首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
纳米复合材料对水稻生长发育的影响   总被引:3,自引:0,他引:3  
纳米材料由于其独特的物理化学特性,对植物生长有刺激作用,可促进植物代谢和改善植物的生长环境。纳米触媒处理(活化)水后,可改变水分子的排列方式和能态,使水分子团变小、活性增大,改变了与其它物质和生物体的作用行为,如增加水的溶解能力、提高水的细胞生物透性等,在种植业领域有广阔的应用前景,也为植物栽培提供了新的技术。  相似文献   

2.
微量元素对丹参生长发育及有效成分的影响   总被引:12,自引:1,他引:12  
微量元素与中药活性分子在人体内起着相互协同、互相渗透,互相制约的作用,并参与体内各种生化反应,促进机体自身调节; 中药有效成分可能是其中的某种或某几种有机成分或微量元素,更可能是它们之间形成的配合物[1],如中药补血药材中的铁、锰、锌、铜的含量较高[2].中药的生长环境对中药生长及所含微量元素含量有着直接的影响.微量元素可作为植物体内某些有机合成反应的催化剂或参与植物有效成分的结构功能而影响植物化学成分的形成和积累,从而最终影响药材的药理活性[3].中药的采收期直接影响其产量和品质,其生长年龄对所含微量元素有重要的影响,因此可以通过对中药的不同生长期微量元素含量的不同而选择适宜的采收期,以提高中药的临床药效[4].我国北方石灰性土壤和沿海的盐泽土以及南方的部分土壤因微量元素缺乏而成为当地农业生产的限制因素之一,施用微量元素肥料不但能克服土壤中微量元素的含量不足,而且能提高土壤氮磷等养分的有效性[5].  相似文献   

3.
4.
不同铵硝比营养液对生菜生长发育影响的研究   总被引:13,自引:1,他引:13  
王波  沈其荣  赖涛  陈爱群  魏晋 《土壤学报》2007,44(3):561-565
氮素是作物生长所必需的营养元素之一。在一般情况下,作物能够吸收利用的氮素形态有多种。但从营养学角度来说,植物生长的主要氮源为NH4^+-N和NO3^-—N。由于作物本身遗传特性和营养特点以及环境条件的差异,作物对NH4^+-N和NO3^--N的吸收利用和适宜性也有不同。对蔬菜作物来说,  相似文献   

5.
缺铁敏感度不同的生菜品种对缺铁的适应机制   总被引:3,自引:0,他引:3  
蔬菜无土栽培中常因铁营养失调而引发失绿症。  相似文献   

6.
富磷垃圾肥对大豆营养及产量、品质的影响   总被引:5,自引:2,他引:5  
我国有74%的耕地土壤缺磷,在农业种植中磷素的利用率又极低,当季利用率仅为10%~25%,是作物产量的重要限制因子[1].目前,我国农用磷肥主要是磷矿粉经加工而成,需要大量硫酸,生产成本较高,长期施用不仅造成土壤板结,也会污染环境.磷矿粉如直接施用于土壤时,肥效又受许多因素限制[2].如何在我国磷资源有限的情况下研究和总结一套能在农业生产中应用的生物学途径,以维持土壤的磷供应水平,是广大科研工作者普遍关心的课题.城市生活垃圾在堆肥过程中将产生大量的有机弱酸类物质,其对难溶性磷的溶解能力已在土壤中得到证实[3-5];另外堆肥过程中产生的腐殖酸类物质也可以对难溶性磷有一定的络合能力[6];同时,堆肥过程中微生物的活动也可将一部分磷固定在体内.因此,通过生活垃圾堆肥对难溶性磷进行转化,可使堆肥中形成较多的易矿化的有机态磷及可溶性磷,施用于土壤后可提高磷素的有效性.本研究通过利用生活垃圾堆肥与难溶性磷生产富磷垃圾肥,并进行田间试验,探讨富磷垃圾肥对大豆营养物质的积累、作物产量及质量的影响.  相似文献   

