共查询到14条相似文献,搜索用时 62 毫秒
1.
遥感与作物生长模型数据同化应用综述 总被引:2,自引:6,他引:2
遥感是获取大面积地表信息最有效的手段,在农业资源监测、作物产量预测中发挥着不可替代的重要作用;作物生长模型能够实现单点尺度上作物生长发育的动态模拟,可对作物长势以及产量变化提供内在机理解释。遥感信息和作物生长模型的数据同化有效结合二者优势,在大尺度农业监测与预报上具有巨大的应用潜力。该文系统综述了遥感与作物生长模型的同化研究,概述了遥感与作物生长模型数据同化系统的构建,在归纳国内外研究进展的基础上,总结了当前主流同化方法的特点以及在不同条件下的同化效果。进而具体分析影响同化精度的关键环节,明确了相关科学概念,并相应指出改善精度的策略或者方向。最后从多参数协同、多数据融合、动态预测、多模型耦合以及并行计算环境5个方面展望了遥感与作物生长模型数据同化的未来研究重点和发展趋势,同时结合农业应用现实需求,介绍一种数据同化与集合数值预报结合的应用框架,为大区域、高精度同化研究提供新的思路与借鉴。 相似文献
2.
光谱信息与作物生长模型同化的效率提升是同化方法区域应用研究的一个重要方面。该文通过设置不同步长的光谱观测值同化时相,开展针对光谱信息与作物生长模型WOFOST(world food studies)同化的时间尺度优化研究,以提高同化效率。基于长春地区水稻生长周期,该文设置了4个等距时间尺度(步长分别为5,10,20和30 d)和一个关键时相时间尺度(同化时相对应水稻生长关键时期),在不同时间尺度下利用光谱信息计算的修正叶绿素吸收比值指数MCARI1(modified chlorophyll absorption ratio index)同化WOFOST模型,通过比较不同时间尺度下的同化精度和效率,优化同化时间尺度。结果表明:随着同化时间尺度增大,同化效率逐渐提高,而同化精度逐渐降低。在平衡精度和效率的前提下,选择步长介于10~20 d的时间尺度或关键时相尺度作为光谱信息与作物生长模型的同化时间尺度是合理的。该文提出的优化同化时间尺度方法为提高光谱信息与作物生长模型同化的区域应用效果提供了参考。 相似文献
3.
基于作物模型与叶面积指数遥感影像同化的区域单产估测研究 总被引:4,自引:15,他引:4
通过对作物光合、呼吸、蒸腾、营养等一系列生理生化过程的定量模拟,作物生长模型已经被成功应用于田间尺度的作物单产研究。为了进一步将作物模型扩展应用于区域尺度,提高区域作物单产的模拟精度,该文探讨了将作物模型与多时相叶面积指数(LAI)遥感影像同化以改善区域单产估测的方法。研究首先通过地理信息系统将美国农业部开发的“考虑气候的作物环境决策模型”——EPIC模型,扩展为空间模型。然后,通过基于Landsat TM影像差值植被指数DVI与田间观测叶面积指数构建的最优回归模型,反演了研究区域的多时相叶面积指数影像。最后通过优化算法实现了空间EPIC模型与影像信息的同化,并将系统应用于河北石家庄地区2004年冬小麦的单产估测。结果表明,通过数据同化校正部分关键参数后的空间作物模型的单产模拟精度得到有效提高,但要达到业务运行精度仍有待进一步改善。 相似文献
4.
5.
基于作物生长模型和遥感数据同化的区域玉米产量估算 总被引:4,自引:7,他引:4
为了将遥感观测到的玉米生长期间作物冠层方向反射波谱的时间序列变化信息用于区域玉米产量估算,该文将时间序列中分辨率成像光谱仪(moderate resolution imaging spectroradiometer,MODIS)数据和高空间分辨率LandsatTM遥感观测数据相结合,以叶面积指数(LAI)作为耦合作物生长模型(crop environment resource synthesis-Maize,CERES-Maize)和植被冠层反射率模型(scattering by arbitrarily inclined leaves,SAIL)的关键参数,提出了将耦合模型与时间序列遥感观测数据同化进行区域玉米产量估算的方案。该文选择吉林省榆树市为研究区,采用MODIS和LandsatTM2种尺度数据集,利用SCE-UA(shuffled complex evolution method developed at the University of Arizona)算法分别进行玉米产量同化估产研究,得到玉米单产空间分布的估计结果,结合遥感估算的种植面积求算榆树市玉米总产量。结果表明,与玉米统计总产量相比,2007、2008和2009年遥感数据同化估算的总产量误差分别为9.15%、14.99%和8.97%;与仅利用CERES-Maize模型模拟得到的产量误差相比,3a间遥感估算总产量的误差分别减小了7.49%、1.21%和5.23%,且采用MODIS和TM遥感数据估算的玉米产量表现了其空间差异性。利用榆树市3a间玉米产量的明显差异,分析了时序遥感数据对作物长势和产量变化信息的表达能力,同年份内时序归一化差值植被指数越大,对应的玉米产量越高;年际间遥感观测反射率的差异通过数据同化方法能够反映年际间玉米产量差的变化。该文提出的玉米估产方案为将来进一步结合多源遥感数据、植被冠层反射率模型与作物生长模型进行区域玉米估产研究提供了参考。 相似文献
6.
