首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Habitat loss and fragmentation promote relatively predicable shifts in the functional signature of tropical forest tree assemblages, but the full extent of cascading effects to biodiversity persistence remains poorly understood. Here we test the hypotheses that habitat fragmentation (a) alters the relative contribution of tree species exhibiting different reproductive traits; (b) reduces the diversity of pollination systems; and (c) facilitates the functional convergence of reproductive traits between edge-affected and early-secondary forest habitats (5-32 years old). This study was carried out in a severely fragmented 670-km2 forest landscape of the Atlantic forest of northeastern Brazil. We assigned 35 categories of reproductive traits to 3552 trees (DBH ? 10 cm) belonging to 179 species, which described their pollination system, floral biology, and sexual system. Trait abundance was calculated for 55 plots of 0.1 ha across four habitats: forest edges, small forest fragments (3.4-83.6 ha), second-growth patches, and core tracts of forest interior within the largest available primary forest fragment (3500 ha) in the region. Edge-affected and secondary habitats showed a species-poor assemblage of trees exhibiting particular pollination systems, a reduced diversity of pollination systems, a higher abundance of reproductive traits associated with pollination by generalist diurnal vectors, and an elevated abundance of hermaphroditic trees. As expected, the reproductive signature of tree assemblages in forest edges and small fragments (edge-affected habitats), which was very similar to that of early second-growth patches, was greatly affected by both habitat type and plot distance to the nearest forest edge. In hyper-fragmented Atlantic forest landscapes, we predict that narrow forest corridors and small fragments will become increasingly dominated by edge-affected habitats that can no longer retain the full complement of tree life-history diversity and its attendant mutualists.  相似文献   

2.
The establishment of plant species depends crucially on where the seeds are deposited. However, since most studies have been conducted in continuous forests, not much is known about the effects of forest fragmentation on the maintenance of abiotic and biotic characteristics in microhabitats and their effects on seed survival. In this study, we evaluated the effects of forest fragmentation on the predation upon the seeds of the palm Syagrus romanzoffiana in three microhabitats (interior forest, forest edge and gaps) in eight fragments of semi-deciduous Atlantic forest ranging in size from 9.5 ha to 33,845 ha in southeastern Brazil. Specifically, we examined the influence of the microhabitat structure, fauna and fragment size on the pattern of seed predation. Fragments <100 ha showed similar abiotic and biotic characteristics to those of the forest edge, with no seed predation in these areas. Forest fragments 230-380 ha in size did not present “safe sites” for S. romanzoffiana seed survival and showed high seed predation intensity in all microhabitats evaluated. In fragments larger than 1000 ha, the seed predation was lower, with abiotic and biotic differences among gaps, interior forests and forest edges. In these fragments, the survival of S. romanzoffiana seeds was related to squirrel abundance and interior forest maintenance. Based on these results, we concluded that there are no safe sites for S. romanzoffiana seed establishment in medium- and small-sized fragments as result of the biotic and abiotic pressure, respectively. We suggest that on these forest fragments, management plans are needed for the establishment of S. romanzoffiana, such as interior forest improvement and development in small-sized sites in order to minimize the edge effects, and on medium-sized fragments, we suggest post-dispersal seed protection in order to avoid seed predation by vertebrates. Our findings also stress the importance of assessing the influence of forest fragmentation on angiosperm reproductive biology as part of the effective planning for the management of fragmented areas.  相似文献   

3.
Despite scientific and media attention on pollinator declines, there is still only a rudimentary understanding of the response of bees—the most important group of pollinators worldwide—to ongoing land use changes. Euglossine bees are an ecologically important Neotropical clade of forest-dependent pollinators. Despite the fact that euglossines are well studied relative to other groups of tropical bees, only three previous studies, all from Brazil, address the response of euglossines to forest fragmentation. In this study, I tripled the maximum sample size of previous efforts by sampling male euglossines in 22 forest fragments ranging in area from 0.25 ha to 230 ha in southern Costa Rica, using chemically baited Van Someren traps. Abundance of euglossine bees was significantly positively related to forest fragment size, negatively related to shape (edge:area ratio), and marginally related to fragment isolation. Euglossine species richness showed similar, but weaker trends: richness was significantly positively related to the quantity of forest edge, marginally negatively related to fragment area, and not related to fragment isolation. The positive relationship between euglossine richness and abundance and forest fragment edge is consistent with other studies that have found high euglossine density in secondary or disturbed forest. The data suggest that individual euglossines move between forest fragments, as has been shown in other systems. Still, forest fragmentation appears to affect euglossine bees more strongly than other bee groups in the study region. Their large flight range and positive relationship with forest edges may help to buffer the negative effects of fragmentation, allowing euglossines to utilize even the very smallest forest fragments in the study area.  相似文献   