7.
【目的】作物选择性吸收铵态氮或硝态氮是导致根际p H发生变化的主要原因,本文探索旱地作物根系细胞膜质子泵对铵硝营养及p H的反应机制。【方法】采用水培方法,分别用NH+4-N和NO-3-N培养高粱幼苗,并控制营养液的p H。高粱生长三周以后,用葡聚糖两相法分离根系细胞膜,测定细胞膜质子泵的水解活性、酶动力学特征,利用免疫杂交方法测定质子泵蛋白浓度。【结果】培养三周后,供给铵态氮的高粱根际p H下降到3,质子泵活性最高,达到Pi 8.81μmol/(mg·min);供给硝态氮的高粱根际p H上升至7,质子泵活性最低,为Pi 3.82μmol/(mg·min)。将铵态氮处理的营养液p H人为上调到7,而将硝态氮处理下调到3后发现,铵态氮培养的高粱根系细胞膜质子泵活性在p H 7时低于p H 3,但仍高于p H 3时硝态氮处理。酶动力学特征的测定结果表明,铵态氮营养(p H3)时,酶反应最大速率最高,亲和性也最高,而硝态氮营养(p H 7)时酶反应最大速率最小,亲和性也最低。质子泵活性与其蛋白浓度之间具有正相关性。【结论】无论是铵还是硝态氮处理,根际p H降低都会导致高粱根系细胞膜质子泵活性升高,这说明,质子泵具有适应根际酸化而提高自身活性的基本功能。但是,在相同的p H下,铵态氮都导致高粱根系细胞膜质子泵活性比硝态氮处理更高,这说明铵态氮在根系细胞中同化产生氢离子,而硝态氮的还原不产生氢离子,因此,吸收铵态氮的细胞需要进一步提高细胞膜质子泵的活性将氢离子排出体外。这很可能是高粱根系在铵态氮营养下的一种反应机制。  相似文献   

8.
<正> 关于气候生态凶素与小麦生长发育关系的研究,已见很多报道。但由于影响小麦生育的因素较多,而且在小麦的各生育阶段中,同时有几个因素在起作用,过去的研究多偏重于单因素的相关分析方法,就难以说明各因素在小麦不同生育阶段中作用的主次,为  相似文献   

9.
新型硝化抑制剂3,4-二甲基吡唑磷酸盐(3,4-dimethylpyrazole phosphate,DMPP)对叶菜类蔬菜(如菠菜)硝酸盐的累积有明显的抑制作用[1-5],但其与氮肥一起造粒形成的新型氮肥在蔬菜上的研究还少有报道.我们以常规氮肥(NH4HCO3,urea,ASN)作对比,就新型含硝化抑制剂氮肥(ASN DMPP)在典型菜地正常施肥条件下对降低小白菜硝酸盐累积及营养品质的影响进行了研究,以期为提高蔬菜品质提供依据.  相似文献   

10.
施用保水剂对生菜生长发育的影响   总被引:2,自引:1,他引:1  
通过在盆栽生菜中施用3种保水剂,研究保水剂对土壤淋溶情况及生菜生长发育的影响。结果表明,(1)在模拟干旱和非干旱两种情况下,与对照相比,施用3种保水剂都显著降低了淋溶液体积及电导率值,起到显著的保水、保肥效果;(2)施用保水剂显著提高了生菜叶片的叶绿素含量(SPAD值),增加了植株地上部鲜重;(3)施用保水剂的生菜叶片明显比对照鲜绿,说明保水剂处理能够提高生菜的商品性状;(4)与对照相比,施入保水剂后的生菜根系明显变细变长,对照的根系较短粗;(5)自制保水剂层施与混施相比,两次淋溶情况、SPAD值及增产效果都为层施优于混施,初步推断保水剂层施效果较好。施用保水剂既能使生菜增产、提高商品性状,又能降低淋溶损失、减少环境危害,是一种值得推广的农业栽培管理方法。  相似文献   

11.
Spring wheat (Triticum aestivum L.) dry matter (DM), N content and tillering are increased by increasing the proportion of N available to the plant as NH4 (enhanced ammonium supply‐EAS) at soil pH ≥ 7.0. Using different N sources to provide different levels of EAS effects soil pH and electrical conductivity (EC) as well as soil NH4. Both pH and EC may affect plant growth and response to EAS.

