首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spatially-explicit population viability analysis (PVA) is a powerful method for modeling the extinction risk of populations that show variation over space and time. It is especially effective for comparing relative effect of different management scenarios on population dynamics. Here, I present a habitat patch-based PVA for a population of the California state-listed threatened bank swallow (Riparia riparia) nesting along the Sacramento River. This model incorporates the effects of habitat availability and location, density dependence, site fidelity, and stochasticity in survival and fecundity. River bank habitat patches suitable for this species were delineated using a geographic information systems (GIS) model of river bank height and were used in a PVA scenario analysis to assess the effects of habitat restoration—that could occur by removing bank erosion control projects (bank revetment)—on population viability. Sensitivity analysis showed that the model estimated probability of quasi-extinction (dropping below 2000 breeding pairs) ranged from 0 to 0.8 depending on the input parameters, with juvenile survival causing the greatest variability. However, comparing changes to the probability of quasi-extinction between the restored habitat scenario and current conditions showed a consistent 40-60% decrease in probability of quasi-extinction across all parameter combinations. The results of this research reaffirm the need for continued protection of the bank swallow as a listed species indicate that the removal of bank erosion control projects would increase viability of this population.  相似文献   

2.
This study investigates the dynamics and viability of a marsh fritillary butterfly Euphydryas aurinia metapopulation in a Belgian successional landscape. Based on capture-mark-recapture and winter nest census data, we first estimated demography (survival and recruitment rates, population size, density dependence) and dispersal parameters (emigration rate, effect of patch connectivity on dispersal, mortality during dispersal). Then using RAMAS/GIS platform, we parameterised a population viability analysis (PVA) model with these parameters to simulate the future of this metapopulation under different scenarios.The metapopulation does not seem viable even if natural reforestation is controlled by adequate management. In its present state, the patch system is not able to sustain enough individuals: due to the large temporal fluctuations in demographic parameters, a carrying capacity far higher than currently would be necessary to limit extinction risk to 1%, suggesting the existence of an extinction debt for the species in Belgium. The situation of E. aurinia appears much worse compared to two other fritillary species threatened in Belgium, for which similar PVA are available. It is therefore urgent to increase the carrying capacity of the patch system. How and where it is achieved are of secondary importance for the gain in viability: improvement of habitat quality through restoration, or increase of habitat quantity via enlargement of existing patches and/or creation of new habitat in the matrix. A regime of management based on regular re-opening and maintenance of habitat patches may be the only guarantee of long-term persistence for this critically endangered species in Belgium.  相似文献   

3.
While several population viability analyses (PVAs) have been performed on anadromous salmonids, less attention has been given to stream-living salmonids. In this work, we explore the role of PVA as a tool in the recovery of threatened stream-living salmonid species. The analysis has been performed with reference to marble trout Salmo marmoratus, a salmonid with a limited geographic distribution and at risk of extinction due to hybridization with the non-native introduced brown trout. Demographic parameters, such as survival, fecundity and density-dependent patterns were estimated from an eight year on-going monitoring program of two translocated marble trout populations in pristine, previously fishless streams (Zakojska and Gorska) in the Soca and Idrijca river basins (Slovenia). To explore the importance of disturbance events such as floods on marble trout population dynamics, we performed a PVA under three scenarios: (1) occurrence of both severe and moderate floods; (2) occurrence of only moderate floods; (3) no flood events. Our analysis shows that population viability is threatened only by severe flood events, otherwise the two populations prove to be fairly stable with population abundance fluctuating around stream carrying capacity. A sensitivity analysis performed on model parameters highlighted that density-dependence in first-year survival and the magnitude of reduction in population size after a severe flood are the two most crucial parameters affecting population abundance and quasi-extinction probability, respectively. While only extreme floods can drive the population to extinction, the increase in juvenile survival when population abundance collapses after a major flood may allow the populations to quickly recover from few reproductive individuals back to stream carrying capacity.  相似文献   