基于Downhill-Simplex算法的观测数据与作物生长模型同化方法研究 总被引:1,自引:0,他引:1
以夏玉米叶面积指数(LAI)、贮存器官干重(WSO)、地上总干重(TAGP)以及土壤水分含量(SM)为结合点,建立了基于Downhill—Simplex算法的作物生长模型WOFOST同化多种地面观测数据的一般方法或流程:开展观测数据与作物生长模型同化方法的正确性验证→利用Downhill—Simplex算法进行WOFOST模型的敏感性分析一选择敏感参数组合→通过优化效果确定待优化参数→利用新的观测数据对待优化参数进行优化,从而实现了观测数据与作物生长模型的同化,提升了模型的模拟能力。同化过程中遴选出的WOFOST模型的待优化参数主要包括比叶面积、最大CO2同化速率、初始地上部总干物重、根深最大日增量和初始土壤有效水等。 相似文献
7.
农作物种植类型的地理分布差异,气候条件差异、土壤环境不同等因素的影响,需要开展农作物生长模型参数区域化、本地化的研究工作;通过改善区域气象数据空间化方法以提升插值精度的研究,也需要得到应用的重视。针对以上问题,该文以SWAP(soil-water-atmosphere-plant model,土壤-水-大气-作物模型)模型为基础,以中国黑龙江省南部地区作为研究区域,以其主要农作物春玉米为目标作物,确定研究春玉米的作物生长模型参数,并综合考虑纬度及海拔对气温的影响情况,研究将协同克里金(coKriging)方法引入作物生长模型气象数据插值获取中,从而提高模型输入参数中气象数据精度,并以叶面积指数(leaf area index,LAI)及蒸散发(evapotranspire,ET)数据作为同化遥感数据源,通过优化玉米灌溉量和出苗日期,获取了研究区2013年的玉米产量空间分布成果,与统计资料结果对比,玉米总产量监测结果的R2达到了0.939 4,均方根误差(root mean squared error,RMSE)达到了148 065 t,平均绝对误差(mean absolute error,MAE)为114 335 t。研究区15个县市区的预测单产和统计单产之间的决定系数达到了0.724 5,RMSE为598.5 kg/hm~2,MAE为531.5 kg/hm~2。研究结果表明,利用SWAP模型,以协同克里金方法获取气象数据空间插值成果作为输入数据,通过同化LAI和ET遥感数据,可以有效进行黑龙江南部区域的玉米产量遥感监测,为区域作物生长及生产力的遥感监测预测提供参考。 相似文献
8.
粒子滤波同化方法在CERES-Wheat作物模型估产中的应用 总被引:3,自引:5,他引:3
为验证粒子滤波同化算法在作物模型估产应用中的可行性和精度,应用该算法构建了CERES-Wheat(crop environment resource synthesis for wheat)作物模型同化系统,并应用地面观测数据研究了同化系统的估产能力以及粒子扰动维数和方差对同化结果和效率的影响。研究结果表明,构建的作物模型同化系统能够利用作物关键生育期内观测LAI数据,较好地校正模型状态轨迹,显著提高作物产量模拟预测精度。同化前后冬小麦产量模拟结果与实测产量间的决定系数由0.68增加为0.83,归一化均方根误差由4.93%减小为3.4%,相对误差由4.15%减小为2.93%。粒子扰动维数和方差同化试验结果显示,粒子维数由50增加为250时,同化估产精度无显著改善,但计算代价增加5倍;随粒子扰动方差增加,估产归一化均方根误差和相对误差均呈增加趋势,两者的平均增加幅度分别为0.32%和0.26%。因此,作物模型同化系统业务化应用时需折中考虑估产精度和计算代价设置合适的粒子扰动维数和方差。该文为进一步利用多源卫星遥感数据监测区域作物长势和估算产量等同化研究和应用提供参考。 相似文献
9.
