected change for many species. An improved understanding of the dispersal mechanisms by which species achieve rapid migrations, and the way that these processes are affected by patterns of landscape fragmentation, will be important to inform future conservation strategies.  相似文献   

18.
Significant biodiversity loss is characteristic of agricultural landscapes worldwide. Biodiversity recovery efforts in such landscapes can be hamstrung by a paucity of information on factors affecting species’ distributions, particularly for threatened and/or declining species. The temperate woodlands of south-eastern Australia have been extensively modified for agriculture and numerous bird taxa are declining. We have explicitly identified habitat and landscape attributes of woodland remnants affecting site occupancy by 13 woodland bird species of conservation concern.Using case-control data and linear logistic regression, we found that site occupancy for each species was related to both habitat and landscape variables. Habitat variables of particular importance included those in the ground layer (an abundance of leaf litter, an intact surface crust of mosses and lichens and a scarcity of annual grasses) and overstorey (a scarcity of eucalypt dieback and an abundance of mistletoe). Landscape variables strongly affecting site occupancy included the number of paddock trees and the area of native grass within 500 m of a site. Many of our study species were found most often in regrowth remnants.Our findings indicate a gap between current conservation practices and the actual habitat requirements of woodland bird species of conservation concern. Successful management will require protection and/or rehabilitation of the ground layer and overstorey of woodland remnants and sympathetic management of the surrounding landscape. It also will require managers to go beyond current practices of conserving old growth remnants and establishing replantings to maintaining and creating stands of woodland regrowth.  相似文献   

19.
In this paper, habitat models were used to predict potential habitat for endangered species, which is an important question in landscape and conservation planning. Based on logistic regression, we developed habitat distribution models for the burnet moth Zygaena carniolica and the nymphalid butterfly Coenonympha arcania in Northern Bavaria, Germany. The relation between adult occurrence and habitat parameters, including the influence of landscape context, was analyzed on 118 sites. Habitat connectivity analyses were carried out on the basis of (1) habitat suitability maps generated from these models and (2) dispersal data from mark recapture studies. Our results showed that (1) the presence of the burnet depended mainly on the presence of nectar plants and of nutrient-poor dry grasslands in direct vicinity, that of the nymphalid on larger areas of extensively used dry grasslands within 100 m vicinity in combination with small patches of higher shrubs and bushes. (2) Internal as well as external validation indicated the robustness and general applicability of the models. Transferability in time and space indicated their high potential relevance for applications in nature conservation, such as predicting possible effects of land use changes. (3) Habitat connectivity analyses revealed a high degree of habitat connectivity within the study area. Thus, we could show no effects of isolation or habitat size for both species.  相似文献   

20.
Maintaining animal movement in fragmented landscapes depends upon the levels of connectivity among habitat patches, which in turn may depend upon the landscape matrix. Little is known about how the matrix affects dispersal abilities, in part because few experimental tests have been conducted. We experimentally translocated 142 migratory American Redstarts (Setophaga ruticilla) and resident Jamaican Todies (Todus todus) 0.6-4 km from their territories across landscapes fragmented by peri-urban development and bauxite mining and continuous forest. Redstarts returned more rapidly and with greater success than todies across all landscapes, with 95% of redstarts returning in an average of 2.5 days versus 60% of todies in >20 days. Return success was best predicted by translocation distance for redstarts and by sex for todies, with a trend of fewer birds returning when released in bauxite landscapes. Return time was strongly affected by matrix type, with both species returning more rapidly in a forested relative to a bauxite matrix and intermediately in a peri-urban matrix. These findings provide strong experimental evidence that land cover surrounding forested habitat influences species mobility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号