4.
The Maulino forest is a unique temperate ecosystem restricted to a small range of the coast of central Chile. This forest harbors many endemic species, and is threatened due to intensive deforestation and fragmentation. Currently the Maulino forest is composed of a suite of small fragments scattered in a landscape dominated by exotic plantations. The fragmentation of the Maulino forest has resulted in a higher abundance of granivores in small forest fragments compared with continuous forest. In order to determine if fragmentation-induced changes in granivore abundance affects the granivory of different size seeds, we experimentally assessed seed predation of a large-seeded species [Nothofagus glauca (Phil.) Krasser] and a small-seeded species [Nothofagus obliqua (Mirbel) Oersted] in the edges and interior of one continuous (large) forest and three small fragments (∼3 ha) surrounded by plantations of the exotic tree Pinus radiata. To determine what kind of granivores are preying upon seeds, seeds of both species were excluded from and exposed to large and small granivores. Granivory was higher in small fragments than in continuous forest, higher in the edges than in the forest interior, and higher upon large than on small seeds. Rodents, which were more abundant in forest fragments, were the main consumers. Thus, fragmentation indeed affects granivory increasing the consumption of seeds by predators inhabiting the Maulino forest remnants or coming from the matrix. This change may affect the future structure of the tree community in forest fragments.  相似文献   

5.
Invasive plants can eliminate native flora and ultimately have negative indirect effects on fauna and the functional ecology of ecosystems, but understanding of these cascading effects on arthropod assemblages is poor. Desert spring habitats are small, isolated landscape elements that are literal oases for flora and fauna and support high diversity assemblages; invasive palms can colonize desert springs and form monocultures. In an effort to understand effects of these invasive trees on higher terrestrial trophic levels at springs, we contrasted assemblage structure of terrestrial arthropods in native vegetation versus invasive palm habitat. We sampled arthropods in paired palm and native habitat at 10 springs in Death Valley National Park, California, USA, during both spring and fall growing seasons using suction sampling. The invading palms Phoenix dactylifera L. and Washingtonia filifera (Linden ex André) supported a mean of only one-sixth of the arthropod abundance, one-third of the species richness, and half the family richness of native habitat. Almost all orders were less abundant in palms, and most families and species were either absent or virtually absent in palm habitat. Both live and dead palm leaves were depauperate, and season and block effects were minimal. Impacts of these visually striking invasives clearly go beyond monopolization of ground cover, and invading palms appear capable of reshaping the functional ecology of desert springs. If control efforts are undertaken, we recommend complete removal of palms, because killed but standing “ghost palms” and associated thatch persist for many years and will continue to provide poor arthropod habitat and prevent native plant establishment.  相似文献   

6.
Forested landscapes in Southeast Asia are becoming increasingly fragmented, making this region a conservation and research priority. Despite its importance, few empirical studies of effects of fragmentation on biodiversity have been undertaken in the region, limiting our ability to inform land-use regimes at a time of increased pressure on forests. We estimated the biodiversity value of forest fragments in peninsular Malaysia by studying fragmentation impacts on insectivorous bat species that vary in dependence of forest. We sampled bats at seven continuous forest sites and 27 forest fragments, and tested the influence of fragment isolation and area on the abundance, species richness, diversity, composition and nestedness of assemblages, and the abundance of the ten most common species. Overall, isolation was a poor predictor of these variables. Conversely, forest area was positively related with abundance and species richness of cavity/foliage-roosting bats, but not for that of cave-roosting or edge/open space foraging species. The smallest of fragments (<150 ha) were more variable in species composition than larger fragments or continuous forest, and larger fragments retained substantial bat diversity, comparable to continuous forest. Some fragments exhibited higher bat abundance and species richness than continuous forest, though declines might occur in the future because of time lags in the manifestation of fragmentation effects. Our findings suggest that fragments >300 ha contribute substantially to landscape-level bat diversity, and that small fragments also have some value. However, large tracts are needed to support rare, forest specialist species and should be the conservation priority in landscape-level planning. Species that roost in tree cavities or foliage may be more vulnerable to habitat fragmentation than those that roost in caves.  相似文献   

