首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We identified a strong temporal correlation between three distinct types of slow earthquakes distributed over 100 kilometers along the dip of the subducting oceanic plate at the western margin of the Nankai megathrust rupture zone, southwest Japan. In 2003 and 2010, shallow very-low-frequency earthquakes near the Nankai trough as well as nonvolcanic tremor at depths of 30 to 40 kilometers were triggered by the acceleration of a long-term slow slip event in between. This correlation suggests that the slow slip might extend along-dip between the source areas of deeper and shallower slow earthquakes and thus could modulate the stress buildup on the adjacent megathrust rupture zone.  相似文献   

2.
Some large earthquakes display low-frequency seismic anomalies that are best explained by episodes of slow, smooth deformation immediately before their high-frequency origin times. Analysis of the low-frequency spectra of 107 shallow-focus earthquakes revealed 20 events that had slow precursors (95 percent confidence level); 19 were slow earthquakes associated with the ocean ridge-transform system, and 1 was a slow earthquake on an intracontinental transform fault in the East African Rift system. These anomalous earthquakes appear to be compound events, each comprising one or more ordinary (fast) ruptures in the shallow seismogenic zone initiated by a precursory slow event in the adjacent or subjacent lithosphere.  相似文献   

3.
Episodes of nonvolcanic tremor and accompanying slow slip recently have been observed in the subduction zones of Japan and Cascadia. In Cascadia, such episodes typically last a few weeks and differ from "normal" earthquakes in their source location and moment-duration scaling. The three most recent episodes in the Puget Sound/southern Vancouver Island portion of the Cascadia subduction zone were exceptionally well recorded. In each episode, we saw clear pulsing of tremor activity with periods of 12.4 and 24 to 25 hours, the same as the principal lunar and lunisolar tides. This indicates that the small stresses associated with the solid-earth and ocean tides influence the genesis of tremor much more effectively than they do the genesis of normal earthquakes. Because the lithostatic stresses are 10(5) times larger than those associated with the tides, we argue that tremor occurs on very weak faults.  相似文献   

4.
Large subduction earthquakes on the Cascadia subduction zone pose a potential seismic hazard. Very young oceanic lithosphere (10 million years old) is being subducted beneath North America at a rate of approximately 4 centimeters per year. The Cascadia subduction zone shares many characteristics with subduction zones in southern Chile, southwestern Japan, and Colombia, where comparably young oceanic lithosphere is also subducting. Very large subduction earthquakes, ranging in energy magnitude (M(w)) between 8 and 9.5, have occurred along these other subduction zones. If the Cascadia subduction zone is also storing elastic energy, a sequence of several great earthquakes (M(w) 8) or a giant earthquake (M(w) 9) would be necessary to fill this 1200-kilometer gap. The nature of strong ground motions recorded during subduction earthquakes of M(w) less than 8.2 is discussed. Strong ground motions from even larger earthquakes (M(w) up to 9.5) are estimated by simple simulations. If large subduction earthquakes occur in the Pacific Northwest, relatively strong shaking can be expected over a large region. Such earthquakes may also be accompanied by large local tsunamis.  相似文献   

5.
Two lines of evidence suggest that large earthquakes that occur on either the San Jacinto fault zone (SJFZ) or the San Andreas fault zone (SAFZ) may be triggered by large earthquakes that occur on the other. First, the great 1857 Fort Tejon earthquake in the SAFZ seems to have triggered a progressive sequence of earthquakes in the SJFZ. These earthquakes occurred at times and locations that are consistent with triggering by a strain pulse that propagated southeastward at a rate of 1.7 kilometers per year along the SJFZ after the 1857 earthquake. Second, the similarity in average recurrence intervals in the SJFZ (about 150 years) and in the Mojave segment of the SAFZ (132 years) suggests that large earthquakes in the northern SJFZ may stimulate the relatively frequent major earthquakes on the Mojave segment. Analysis of historic earthquake occurrence in the SJFZ suggests little likelihood of extended quiescence between earthquake sequences.  相似文献   