Two greenhouse experiments were conducted to determine the effects of EAS, pH, and EC on the DM, N content, and tillering of spring wheat. The collinearity between pH and NH4 was eliminated over a pH range of 5.8 to 7.2 by adjusting lime rates to compensate for the effect of each N source on pH. Even though EC was somewhat correlated with soil NH4 in both experiments, there were a sufficient number of comparisons to separate the effects of EC and NH4 on plant growth. Differences in plant growth resulted from differences in soil NH4 levels. Soil pH and EC did not affect plant growth. Plant responses to soil NH4 levels were quadratic. Maximum plant growth occurred at approximately 100–200 mg/kg KCl‐extractable NH4.  相似文献   

12.
The response of carob (Ceratonia siliqua L.) seedlings grown at different root zone temperatures affected by nitrate and ammonium nutrition was studied. When root temperatures ranged from 10 to 35°C, ammonium‐fed plants were significantly larger than nitrate‐fed plants. Ammonium‐fed plants displayed toxicity symptoms and were much smaller at 40°C root temperature in comparison with the nitrate‐fed plants grown at the same root temperature. Root/shoot ratio slightly increase with root temperature in ammonium‐ and nitrate‐fed plants in a similar way, and shoot demand per root unit decreased with root temperature between 15 and 25°C. There was a general increase in net photosynthesis with root temperature, though nitrate‐fed plants were more sensitive to low and ammonium‐fed plants to high temperatures. Increasing the root temperature of ammonium fed plants from 10 to 40°C leads to a 30% increase in the amount of photosynthates sent to the roots. The presence of ammonium resulted in the distribution of newly fixed carbon away from carbohydrates and into nitrogen compounds. Potassium, calcium, and nitrogen content of the plants also increased with increasing root temperature.  相似文献   

13.
The use of vermicompost water extracts (teas) in horticulture to increase plant growth and yield and suppress pests and diseases, is well documented. However, its utilization and effects in hydroponics systems are unknown. Low concentrations of vermicompost teas, produced from food wastes, at rates of 1.6% and 3.2% for lettuce and 0.14%, 0.28% and 0.56% for tomatoes were investigated as additive and supplement in static hydroponic systems. Vermicompost teas significantly increased lettuce yields when concentrations of nutrient solutions were reduced to 25% and 50% of the recommended full rate for nutrient solutions compared to treatments without vermicompost teas. Even lower concentrations of vermicompost teas increased tomato yields significantly as a supplement in reduced nutrient solutions of 50%. The presence of a combination of trace amounts of plant hormones such as auxins, cytokinins, gibberellins and humic acids in vermicomposts teas are likely the responsible factor that increased yields of lettuce and tomato in static hydroponics systems with lower concentrations of nutrient solutions.  相似文献   

14.
The nitrogen (N) fertilization of wheat (Triticum aestivum L.) is important for stable and high grain yield. However, the effect of N on root growth and survivorship is poorly understood. The objectives of this study were (1) to determine the effect of varying N availability on the growth and survivorship of roots and (2) to determine whether genotypic variation in N‐related traits are linked to root growth and survivorship. In a two‐year study, two spring wheat cultivars (Albis and Toronit) and an experimental line (L94491) were grown under low (20 kg N ha–1) and high N supply (270 kg N ha–1) in lysimeters equipped with minirhizotrons. The genotypes showed significant differences in N‐related traits: total shoot N content, grain N yield, N harvest index, and rate of decline in flag‐leaf greenness. However, there were relatively weak and inconsistent genotypic effects on the time course of root density, root growth during grain filling, and root survivorship. The level of N supply was the factor that most influenced the establishment, growth, and survivorship of roots; the high N supply, depending on the year and genotype, increased growth and survivorship of roots from 0% to 68% and 24% to 34%, respectively.  相似文献   