7.
Fragmented and degraded vegetation characterises agricultural landscapes across southern Australian. Remnant vegetation within these regions performs a number of vital ecological and hydrological roles, but little is known about whether or how fragmentation is affecting the long-term persistence of these critical landscape elements. Acacias are a significant component of many remnant vegetation communities across Australia, forming numerous integral faunal and floral relationships. Here, reproductive output of 11 fragmented Acacia dealbata (Mimosaceae) populations from across the southern tablelands of New South Wales was assessed over 2 years to identify reproductive constraints associated with increasing vegetation fragmentation. Fertilization success is the major reproductive constraint, particularly in small populations, and probably reflects a self-incompatible reproductive strategy. During 2002 larger and more dense populations produced more legumes (p = 0.014 and <0.001, respectively) while in 2003 these two variables were associated with increased fertilization success (p = 0.004 and 0.017, respectively). There was also some suggestion that populations with fewer exotic species also experienced increased fertilization success (p = 0.055). Assessment of plant performance within populations suggests that consistent reproductive output of particular individuals within small populations may limit reproductive compatibility within these populations over time. The long-term persistence of many small A. dealbata populations may be jeopardised by low seed set, and limited recruitment and aging stands. Immediate steps are now required to ensure that these populations continue contributing to landscape function by augmenting populations, improving connectivity, and allowing disturbance events that will stimulate recruitment.  相似文献   

8.
Because agoutis (Dasyprocta sp.) and acouchies (Myoprocta sp.) are the most important dispersers of several large-seeded Amazonian trees, knowing their responses to forest fragmentation is essential and urgent. But until now, there was no study showing their population trends in Amazonian land forest fragments. The present study was conducted at the Biological Dynamics of Forest Fragments Project, Central Amazon, Brazil. Eleven sites (three fragments of 1 ha, three of 10 ha, two of 100 ha and three sites of continuous forest) were surveyed between 2003 and 2005. Agoutis and acouchies were systematically counted at each site through standard transect censuses and their densities were estimated with DISTANCE 4.1. Overall, I walked 100 km, and encountered 136 acouchies and 35 agoutis. Fragmentation had a significant negative effect on acouchies and a significant positive effect on agouti densities. Acouchy density was 0.64 ± 0.09 inds./ha in continuous forests and 0.07 ± 0.07 inds./ha in 1-ha fragments. On the other hand, agouti density was 0.16 ± 0.05 inds./ha in continuous forests and 0.71 ± 0.24 inds./ha in 1-ha fragments. This study is consistent with the idea that in fragments, larger species of mammals are initially less affected by forest fragmentation than smaller ones. More critical to conservation is the fact that acouchies, which were negatively affected by fragmentation, are restricted to the core region of the Amazonian rainforests. Continued fragmentation of Amazonian forests should have vast negative consequences for the genus.  相似文献   

9.
Forest fragmentation is a common disturbance affecting biological diversity, yet the impacts of fragmentation on many forest processes remain poorly understood. Forest restoration is likely to be more successful when it proceeds with an understanding of how native and exotic vertebrates utilize forest patches of different size. We used a system of forest fragments isolated by volcanic activity 153 years ago in Hawaii to examine how long-term fragmentation, as well as fragment size and structural features affect the richness of native and exotic bird species. The total number of bird species increased rapidly with forest fragment size, with most of the native species pool found in patches <3 ha. Smaller fragments were dominated by native bird species with several exotic bird species found only in the largest fragments, suggesting that exotic bird species in this landscape show greater area-sensitivity than native species. We used airborne scanning light detection and ranging (LiDAR) to assess whether fragment area was correlated with estimates of fragment vegetation volume as well as measures of tree height. Fragment area was highly correlated with vegetation volume, maximum tree height, and canopy height heterogeneity, and these variables were strong predictors of bird richness, demonstrating that remote sensing can provide key insights into the relationship between fragment structural attributes and biodiversity indicators. Overall, this work demonstrates the value of conserving small remnant mid-elevation forest patches for native birds in Hawaii. This work also provides insight into how newly created forest patches might be used by native and exotic bird species in Hawaii.  相似文献   