4.
The expansion of human activities into rural areas and natural landscapes has resulted in widespread increases in the abundance of synanthropic species that threaten rarer native species. Quantitative assessments of how much impacts need to be reduced to reach acceptable levels of risk to the affected species are rarely conducted prior to the implementation of control measures, and it is perhaps not surprising that many efforts have not yielded the desired outcome. Here, we used matrix-based population viability analysis models to show that reducing predation by rapidly growing corvid populations on marbled murrelet (Brachyramphus marmoratus) nests likely constitutes an effective means for recovering a declining murrelet population in central California. For example, a modest 40% reduction in predation reduced extinction risk dramatically from 95.8% to 4.6% over 100 years and a 60% reduction resulted in a stable population (λ = 1) when the proportion of breeders, renesting rates, and corvid predation rates were assumed to be 0.77, 0.13, and 0.69, respectively. However, nest predation would only need to be reduced by 40% to produce a stable population if corvid management was coupled with a modest increase in after-hatch-year survival from 0.896 to 0.910. Corvid control resulted in greater gains in murrelet population size when the maximum number of breeders was allowed to increase over the projection period, as might be expected if the amount of old-growth nesting habitat increased over time, but extinction risk was insensitive to the presence of a carrying capacity. Approximately half of known murrelet nests in central California are within 1 km of heavily used campgrounds in a single state park, indicating that significant gains in viability could be achieved by targeting efforts in small areas providing corvid food subsidies. Risk assessments such as ours can provide quantitative prioritization rationale for efforts intended to mitigate the impacts of synanthropic species on threatened species.  相似文献   

5.
Carnivores in Asia and throughout the world face high risk of extinction due to factors such as continued habitat loss and hunting. However, the Asiatic lion of Gir forest, India presents a conservation success story whose history may help to guide the recovery and conservation of other imperiled predators. Protection of core and satellite habitats and the relocation of pastoral communities and their livestock triggered forest recovery and coincident increases in native prey populations. Wild ungulate populations increased by 10-fold between 1970 and 2010, supporting an increase in the lion population from 180 animals in 1974 to 411 animals in 2010. Coincident with this increase, lions shifted their predation preferences from a diet composed of 75% livestock to one composed of just 25% livestock. This example demonstrates the value of native prey populations to sustain imperiled carnivore species, and the use of protected areas and livestock exclusion to maintain healthy prey populations.  相似文献   

6.
The effects of habitat fragmentation on the Australian avifauna have been widespread with species richness and abundance declining with reduced remnant size and habitat quality and increased habitat isolation. The speckled warbler, Chthonicola sagittata is one species from the highly fragmented temperate woodlands of eastern Australia that has declined across its range and populations that remain appear to be patchily distributed in habitat remnants. Specific causes of decline are unknown but several aspects of its biology make the species particularly vulnerable to decline in fragmented landscapes. Here, we analyse survey data (presence/absence) of speckled warblers in a large sample of habitat remnants from three regions to identify patterns of occupancy. We explore the effects of patch size on extinction risk using population viability analyses (PVA) and detailed demographic data from a behavioural study of individuals in the Australian Capital Territory, south-eastern Australia. Patch size was a strong predictor of the persistence of speckled warblers in habitat remnants. High density populations had higher probabilities of persisting, and inclusion of an Allee effect during drought decreased the probability of persistence. In the absence of an Allee effect, only high density populations in patches greater than 300 ha and low density populations in patches greater than700 ha had more than an 80% probability of persisting over 100 years. The accelerating decrease in population persistence below approximately 200-400 ha suggests that small populations were particularly vulnerable to stochastic demographic and environmental events. Adult female mortality was the single most important factor in driving population extinction. Our PVA model predictions matched the survey data for the Australian Capital Territory region remarkably well, but failed to predict occupancy rates in remnants in other regions. Differences in occupancy patterns between regions may, however, have resulted from inbreeding depression. This study demonstrates both the strengths and limitations of PVA analysis. PVA can predict occupancy patterns with reasonable accuracy, given good demographic data, but data for one region cannot be used universally for all regions. We highlight the need for studies of demography in different regions to interpret regional patterns of occupancy and to identify mechanisms of decline in remnant habitat.  相似文献   