15.
为探明铵参与低钾胁迫下烟株根系的生长及吸钾机制,采用室内水培法,以“豫烟6 号”为试验材料,研究了不同供钾水平下外源NH4+ 对烟株根系的生长生理和钾吸收速率的影响。结果表明,未添加外源NH4+ 时,低钾胁迫下烟株根系可溶性蛋白、根系活力、烟株各部位干重和钾含量均显著低于常钾水平。两种供钾水平下,随着外源NH4+ 浓度增加,烟株根系干重、根系扫描参数、钾积累量和钾最大吸收速率均呈下降趋势,但根系可溶性蛋白含量和根系活力则先上升后下降并在外源NH4+ 浓度为1 mmol/L 时最大。外源NH4+ 可抑制植物根系高亲和及低亲和K+ 吸收系统,且NH4+浓度越大,钾吸收速率越低,其中溶液K+ 浓度为0.2 和10 mmol/L 时,N5.00 较N0处理分别显著降低55.78% 和37.68%。可见,低钾胁迫显著抑制烟株根系生长和钾吸收,而外源NH4+ 可抑制高亲和或低亲和的K+ 吸收系统,从而影响烟株的钾吸收速率和吸收量。  相似文献   

16.
Cereal aphid infestations have considerable impact upon productivity and profitability of United States agriculture. A comparison study of the influence of different aphid species (Russian wheat aphid, Duraphis noxia Mordvilko; greenbug, Schizaphis graminum Rondani; and bird cherry oat aphid, Rhopalosiphum padi L.) upon shoot characteristics and root growth of hard red spring wheat (Triticum aestivum L.) was conducted in an attempt to better understand the mechanisms of yield loss in aphid damaged plants. Plants infested with aphids showed similar reductions in shoot growth regardless of aphid species. Shoot chlorophyll concentrations were lowest in greenbug‐infested plants. Root length and dry weight were also equally reduced by feeding damage by the three aphid species. Upon removal of the aphids, shoot dry weights of plants damaged by each aphid species remained unchanged for 10 days. Shoot dry weights for aphid‐damaged plants were about half the magnitude seen in the control plants after 15 days. Chlorophyll concentrations seen in greenbug and Russian wheat aphid‐infested plants initially were lower than the concentrations seen in bird cherry oat aphid‐infested and control plants. Within 10 days after aphid removal, however, chlorophyll concentrations across all treatments were essentially equal. Root lengths in plants previously infested with greenbugs or Russian wheat aphids were lower than control plants four days after aphid removal. Within 10 days after aphid removal, root lengths in plants previously infested with greenbugs or Russian wheat aphids did not differ from control plants. Root lengths in plants previously damaged by bird cherry oat aphids did not reach the same magnitude as that of the other treatments until 27 days after aphid removal. These results indicate that aphid feeding damage to wheat plants can have significant effects on root growth, suggesting that crop management practices that promote root growth could play important roles in improving plant tolerance to aphid damage.  相似文献   

17.
The chile pepper plant seldom responds to N and P fertilizers on fertile soils. Surplus industrial H2SO4 and elemental S have created interest in “mining”; calcareous soils for additional supplies of P, Ca, Mg and micronutrients. The effect of variable S, on the growth of chile and broccoli was evaluated holding other nutrients constant. Growth of chile and broccoli plants was significantly increased in the greenhouse and chile yield increased in the field. Incremental S additions increased the water extractable and desorbable Ca + Mg and P contents of soil. The total N and K content of chile plant grown in the greenhouse increased, and then decreased, P decreased, as S rates increased. Yield of dry red chile with constant N peaked at 16.5 g S m‐2 and then decreased with increasing S in the field. Rroccoli responded more to S application than to directly applied foliar micronutrient solutions (Fe and 7n), and responded much better to (NH4)2SO4 + S than to Ca(NO3)2 at equivalent N rates. Increased soluble Ca + Mg content of the soil in the presence of S was thought to influence plant absorption of NH4 and/or K.  相似文献   

18.
Nitrogen is the most deficient element and the most limiting factor for crop production in Bangladesh. The total N content in Bangladesh soils ranges between 0.02 and 0.12% (Ahsan and Karim 1988). The low N content indicates the presence of a small organic N pool and suggests that inorganic N plays an important role as a N source for crops. Contribution of “fixed” or “nonexchangeable” NH4 + to the N economy of soil has been reported for many tropical soils (Rodrigues 1954; Moore and Ayeke 1965; Dalal 1977; Sahrawat 1995). However, there are few reports on fixed NH4 + status in Bangladesh. In the present study, therefore, attempts were made to collect data on fixed NH4 + of some major soil series from the important physiographic units of Bangladesh.  相似文献   