基于遥感和AquaCrop作物模型的多同化算法比较 总被引:1,自引:0,他引:1
为了研究不同数据同化方法在AquaCrop(FAO Crop model to simulate yield response to water)模型模拟作物地上生物量(above ground biomass,AGB)、冠层覆盖度(canopy cover,CC)和产量过程的效率,以冬小麦为研究对象,利用2012-2013、2013-2014和2014-2015年冬小麦田间试验数据,将标定的Aqua Crop生长模型与遥感光谱信息相结合开展同化技术分析,应用粒子群优化(particle swarm optimization,PSO)、模拟退火(simulated annealing,SA)和复合型混合演化(shuffled complex evolution,SCE-UA)3种数据同化算法,以不同生育期、不同水分处理和不同氮肥水平的AGB和CC为双变量开展多同化算法的模拟分析,对3种数据同化算法的运算效率和同化结果进行对比分析。结果表明:1)3种数据同化算法达到的应度值0.26时,SCE-UA同化算法用时最少(833 s),SA数据同化算法用时最多(1433 s),表明SCE-UA同化算法效率最优,SA数据同化算法效率最低;2)不同生育期的同化结果,AGB的同化精度随着生育期的推进而降低,AGB的模拟值在拔节期和挑旗期高于实测值,被高估,在开花期和灌浆期被低估,总的AGB被低估;CC在拔节期和挑旗期被低估,在开花期和灌浆期被高估,总的CC被低估;3)不同水分处理的同化结果,AGB普遍被低估,CC在雨养(W0)条件下被高估,在正常灌溉(W1)和过量灌溉(W2)条件下被低估;产量均被低估;4)不同氮肥水平,AGB的模拟精度随着施N量的增加而降低,并且普遍被低估,CC普遍被高估,产量均被低估。以上结果表明,PSO、SA和SCE-UA 3种数据同化算法均能有效模拟冬小麦的AGB、CC和产量,其中SCE-UA数据同化算法无论在运算效率还是同化结果的精度上均优于PSO和SA数据同化算法。 相似文献
10.
为探索作物生长监测诊断仪(Crop Growth Monitoring and Diagnosis Apparatus,CGMD)在不同株型双季稻长势指标监测应用的准确性和适用性,该研究开展了不同株型品种和施氮量的田间试验,采用CGMD获取冠层差值植被指数(Differential Vegetation Index,DVI)、归一化植被指数(Normalized Difference Vegetation Index,NDVI)和比值植被指数(RatioVegetationIndex,RVI),并同步采用高光谱仪(AnalyticalSpectralDevices,ASD)获取冠层光谱反射率,构建DVI、NDVI和RVI;通过比较2种光谱仪获取的植被指数变化特征及相互定量关系,评价CGMD的监测精度,建立基于CGMD的不同株型双季稻叶面积指数(Leaf Area Index,LAI)监测模型,并用独立数据对模型进行检验。结果表明:不同株型品种的LAI、DVI、NDVI和RVI随施氮量增加而增大,随生育进程推进呈"低—高—低"的变化趋势;基于CGMD与ASD的DVI、NDVI和RVI间的决定系数(Determination Coefficient,R2)分别为0.959~0.968、0.961~0.966和0.957~0.959,表明CGMD具有较高监测精度,可替代价格昂贵的ASD获取DVI、NDVI和RVI。基于CGMD植被指数的单生育期LAI监测模型的预测效果优于全生育期,基于CGMD植被指数的松散型品种LAI监测模型的预测效果优于紧凑型品种;基于DVICGMD的线性方程可较好地预测LAI,模型R2为0.857~0.903,模型检验的相关系数(Correlation Coefficient,r)、均方根误差(Root Mean Square Error,RMSE)和相对均方根误差(Relative Root Mean Square Error,RRMSE)分别为0.950~0.984、0.18~0.43和3.95%~9.40%;基于NDVICGMD的指数方程可较好地预测LAI,模型R2为0.831~0.884,模型检验的r、RMSE和RRMSE分别为0.906~0.967、0.24~0.38和5.73%~9.16%;基于RVICGMD的幂函数方程可较好地预测LAI,模型R2为0.830~0.881,模型检验的r、RMSE和RRMSE分别为0.905~0.954、0.25~0.56和7.37%~9.99%。与传统人工取样测定LAI法相比,利用CGMD可实时无损监测双季稻LAI动态变化,可替代SunScan植物冠层分析仪获取双季稻LAI,在双季稻生产中具有推广应用价值。 相似文献
11.