10.
Habitat fragmentation is often associated with reduced levels of fitness and local extinction of plant species, and consequently poses a major threat to the persistence of species worldwide. The majority of demography-based fragmentation studies to date have focussed primarily on fragmentation impacts on individual plant fecundity. Here we investigate the impact of habitat fragmentation on the demography (plant height classes and density) and key population dynamic processes for the rainforest tree species Macadamia integrifolia (Proteaceae). Raceme and fruit production and seedling emergence across fragmented sites exceeded that in more intact sites with no apparent difference in short-term mortality rates. Fecundity of flowering trees did not appear to be affected by fragmentation. Instead, overall reproductive output in fragmented sites was enhanced relative to undisturbed sites due to a higher proportion of reproductively active individuals. The probability of flowering and fruiting was negatively correlated with the projected foliage cover (PFC) surrounding individual trees, and average PFC was significantly lower in small and medium fragments, suggesting light availability as a potential contributor to the trends observed here.This study demonstrates that the short-term effects of habitat fragmentation on population viability may not necessarily be detrimental for some species, and highlights the importance of assessing not only the fecundity of flowering individuals but also the proportion of individuals reproducing within fragments.  相似文献   

11.
In fragmented landscapes plant species are often confined to remnants of formerly more widespread habitats, with many of their populations being small and isolated. This study experimentally examined the effects of population size and isolation on pollination, herbivory and reproductive success in the forest herb Phyteuma spicatum (Campanulaceae). In an experiment in which population size and isolation were manipulated using plants from the same origin, population size positively affected pollinator visitation, but did not alter the generally high levels of herbivory. As a result, seed production was higher in large populations. Conversely, plants originating from 14 natural populations of varying size and degree of isolation did not differ in reproductive success when grown in the same environment, suggesting similar attractiveness to pollinators and reproductive potential. The intensity of herbivory, however, was higher in progeny of small populations, at least in terms of the proportion of biomass removed. In both experiments, there were no effects of population isolation. The results suggest (1) that small population size decreases reproductive success via direct negative effects on plant-pollinator interactions, (2) that this pattern is not offset by herbivory, but (3) that herbivory enforces fragmentation effects on pollination by further reducing the number of flowering individuals and (4) that habitat fragmentation may influence plant fitness by affecting plant response to herbivory. The effects of habitat fragmentation on plant populations in present-day landscapes are thus complex, illustrating the need for more integrated studies in conservation biology that take into account both mutualistic and antagonistic plant-animal interactions.  相似文献   

12.
In this study we investigate the effect of population size on the proportion of flowers that produce a fruit (fruit set), the number of seeds per fruit (seed set), seed germinability, seedling mortality and growth in a range of population fragments for the bird-pollinated mixed mating system shrub Calothamnus quadrifidus R. Br. (Myrtaceae). We found no significant linear relationship (p < 0.05) between population fragment size and fruit set in any of the three years reproduction was studied. In contrast, we found a very strong positive correlation between the number of seeds produced per fruit and increasing population fragment size for each of the three years. We found no significant linear relationships between population fragment size and seed germination, or seedling growth and mortality. The most plausible explanation for the decline in seed set is increased inbreeding in smaller populations. Although a previous mating system analysis with allozymes did not reflect the above, we present evidence from other lines of inquiry to indicate that inbreeding does increase in smaller populations, but is masked by post-zygotic lethal systems that eliminate genetically incompetent homozygous embryos. We found no evidence that highly mobile pollinators transporting pollen among fragments rescue small fragments from inbreeding. We discuss the implications of our findings for the conservation of plant diversity in fragments of species rich Mediterranean climate shrublands.  相似文献   

13.
We studied the importance of fragment size and structural and functional connectivity on the occurrence and abundance of seven Atlantic Forest bird species in 13 patches (13-275 ha) and three sites within a continuous forest (10,000 ha). We sampled birds with point counts and evaluated structural connectivity considering the presence of corridors and the degree of isolation. We defined functional connectivity by analyzing species movements using playbacks in forest corridors between fragments and in the surrounding matrix. Species differed in their responses to fragmentation. For the frugivorous species, Trogon surrucura, Carpornis cucullatus and Triclaria malachitacea, patch size was the main factor determining abundance. Two understory insectivorous species, Basileuterus leucoblepharus and Pyriglena leucoptera, were more affected by the degree of patch connectivity, the former by the presence of corridors and the latter by the distance between patches. The capacity of P. leucoptera to use corridors and open areas (i.e. functional connectivity) shaped its abundance pattern. Fragmentation had no effect on the abundance of Chiroxiphia caudata and had a positive effect on Batara cinerea. This study emphasizes the importance of considering species’ perceptions of landscape, especially functional connectivity, in understanding the effects of habitat fragmentation.  相似文献   

