首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In its physiological state, cyclic adenosine monophosphate (cAMP)-dependent protein kinase (PKA) is a tetramer that contains a regulatory (R) subunit dimer and two catalytic (C) subunits. We describe here the 2.3 angstrom structure of full-length tetrameric RIIβ(2):C(2) holoenzyme. This structure showing a dimer of dimers provides a mechanistic understanding of allosteric activation by cAMP. The heterodimers are anchored together by an interface created by the β4-β5 loop in the RIIβ subunit, which docks onto the carboxyl-terminal tail of the adjacent C subunit, thereby forcing the C subunit into a fully closed conformation in the absence of nucleotide. Diffusion of magnesium adenosine triphosphate (ATP) into these crystals trapped not ATP, but the reaction products, adenosine diphosphate and the phosphorylated RIIβ subunit. This complex has implications for the dissociation-reassociation cycling of PKA. The quaternary structure of the RIIβ tetramer differs appreciably from our model of the RIα tetramer, confirming the small-angle x-ray scattering prediction that the structures of each PKA tetramer are different.  相似文献   

2.
The catalytic (C) subunit of cyclic adenosine monophosphate (cAMP)-dependent protein kinase (PKA) is inhibited by two classes of regulatory subunits, RI and RII. The RII subunits are substrates as well as inhibitors and do not require adenosine triphosphate (ATP) to form holoenzyme, which distinguishes them from RI subunits. To understand the molecular basis for isoform diversity, we solved the crystal structure of an RIIalpha holoenzyme and compared it to the RIalpha holoenzyme. Unphosphorylated RIIalpha(90-400), a deletion mutant, undergoes major conformational changes as both of the cAMP-binding domains wrap around the C subunit's large lobe. The hallmark of this conformational reorganization is the helix switch in domain A. The C subunit is in an open conformation, and its carboxyl-terminal tail is disordered. This structure demonstrates the conserved and isoform-specific features of RI and RII and the importance of ATP, and also provides a new paradigm for designing isoform-specific activators or antagonists for PKA.  相似文献   

3.
The 2.0-angstrom structure of the cyclic adenosine monophosphate (cAMP)-dependent protein kinase (PKA) catalytic subunit bound to a deletion mutant of a regulatory subunit (RIalpha) defines a previously unidentified extended interface. The complex provides a molecular mechanism for inhibition of PKA and suggests how cAMP binding leads to activation. The interface defines the large lobe of the catalytic subunit as a stable scaffold where Tyr247 in the G helix and Trp196 in the phosphorylated activation loop serve as anchor points for binding RIalpha. These residues compete with cAMP for the phosphate binding cassette in RIalpha. In contrast to the catalytic subunit, RIalpha undergoes major conformational changes when the complex is compared with cAMP-bound RIalpha. The inhibitor sequence docks to the active site, whereas the linker, also disordered in free RIalpha, folds across the extended interface. The beta barrel of cAMP binding domain A, which is the docking site for cAMP, remains largely intact in the complex, whereas the helical subdomain undergoes major reorganization.  相似文献   

4.
The crystal structure of the catalytic subunit of cyclic adenosine monophosphate-dependent protein kinase complexed with a 20-amino acid substrate analog inhibitor has been solved and partially refined at 2.7 A resolution to an R factor of 0.212. The magnesium adenosine triphosphate (MgATP) binding site was located by difference Fourier synthesis. The enzyme structure is bilobal with a deep cleft between the lobes. The cleft is filled by MgATP and a portion of the inhibitor peptide. The smaller lobe, consisting mostly of amino-terminal sequence, is associated with nucleotide binding, and its largely antiparallel beta sheet architecture constitutes an unusual nucleotide binding motif. The larger lobe is dominated by helical structure with a single beta sheet at the domain interface. This lobe is primarily involved in peptide binding and catalysis. Residues 40 through 280 constitute a conserved catalytic core that is shared by more than 100 protein kinases. Most of the invariant amino acids in this conserved catalytic core are clustered at the sites of nucleotide binding and catalysis.  相似文献   