7.
Direct estimates of extinction risk are frequently unavailable, so surrogate indicators are used in threatened species categorizations, but there is inadequate information on which best predict vulnerability. We compared the ability of 16 frequently-used factors to predict extinction risk for 45 vertebrate taxa. Median times to extinction were estimated using taxon-specific stochastic population models. Population size (N) and trend were clearly the best correlates of extinction risk in our data set. Stepwise multiple regression with additive and interaction terms identified N, N × trend, plus taxonomic level, number of sub-populations × N × trend, number of offspring (O) and N × O as predictors, and explained 70% of the variation. Trend was important in large, but not in small populations. Population size is the most important data to collect for threatened species and with trend should be the major focus in endangered species categorization and state of the environment reporting.  相似文献   

8.
Genetics and extinction   总被引:3,自引:0,他引:3  
The role of genetic factors in extinction has been a controversial issue, especially since Lande’s paper [Genetics and demography in biological conservation, Science 241 (1988) 1455-1460] paper in Science. Here I review the evidence on the contribution of genetic factors to extinction risk. Inbreeding depression, loss of genetic diversity and mutation accumulation have been hypothesised to increase extinction risk. There is now compelling evidence that inbreeding depression and loss of genetic diversity increase extinction risk in laboratory populations of naturally outbreeding species. There is now clear evidence for inbreeding depression in wild species of naturally outbreeding species and strong grounds from individual case studies and from computer projections for believing that this contributes to extinction risk. Further, most species are not driven to extinction before genetic factors have time to impact. The contributions of mutation accumulation to extinction risk in threatened taxa appear to be small and to require very many generations. Thus, there is now sufficient evidence to regard the controversies regarding the contribution of genetic factors to extinction risk as resolved. If genetic factors are ignored, extinction risk will be underestimated and inappropriate recovery strategies may be used.  相似文献   

9.
The IUCN is the leading authority on assessing species’ extinction risks worldwide and introduced the use of quantitative criteria for the compilation of Red Lists of threatened species. Recently, we assessed the threat status of the 483 European butterfly species, using semi-quantitative data on changes in distribution and in population sizes provided by national butterfly experts. We corrected distribution trends for the observation that coarse-scale grid cells underestimate actual population trends by 35%. To account for uncertainty, we included a 5% error margin on the distribution and population trends provided. The new Red List of European butterflies determined one species as Regionally Extinct, 37 species as threatened (Critically Endangered, Endangered or Vulnerable) and a further 44 as Near Threatened. The use of semi-quantitative data on distribution and population trends permitted us to use IUCN criteria to compile a scientifically underpinned Red List of butterflies in Europe. However, a comparison of detailed monitoring data for some grassland species showed that coarse-scale grid cell data and population trends strongly underestimate extinction risks, and the list should be taken as a conservative estimate of threat. Finally, combining the new Red List status with the data provided by the national butterfly experts, allowed us to determine simple criteria to delineate conservation priorities for butterflies in Europe, so called SPecies of European conservation Concern (SPEC’s). Using European butterflies, our approach illustrated how Red Listing can be performed when data are incomplete for some IUCN criteria or vary strongly among countries.  相似文献   