14.
The long-term dynamics of plant communities remain poorly understood in isolated tropical forest fragments. Here we test the hypothesis that tropical tree assemblages in both small forest fragments and along forest edges of very large fragments are functionally much more similar to stands of secondary growth (5-65-yr old) than to core primary forest patches. The study was carried out in a severely fragmented landscape of the Brazilian Atlantic forest. Nine functional attributes of tree assemblages were quantified by sampling all trees (DBH ? 10 cm) within 75 plots of 0.1 ha distributed in four forest habitats: small forest fragments (3.4-79.6 ha), forest edges, second-growth patches, and primary forest interior areas within a large forest fragment (3500 ha). These habitats were markedly different in terms of tree species richness, and in the proportion of pioneer, large-seeded, and emergent species. Age of second-growth stands explained between 31.4% and 88.2% of the variation in the functional attributes of tree assemblages in this habitat. As expected, most traits associated with forest edges and small forest fragments fell within the range shown by early (<25-yr old) and intermediate-aged secondary forest stands (25-45-yr old). In contrast to habitat type, tree assemblage attributes were not affected by vegetation type, soil type and the spatial location of plots. An ordination analysis documented a striking floristic drift in edge-affected habitats. Our results suggest that conservation policy guidelines will fail to protect aging, hyper-fragmented landscapes from drastic impoverishment if the remaining forest patches are heavily dominated by edge habitat.  相似文献   

15.
We examined visiting patterns of pollinators of Betonica officinalis L. (Lamiaceae) in experimentally fragmented calcareous grasslands and corresponding control plots at two study sites (Movelier and Nenzlingen) in the north-western Swiss Jura mountains. Fragments (1.5×1.5 m) were isolated by a 5-m wide strip of frequently mown vegetation while the control plots were situated in the adjacent undisturbed vegetation. The most common pollinator, the bumblebee Bombus veteranus (Apidae), visited fragments 53.7% less frequently than control plots. Furthermore, a change in foraging behaviour of Bombus veteranus was observed. In fragments the bumblebees visited more inflorescences, flew longer total visiting distances and the visiting time per patch tended to be higher than in control plots. The distribution of angles between arrival and departure direction (turning angles) differed from a uniform distribution in fragments but not in control plots. The increased directionality of bumblebee flight might be due to a decrease in floral rewards. Our results show that small-scale habitat fragmentation can affect plant pollination at two levels both relevant for plant fitness. First, lower visitation rates indicate a limitation of pollinators which might result in reduced seed set of the pollinated plant. Second, changes in pollinator behaviour might reduce pollen dispersal among flowers, increase inbreeding and hence reduce genetic variability in populations of this bumblebee pollinated plant.  相似文献   

16.
Pollinator assemblages may shift as a consequence of the destruction and fragmentation of natural habitats. The scarcity of mates and pollinators can lead plant populations to suffer from pollen limitation and a decrease in reproductive performance within fragmented areas. We studied the shift in pollinator assemblages along with pollen limitation and seed production patterns in the Mediterranean shrub Myrtus communis. Our study included six populations contrasting in patch and population size (Large vs. Small) within a fragmented landscape characterized by ∼1% of potential forest coverage. The breeding system in Myrtus communis was self-compatible, but compared with natural pollination, fruit set increased with pollen addition (quantity limited), and seed set (brood size) increased with outcross pollen addition (quality limited). While the pollinator assemblage in Large patches was taxonomically diverse, it was almost monopolized by honeybees in Small patches, where visitation rates were highest and wild bee species were almost absent. In general, Small populations were less pollen limited for fruit set than Large populations, particularly those that received the highest rates of honeybee visits. However, despite differences in fragmentation and pollinators between Large and Small populations, seed production patterns (brood size and seed mass) were rather similar among them, in agreement with similar pollen limitation levels found for brood size. A higher susceptibility of native pollinators to the presence of honeybee hives was found in Small patches, suggesting that the pollinator assemblage may be severely altered when fragmentation occurs in combination with beekeeping. We discuss its implications and effects on plant reproduction in fragmented areas.  相似文献   