6.
An experiment in earthquake control at rangely, colorado   总被引:6,自引:0,他引:6  
An experiment in an oil field at Rangely, Colorado, has demonstrated the feasibility of earthquake control. Variations in seismicity were produced by controlled variations in the fluid pressure in a seismically active zone. Precise earthquake locations revealed that the earthquakes clustered about a fault trending through a zone of high pore pressure produced by secondary recovery operations. Laboratory measurements of the frictional properties of the reservoir rocks and an in situ stress measurement made near the earthquake zone were used to predict the fluid pressure required to trigger earthquakes on preexisting fractures. Fluid pressure was controlled by alternately injecting and recovering water from wells that penetrated the seismic zone. Fluid pressure was monitored in observation wells, and a computer model of the reservoir was used to infer the fluid pressure distributions in the vicinity of the injection wells. The results of this experiment confirm the predicted effect of fluid pressure on earthquake activity and indicate that earthquakes can be controlled wherever we can control the fluid pressure in a fault zone.  相似文献   

7.
We present a time-dependent model for the generation of repeated intraplate earthquakes that incorporates a weak lower crustal zone within an elastic lithosphere. Relaxation of this weak zone after tectonic perturbations transfers stress to the overlying crust, generating a sequence of earthquakes that continues until the zone fully relaxes. Simulations predict large (5 to 10 meters) slip events with recurrence intervals of 250 to 4000 years and cumulative offsets of about 100 meters, depending on material parameters and far-field stress magnitude. Most are consistent with earthquake magnitude, coseismic slip, recurrence intervals, cumulative offset, and surface deformation rates in the New Madrid Seismic Zone. Computed interseismic strain rates may not be detectable with available geodetic data, implying that low observed rates of strain accumulation cannot be used to rule out future damaging earthquakes.  相似文献   

8.
Liu L  Zoback MD  Segall P 《Science (New York, N.Y.)》1992,257(5077):1666-1669
Remeasurement of a triangulation network in the southern part of the New Madrid seismic zone with the Global Positioning System has revealed rapid crustal strain accumulation since the 1950s. This area experienced three large (moment magnitudes >8) earthquakes in 1811 to 1812. The orientation and sense of shear is consistent with right-lateral strike slip motion along a northeast-trending fault zone (as indicated by current seismicity). Detection of crustal strain accumulation may be a useful discriminant for identifying areas where potentially damaging intraplate earthquakes may occur despite the absence of large earthquakes during historic time.  相似文献   

9.
Relocations and focal mechanism analyses of deep earthquakes (>/=13 kilometers) at Kilauea volcano demonstrate that seismicity is focused on an active fault zone at 30-kilometer depth, with seaward slip on a low-angle plane, and other smaller, distinct fault zones. The earthquakes we have analyzed predominantly reflect tectonic faulting in the brittle lithosphere rather than magma movement associated with volcanic activity. The tectonic earthquakes may be induced on preexisting faults by stresses of magmatic origin, although background stresses from volcano loading and lithospheric flexure may also contribute.  相似文献   

10.
Double seismic zone for deep earthquakes in the izu-bonin subduction zone   总被引:1,自引:0,他引:1  
A double seismic zone for deep earthquakes was found in the Izu-Bonin region. An analysis of SP-converted phases confirms that the deep seismic zone consists of two layers separated by approximately 20 kilometers. Numerical modeling of the thermal structure implies that the hypocenters are located along isotherms of 500 degrees to 550 degrees C, which is consistent with the hypothesis that deep earthquakes result from the phase transition of metastable olivine to a high-pressure phase in the subducting slab.  相似文献   

11.
The maximum size of thrust earthquakes at the world's subduction zones appears to be limited by anelastic deformation of the overriding plate. Anelastic strain in weak forearcs and roughness of the plate interface produced by faults cutting the forearc may limit the size of thrust earthquakes by inhibiting the buildup of elastic strain energy or slip propagation or both. Recently discovered active strike-slip faults in the submarine forearc of the Cascadia subduction zone show that the upper plate there deforms rapidly in response to arc-parallel shear. Thus, Cascadia, as a result of its weak, deforming upper plate, may be the type of subduction zone at which great (moment magnitude approximately 9) thrust earthquakes do not occur.  相似文献   

12.
At least three great earthquakes occurred in the New Madrid seismic zone in 1811 and 1812. Estimates of present-day strain rates suggest that such events may have a repeat time of 1000 years or less. Paleoseismological data also indicate that earthquakes large enough to cause soil liquefaction have occurred several times in the past 5000 years. However, pervasive crustal deformation expected from such a high frequency of large earthquakes is not observed. This suggests that the seismic zone is a young feature, possibly as young as several tens of thousands of years old and no more than a few million years old.  相似文献   