19.
《Pedobiologia》2014,57(3):123-130
Sterilized soils are frequently used in experiments related to soil biology. Soil sterilization is known to alter physicochemical characteristics of soil, plant growth and community structure of the newly developed bacterial population. However, little information exists regarding soil sterilization effects on belowground processes mediated through root–microbe–soil interactions, e.g., development of rhizosheaths which significantly promote the plant growth under stress environments. The present study was conducted to elucidate effects of soil sterilization on wheat root growth and formation of rhizosheaths in relation to chemical changes caused by soil sterilization and the proportion of expolysaccharide (EPS)-producers in bacterial population recolonizing the sterilized soils. Wheat plants were grown for two weeks under greenhouse conditions either in the unsterilized soil or in soils sterilized by autoclaving (121 °C, 1 h) or by gamma (γ)-irradiation (50 kGy). While soil sterilization had no effect on the release of macronutrients, both sterilization procedures significantly increased the electrical conductivity, water-soluble carbon and DTPA-extractable Mn. Seedlings grown in sterilized soils produced higher root biomass and the rhizosheath soil (RS) mass as compared to those grown in the unsterilized soil. Soil sterilization also increased the root length, surface area, volume and number of tips. In bulk soil, RS and on roots, the proportion of EPS-producers in the total bacterial population was higher in sterilized treatments than in the unsterilized. Amending the unsterilized soil with glucose-C increased the root biomass, whereas adding Mn II increased the RS mass. The results showed that soil sterilization by autoclaving or γ-irradiation increases the root growth and RS mass of wheat seedlings. The water-soluble C and DTPA-extractable Mn released upon sterilization, and the increased proportion of EPS-producers in the bacterial population recolonizing the sterilized soils were involved in the observed effects. The results may have implications in studies using autoclaved or γ-irradiated soils to investigate soil–plant–microbe interactions and signify the need to account for intrinsic stimulatory effects of soil sterilization.  相似文献   

20.
Huang  B.  Kuo  S.  Bembenek  R. 《Water, air, and soil pollution》2004,158(1):37-51
Although evaluations of the availability of cadmium (Cd) contaminants in phosphate fertilizers have been made, few have examined the transfer efficiency of Cd from fertilizers to plants, especially under field conditions. This 2-year field study determined the transfer of added Cd to lettuce (Lactuca sativa L.) (Royal Green) from a western phosphate rock (PR) and a triple superphosphate (TSP) as affected by liming and rate of fertilizer (or Cd) input. A readily soluble Cd salt, CdCl2, was included in the study for comparison. The cumulative amounts of Cd added from the fertilizers and CdCl2 over the 2-year period ranged from 0 to 1440 g ha–1. Lettuce yield increased with increasing TSP rates, but was unaffected by PR. Significant (P < 0.01) effects of Cd source and rate, lime, and year were found on Cd accumulation by lettuce. The transfer of the added Cd was consistently higher for CdCl2 than for the fertilizers regardless of lime rate. A contrasting year effect was also found between the two P fertilizers. In the second year of application, the Cd transfer efficiency increased in the soil treated with the PR, but decreased in the soil treated with the TSP. The Cd transfer efficiency for the plant was better measured with DTPA–Cd (r 2= 0.78 – 0.80) or CaCl2–Cd (r 2= 0.57 – 0.76) than with soil total Cd (r 2= 0.39 to 0.54) across all Cd sources and lime rates. This is because DTPA–Cd or CaCl2–Cd reflected the influences of the amount of Cd added, Cd source, and lime rate on Cd accumulation by the plant better than did the soil total Cd. Of the amount of Cd added from the fertilizers an average of 1.0% or less was accumulated in the harvested lettuce tissue. Applications of the fertilizers at high rates could result in increased Cd accumulation in the soil over time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号