10.
Population viability analyses (PVA) are frequently employed to develop recovery plans and inform management of endangered species. Translating results from PVA into meaningful management recommendations often depends on an understanding of how population parameters change with environmental conditions as well as population density. The decline of mountain caribou (Rangifer tarandus caribou) in British Columbia, Canada, is believed to be caused by apparent competition with alternative prey species following changes to the forest age structure from timber harvest and wildfire. In addition, populations have been shown to decline at faster rates at low population density. To evaluate the potential effects of habitat change and population density on population persistence, we used stochastic projection models for 10 distinct populations varying in initial size from <10 to approximately 150 females. In an initial model, we used estimates of vital rates based on information sampled from >350 radiocollared caribou between 1984 and 2004. We then compared the results of the initial model to a set of models that evaluated the effects of habitat conditions and population density via their expected relationships to female adult survival. Assuming that vital rates remain constant over a 200-year time frame, only three populations have high probabilities (>0.95) of extinction. When models incorporate the declines in adult female survival know to occur with increasing proportions of young forest and declining population densities, all 10 populations are predicted to decline to extinction within <200 years. Based on our results, we suggest that PVA models that fail to incorporate the effects of changes in vital rates with habitat and population density may lead to overly optimistic assessments of the probability of population persistence in endangered species.  相似文献   

11.
A principal challenge of species conservation is to identify the specific habitats that are essential for long-term persistence or recovery of imperiled species. However, many commonly used approaches to identify important habitats do not provide direct insight into the contribution of those habitats to population persistence. To assess how habitats contribute to overall population viability and characterize their relative importance, a spatially-explicit population viability model was used to integrate a species occurrence model with habitat quality and demographic information to simulate the population dynamics of the Ord’s kangaroo rat (Dipodomys ordii) in Alberta, Canada. Long-term productivity (births-deaths) in each patch was simulated and iterative patch removal experiments were conducted to generate estimates of the relative contribution of habitat types to overall population viability. Our results indicated that natural dune habitats are crucial for population viability, while disturbed/human-created habitats make a minor contribution to population persistence. The results also suggest that the habitats currently available to Ord’s kangaroo rats in Alberta are unlikely to support long-term persistence. Our approach was useful for identifying habitats that did not contribute to population viability. A large proportion of habitat (39%) represented sinks and their removal increased estimated population viability. The integration of population dynamics with habitat quality and occurrence data can be invaluable when assessing critical habitat, particularly in regions with variable habitat quality. Approaches that do not incorporate population dynamics may undermine conservation efforts by under- or over-estimating the value of habitats, erroneously protecting sink habitats, or failing to prioritize key source habitats.  相似文献   

12.
A population viability analysis (PVA) was conducted to assess the minimum viable population (MVP) of the Atlantic Forest spiny rat Trinomys eliasi, a species threatened by habitat loss and restricted geographical distribution. Objectives were to suggest quasi-extinction thresholds, estimate minimum areas of suitable habitat (MASH) and MVPs, and compare results with the species’ current status. The computer package VORTEX was used. The model predicted sizes of 200 animals to achieve demographic stability, but buffering declines in genetic variability required populations of 2000 animals. Estimated MASHs were approximately 250 and 2500 ha for demographic and genetic stability, respectively. Mortality rate and mean litter size were the most sensitive parameters to changes in model assumptions. The protection of known populations and the search for extant populations are the first steps in conservation. T. eliasi's issue could help protecting the coastal shrubland ecosystem of Rio de Janeiro state. Observing IUCN's criteria for listing threatened species, it is suggested that T. eliasi should be ranked as vulnerable in red lists.  相似文献   

13.
Grevillea caleyi is an endangered plant species with a restricted range lying partly within Ku-ring-gai Chase and Garigal National Parks in NSW, Australia. The principle threatening processes affecting G. caleyi are habitat destruction and adverse fire regimes combined with high levels of seed predation. A stochastic, spatially explicit, individual-based model was constructed to investigate the population dynamics of small populations of the species and to determine the impact of a variety of management strategies. Results of model simulations indicate there is a high risk of population decline and local extinction in remnant sites with small populations under current management regimes. The most effective fire management strategy is to schedule fires that burn 20-100% of sub-populations every 5-15 years, in combination with reduced predation rates. When predation management strategies are employed in conjunction with a structured fire regime, then a 20-30% reduction in predation rates can improve the chance of long-term persistence substantially.  相似文献   