基于遥感信息与作物模型集合卡尔曼滤波同化的区域冬小麦产量预测 总被引:8,自引:13,他引:8
区域作物产量预测是国家粮食安全评估的重要内容。遥感虽能获取大面积地表信息,却难以反映作物生长发育的内在过程。作物生长模型已经在单点尺度能成功模拟作物的生长发育过程,但是区域尺度作物关键参数的获取仍很困难。遥感信息与作物模型结合的数据同化已经成为区域产量预测的最有效途径。该文选择河北省衡水地区冬小麦为研究对象,在WOFOST模型标定与区域化的基础上,利用WOFOST模型描述冬小麦生育期内叶面积指数(LAI)变化规律。针对MODIS数据的混合像元造成反演的LAI产品偏低的系统误差,利用实测LAI样本点融合MODIS-LAI趋势信息修正MODIS-LAI数据产品。采用集合卡尔曼(EnKF)算法同化冬小麦返青到抽穗期的MODIS-LAI与WOFOST模拟的LAI以获得时间序列最优的LAI,并以此重新驱动WOFOST模型估算区域冬小麦产量。结果表明,EnKF同化后的冬小麦产量比未同化的产量预测精度有显著提高,与县平均统计产量相比,在潜在模式下,决定系数由0.13提高到0.38,均方根误差由2480下降到880kg/hm2。研究表明,遥感信息与作物模型的EnKF同化是1种有效的作物产量预测方法,并在区域尺度应用上具有广阔的应用潜力。该研究可为区域尺度的作物估产提供参考。 相似文献
12.
基于作物及遥感同化模型的小麦产量估测 总被引:2,自引:3,他引:2
为提高陕西省关中平原冬小麦的估产精度,该文通过粒子滤波算法同化Landsat遥感数据反演的状态量叶面积指数(leaf area index,LAI)、土壤含水量(0~20 cm)、地上干生物量数据和CERES-Wheat模型模拟的状态量数据,分析小麦不同生育期的LAI、土壤含水量及生物量同化值和实测单产的线性相关性,以构建同化估产模型。结果表明,在返青期土壤含水量同化值和实测单产的相关性高于LAI、生物量同化值和实测单产的相关性,选择土壤含水量作为最优变量;在拔节期和抽穗-灌浆期同时选择LAI、土壤含水量及生物量作为最优变量;在乳熟期选择生物量作为最优变量。在小麦各生育时期同化最优变量的估产精度(R2=0.85)高于同时同化LAI、土壤含水量及生物量的估产精度,同时同化LAI、土壤含水量及生物量的估产精度高于同时同化LAI和土壤含水量(或LAI和地上干生物量、或土壤含水量和地上干生物量)的估产精度,表明在作物不同生育时期同化与产量相关性较大的变量对提高估产精度有重要作用。 相似文献
13.
基于遥感和作物生长模型的作物产量差估测 总被引:18,自引:5,他引:18
传统的作物生长模型很难模拟大田的实际产量,因为大量的数据、复杂的数学运算以及误差传递限制了作物生长模拟模型的运用。目前为止实际产量仅能通过观测和实地调查获得。该文将NOAA-14 AVHRR遥感获取的冠层温度信息引入作物生长模型,利用冠气温差计算作物水分胁迫系数,可以近似地估计区域作物实际生长速率和产量,进而建立了遥感-作物模拟复合模型PS-X,提出了估算区域作物实际产量的方法。PS-X模型可在不同层次模拟作物的生长和产量,在PS-1、PS-2、PS-X水平计算的分别是作物的光温生产潜力、水分限制下的生产力和实际产量。利用该模型,论文分别模拟了邯郸地区1998年夏玉米的光温生产潜力、水分限制下的生产力和实际产量,并通过比较不同模拟水平下产量和农户调查产量进行区域产量差分析。结果表明:PS-1和PS-2水平之间的产量差主要由水分和土壤质地差异造成;PS-2与PS-X水平间的平均产量差异较大,占总产量差(PS-1与PS-X水平之差)的81.4%,主要由田间管理差异造成;对于平原地区,夏玉米产量估测精度可达90%以上;砂质土壤区估算冠层温度和水分胁迫系数比壤质、粘质土壤区要高,因此砂质土壤区模拟作物产量较低,这与PS-2计算结果、农户调查数据一致。研究证实,区域上应用遥感瞬时温度信息建立遥感-作物模拟复合模型进行估产是可行的。 相似文献
14.
遥感数据和作物模型集成方法与应用前景 总被引:5,自引:4,他引:5
为了促进遥感数据和作物模型集成这一新方法在农业领域中更广泛的应用,在分析遥感数据和作物模型农业应用中各自优缺点的基础上,阐明二者结合的必要性,并介绍了遥感数据和作物模型的3种集成方式.回顾了遥感数据和作物模型同化的研究进展,并重点分析了遥感数据和作物模型结合在农作物产量预测、品质遥感预报、精准施肥管理决策、精准灌溉决策等领域的应用潜力,最后指出了当前遥感数据和作物模型结合中存在遥感定量化、参数集和驱动数据的获取、最优化算法选择和改进、作物模型的完善和订正等问题,有望随着遥感数据源的丰富、定量遥感和作物模型的发展、以及同化理论的进一步完善得到解决. 相似文献