13.
Several clustered slow earthquakes have been recorded by a geodetic interferometer in central Italy. The strain rise times of the events range from tens to thousands of seconds, and the seismic moment scales with the square root of the rise time. This scaling law contrasts with the conservative assumption of constant rupture velocity in fault modeling but is consistent with the occurrence of a slow rupture propagation analogous to heat diffusion in a slab.  相似文献   

14.
The supposed low viscosity of serpentine may strongly influence subduction-zone dynamics at all time scales, but until now its role could not be quantified because measurements relevant to intermediate-depth settings were lacking. Deformation experiments on the serpentine antigorite at high pressures and temperatures (1 to 4 gigapascals, 200 degrees to 500 degrees C) showed that the viscosity of serpentine is much lower than that of the major mantle-forming minerals. Regardless of the temperature, low-viscosity serpentinized mantle at the slab surface can localize deformation, impede stress buildup, and limit the downdip propagation of large earthquakes at subduction zones. Antigorite enables viscous relaxation with characteristic times comparable to those of long-term postseismic deformations after large earthquakes and slow earthquakes. Antigorite viscosity is sufficiently low to make serpentinized faults in the oceanic lithosphere a site for subduction initiation.  相似文献   

15.
A model for a seismic computerized alert network   总被引:1,自引:0,他引:1  
In large earthquakes, damaging ground motions may occur at large epicentral distances. Because of the relatively slow speed of seismic waves, it is possible to construct a system to provide short-term warning (as much as several tens of seconds) of imminent strong ground motions from major earthquakes. Automated safety responses could be triggered by users after receiving estimates of the arrival time and strength of shaking expected at an individual site. Although warning times are likely to be short for areas greatly damaged by relatively numerous earthquakes of moderate size, large areas that experience very strong shaking during great earthquakes would receive longer warning times.  相似文献   

16.
Mauna Loa volcano, Hawaii, deforms by a combination of shallow dike intrusions in the rift zones and earthquakes along the base of the volcano, but it is not known how the spreading is accommodated in the lower part of the volcanic edifice. We present evidence from interferometric synthetic aperture radar data for secular inflation of a dike-like magma body at intermediate depth in the southwest rift zone during 2002 to 2005. Magma accumulation occurred in a section of the rift zone that was unclamped by previous dikes and earthquakes, suggesting that stress transfer plays an important role in controlling subsurface magma accumulation.  相似文献   

17.
"Helium spots," where a significant amount of helium is present in the soil [up to 350 parts per million with a high (3)He to (4)He ratio of (8.90 +/- 0.31) x 10(-6)], have been found along the fault zone formed by the 1966 Matsushiro swarm earthquakes. The formation of the "helium spots" and the occurrence of the earthquakes are interpreted as the results of a diapiric uprise of a magma approximately 1 kilometer in diameter.  相似文献   

18.
Seismic velocity changes and nonvolcanic tremor activity in the Parkfield area in California reveal that large earthquakes induce long-term perturbations of crustal properties in the San Andreas fault zone. The 2003 San Simeon and 2004 Parkfield earthquakes both reduced seismic velocities that were measured from correlations of the ambient seismic noise and induced an increased nonvolcanic tremor activity along the San Andreas fault. After the Parkfield earthquake, velocity reduction and nonvolcanic tremor activity remained elevated for more than 3 years and decayed over time, similarly to afterslip derived from GPS (Global Positioning System) measurements. These observations suggest that the seismic velocity changes are related to co-seismic damage in the shallow layers and to deep co-seismic stress change and postseismic stress relaxation within the San Andreas fault zone.  相似文献   

19.
During the period 1973 to 1991 the interval between eruptions from a periodic geyser in Northern California exhibited precursory variations 1 to 3 days before the three largest earthquakes within a 250-kilometer radius of the geyser. These include the magnitude 7.1 Loma Prieta earthquake of 18 October 1989 for which a similar preseismic signal was recorded by a strainmeter located halfway between the geyser and the earthquake. These data show that at least some earthquakes possess observable precursors, one of the prerequisites for successful earthquake prediction. All three earthquakes were further than 130 kilometers from the geyser, suggesting that precursors might be more easily found around rather than within the ultimate rupture zone of large California earthquakes.  相似文献   

20.
The 1.1-megaton nuclear test Benham caused movement on previously mapped faults and was followed by a sequence of small earthquakes. These effects were confined to a zone extending not more than 13 kilometers from ground zero; they are apparently related to the release of natural tectonic strain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号