14.
Whether land management planning provides for sufficient habitat to sustain viable populations of indigenous wildlife is one of the greatest challenges confronting resource managers. Analyses of the effects of land management on natural resources often rely on qualitative assessments that focus on single species to reflect the risk of wildlife extinction across a planning area. We propose a conceptual framework for sustainable management of wildlife habitat that explicitly acknowledges the greater risk of an extinction event when considering the viability of multiple species, e.g., an indigenous vertebrate fauna. This concept is based on the principle that the likelihood of at least one event (i.e., species extinction) is the joint probability of the extinction probabilities of individual species, assuming independence among species’ responses to disturbance. We present an ecological rationale to support the view that, at a spatial scale of 104-106 ha (i.e., planning area) and a temporal scale of 102 years (i.e., planning horizon), wildlife species operating at varying ecological scales respond relatively independently to disturbances typically associated with land management. We use a hypothetical scenario of a wildlife viability assessment and Monte Carlo simulation to demonstrate that the probability of ‘any extinction’ is consistently higher than the probability of the ‘single most likely’ extinction, and that the difference between these values increases as more disturbance-sensitive species (i.e., species at risk) are analyzed. We conclude that risk assessments that rely upon the most sensitive single species may substantially underestimate the risk of wildlife extinction across a planning area. Furthermore, the selection of a planning alternative based on relative threat of local extinction of wildlife populations can vary depending on which paradigm is used to estimate risk to viability across the planning area.  相似文献   

15.
The widespread invasive rodents Rattus norvegicus, R. rattus, R. exulans and Mus musculus have been implicated in the decline and extinction of hundreds of island endemic vertebrates, but their effects on island invertebrates are less well-known. Here I present the first global review of the subject, which confirms that large-bodied invertebrates are most at risk from these rodents, and that although a disproportionate number of studies (69%) are from New Zealand, rodent-invertebrate impacts are geographically widespread. Mechanisms of impact are both direct (mediated by predation) and indirect (involving intermediary species). Some studies also suggest knock-on effects on ecosystem properties, and given the diverse ecological functions of invertebrates (as detritivores, primary consumers, predators, prey and pollinators), I suggest that an understanding of the interactions between invasive rodents and invertebrates in island ecosystems is essential for effective conservation management. Currently many reported impacts are unquantified, come from uncontrolled and unreplicated designs, or rely on time-series with inadequate baseline data. In addition to basic improvements in study design, this review highlights a need for studies which investigate mechanisms of impact, or impacts across trophic levels.  相似文献   

16.
In 2005, the National Oceanic and Atmospheric Administration’s (NOAA) National Marine Fisheries Service initiated a status review of Atlantic sturgeon to determine if the species warranted a threatened or endangered listing under the Endangered Species Act (ESA). The Atlantic sturgeon status review team intended to rely on previously used methods to assess extinction risk, but found that most quantitative extinction risk analyses were performed on data-rich populations and often did not systematically consider the five factors specified in Section 4(a)(1) of the ESA as required for listing a species. Taking cues from structured decision analysis theory, the team created a framework, based around the five factors, which can be used to evaluate the status of data-poor species. Potential scoring biases were minimized in this analysis by providing experts with standardized reference points for scoring, dividing the analysis into smaller units, and using both individual and group opinion. Using this five-factored structured decision analysis, the status review team recommended that three of the five distinct population segments warranted listing as threatened. The status review team offers their approach to increase transparency about their scientific recommendation and to aid other teams who are tasked with systematically evaluating the status of data-poor species.  相似文献   