17.
An inventory of the understory forest epiphyte and epiphyllous bryophyte floras was carried out in eight Atlantic rain forest fragments. The fragments were between 7 and 500 ha in size and belonged to two areas (lowland and submontane) of the state of Pernambuco, northeastern Brazil. The aim of this study was to investigate the effect of habitat fragmentation and changes in the natural landscape on community structure (composition, richness, diversity, and abundance). Although the influence of altitude was noted in this study by increasing richness, diversity, and abundance, it was clear that in some fragments the influence of fragment size and isolation can be more important than this positive environmental factor. Fragment size and isolation affect both communities but the last one seems to be a stronger threatening factor for the epiphylls. The least isolated and the largest fragments housed the richest floras - especially in relation to the epiphylls - and had the greatest proportion of shade species. Habitat fragmentation negatively affected epiphytic and epiphyllous bryophytes and increased the representation of species with larger niches (generalists) while decreasing the representation of species with smaller niches (typically found in shady or in sunny areas). The results suggests that the critical fragment size necessary for bryophyte preservation must be correlated with insularity levels; for epiphytes, however, it is likely that low levels of isolation cannot compensate borderline effects as with the epiphyllous bryophytes.  相似文献   

18.
Bats are ecologically important mammals in tropical ecosystems; however, their populations face numerous environmental threats related to climate change, habitat loss, fragmentation, hunting, and emerging diseases. Thus, there is a pressing need to develop and implement large-scale networks to monitor trends in bat populations over extended time periods. Using data from a range of Neotropical and Paleotropical bat assemblages, we assessed the ability for long-term monitoring programs to reliably detect temporal trends in species abundance. We explored the magnitude of within-site temporal variation in abundance and evaluated the statistical power of a suite of different sampling designs for several different bat species and ensembles. Despite pronounced temporal variation in abundance of most tropical bat species, power simulations suggest that long-term monitoring programs (?20 years) can detect population trends of 5% per year or more with adequate statistical power (?0.9). However, shorter monitoring programs (?10 years) have insufficient power for trend detection. Overall, our analyses demonstrate that a monitoring program extending over 20 years with four surveys conducted biennially on five plots per monitoring site would have the potential for detecting a 5% annual change in abundance for a suite of bat species from different ensembles. The likelihood of reaching adequate statistical power was sensitive to initial species abundance and the magnitude of count variation, stressing that only the most abundant species in an assemblage and those with generally low variation in abundance should be considered for detailed population monitoring.  相似文献   

19.
Forest fragmentation results in population declines and extinctions for many forest vertebrates, but little is known about the mechanisms causing declines in fragments. We investigated potential causes of declines in forest fragments for an Amazonian forest frog (Colostethus stepheni) at an experimental fragmentation study site in central Amazonian Brazil using field estimates of abundance and vital rates coupled with population simulations. Although adult male survival was not reduced by fragmentation, mean clutch size was reduced by 17%. Population simulations demonstrate that a reduction in clutch size of this magnitude is sufficient to cause the observed magnitude of population declines in fragments. Female snout-vent length was also reduced in fragments and may be related to the observed reduction in clutch size.  相似文献   

20.
We characterized the tree seedling community within seven forest fragments of different size (3-640 ha) at Los Tuxtlas, Mexico. We considered individual density, species richness, diversity, composition and functional group (shade tolerant, non-pioneer-light demander and pioneer species). We recorded 8038 individuals, belonging to 128 species and 40 morphospecies. Overall, shade-tolerant species had the highest density and diversity followed by non-pioneer-light demanders and pioneer species. Mean individual density per plot was not related to fragment size, but mean species richness per plot, total observed species richness and diversity were inversely related to fragment size, with the smallest fragments having the highest values. Species composition comparisons highlighted low similarity among fragments. Furthermore, larger fragments shared more species with the smallest fragments than between each other. Our results show that the largest fragments do not always hold the highest species richness; that small fragments comprise of high seedling species diversity, and represent a high regeneration potential for tree native species in the study landscape.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号