17.
Extreme climatic events like the 2003 summer heatwave and inappropriate land management can threaten the existence of rare plants. We studied the response of Eryngium alpinum, a vulnerable species, to this extreme climatic event and different agricultural practices. A demographic study was conducted in seven field sites between 2001 and 2010. Stage-specific vital rates were used to parameterize matrix population models and perform stochastic projections to calculate population growth rates and estimate extinction probabilities. Among management regimes, spring grazing and land abandonment decreased vital rates and population growth, while autumn grazing and late mowing had positive effects on population viability. The 2003 heatwave reduced fecundity rates and survival rates. Only spring grazed sites presented considerable extinction risk. Stochastic projections showed that an increased frequency of 2003-like events may exacerbate extinction risk, but extinction probability depends mainly on land management regimes. To better conserve E. alpinum populations, we recommend conversion of presently spring grazed and abandoned sites to late mowing or autumn grazing.  相似文献   

18.
Strategies are needed to recover the ocelot Leopardus pardalis from the endangered species list. Recently, a population viability analysis (PVA) was developed which concluded that combinations of different recovery strategies were needed to effectively reduce ocelot extinction probability in the United States (US), with habitat protection and restoration identified as the most effective recovery scenario. We expanded this PVA model by incorporating landscape data to develop a more realistic habitat-based PVA for ocelots in southern Texas. We used RAMAS/gis software to conduct a habitat-based PVA by linking landscape data with a demographic metapopulation model. The primary goal of this study was to provide a model for evaluating ocelot recovery strategies in the US. Each model scenario was simulated 1000 times over 50 years and we defined extinction as one individual remaining. Using the RAMAS/gis program we identified 11 possible ocelot habitat patches (i.e., subpopulations) occurring in southern Texas. In addition, based on the habitat-based PVA model we found that combinations of different recovery strategies were needed to effectively reduce ocelot extinction probability in the US, with reducing road mortality the single most effective strategy. Short-term recovery strategies should include reducing ocelot road mortality, and translocation of ocelots into the US from northern Mexico. Long-term recovery strategies should include the restoration of habitat between and around existing ocelot habitat patches and the establishment of a dispersal corridor between ocelot breeding populations.  相似文献   

19.
The size and growth of the human population are often cited as key factors in threats to Earth’s biodiversity, yet the extent of their contribution to the endangerment and extinction of other species has remained unclear. Moreover, it could be valuable to know what additional threats may arise from continued human population growth. Here we quantify a model of the relationship between human population density and the number of threatened mammal and bird species by nation. Our multiple regression analysis revealed that two predictor variables, human population density and species richness (of birds and mammals), account for 88% of the variability in log-transformed densities of threatened species across 114 continental nations. Using the regression model with projected population sizes of each nation, we found that the number of threatened species in the average nation is expected to increase 7% by 2020, and 14% by 2050, as forecast by human population growth alone. Our findings strongly support the notion that abating human population growth is a necessary, if not sufficient, step in the epic attempt to conserve biodiversity on the global scale.  相似文献   

20.
The 284 species of Galliformes are a highly threatened group of birds subject to direct exploitation for food, sport and cultural practices. The impact of hunting is often assumed to contribute to the high percentage of species (26.4%) listed as threatened with extinction in the IUCN Red List. We take a macroecological approach to examine the anthropogenic and ecological correlates of extinction risk and hunting pressure using linear and stepwise regression. Independent contrasts are analysed, as well as raw species data, to control for the potential confounding influence of phylogenetic trends. Extinction risk is found to be predicted both by the ecological factors considered (e.g., latitudinal range, body mass, elevational range, habitat use) and secondarily by human factors (e.g., human population density, total calorie intake, composition of diet). Hunting pressure itself is also predicted well for the threatened species by several of the anthropogenic and ecological variables. The study demonstrates that human variables can be used successfully to predict extinction risk, and represent an improvement upon methods which examine ecological variables alone. Furthermore, we show that individual threats can be explored using similar techniques, providing a more detailed insight into the processes leading to extinction. As applied to the Galliformes, both approaches provide evidence supporting the hypothesis that hunting pressure has contributed to the high proportion of threatened species in this group, and thus reinforce the case for urgent measures to reduce the impacts of direct exploitation upon these birds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号