5.
6.
The ability of electrospray to propel large viruses into a mass spectrometer is established and is rationalized by analogy to the atmospheric transmission of the common cold. Much less clear is the fate of membrane-embedded molecular machines in the gas phase. Here we show that rotary adenosine triphosphatases (ATPases)/synthases from Thermus thermophilus and Enterococcus hirae can be maintained intact with membrane and soluble subunit interactions preserved in vacuum. Mass spectra reveal subunit stoichiometries and the identity of tightly bound lipids within the membrane rotors. Moreover, subcomplexes formed in solution and gas phases reveal the regulatory effects of nucleotide binding on both ATP hydrolysis and proton translocation. Consequently, we can link specific lipid and nucleotide binding with distinct regulatory roles.  相似文献   

7.
The structure of a 20-amino acid peptide inhibitor bound to the catalytic subunit of cyclic AMP-dependent protein kinase, and its interactions with the enzyme, are described. The x-ray crystal structure of the complex is the basis of the analysis. The peptide inhibitor, derived from a naturally occurring heat-stable protein kinase inhibitor, contains an amphipathic helix that is followed by a turn and an extended conformation. The extended region occupies the cleft between the two lobes of the enzyme and contains a five-residue consensus recognition sequence common to all substrates and peptide inhibitors of the catalytic subunit. The helical portion of the peptide binds to a hydrophobic groove and conveys high affinity binding. Loops from both domains converge at the active site and contribute to a network of conserved residues at the sites of magnesium adenosine triphosphate binding and catalysis. Amino acids associated with peptide recognition, nonconserved, extend over a large surface area.  相似文献   

8.
The anthranilate synthase-phosphoribosyl transferase complex of the tryptophan biosynthetic pathway in Salmonella typhimurium is an allosteric, heterotetrameric (TrpE2-TrpD2) enzyme whose multiple activities are negatively feedback-regulated by L-tryptophan. A hybrid complex containing one catalytically active, feedback-insensitive and one catalytically inactive, feedback-sensitive mutant TrpE subunit was assembled in vitro and used to investigate communication between regulatory and catalytic sites located on different subunits. The properties of the hybrid complex demonstrate that the binding of a single inhibitor molecule to one TrpE subunit is sufficient for the propagation of a conformational change that affects the active site of the companion subunit.  相似文献   

9.
The 5'-AMP (adenosine monophosphate)-activated protein kinase (AMPK) coordinates metabolic function with energy availability by responding to changes in intracellular ATP (adenosine triphosphate) and AMP concentrations. Here, we report crystal structures at 2.9 and 2.6 A resolution for ATP- and AMP-bound forms of a core alphabetagamma adenylate-binding domain from the fission yeast AMPK homolog. ATP and AMP bind competitively to a single site in the gamma subunit, with their respective phosphate groups positioned near function-impairing mutants. Unexpectedly, ATP binds without counterions, amplifying its electrostatic effects on a critical regulatory region where all three subunits converge.  相似文献   

10.
The crystal structure of the high-affinity Escherichia coli MetNI methionine uptake transporter, a member of the adenosine triphosphate (ATP)-binding cassette (ABC) family, has been solved to 3.7 angstrom resolution. The overall architecture of MetNI reveals two copies of the adenosine triphosphatase (ATPase) MetN in complex with two copies of the transmembrane domain MetI, with the transporter adopting an inward-facing conformation exhibiting widely separated nucleotide binding domains. Each MetI subunit is organized around a core of five transmembrane helices that correspond to a subset of the helices observed in the larger membrane-spanning subunits of the molybdate (ModBC) and maltose (MalFGK) ABC transporters. In addition to the conserved nucleotide binding domain of the ABC family, MetN contains a carboxyl-terminal extension with a ferredoxin-like fold previously assigned to a conserved family of regulatory ligand-binding domains. These domains separate the nucleotide binding domains and would interfere with their association required for ATP binding and hydrolysis. Methionine binds to the dimerized carboxyl-terminal domain and is shown to inhibit ATPase activity. These observations are consistent with an allosteric regulatory mechanism operating at the level of transport activity, where increased intracellular levels of the transported ligand stabilize an inward-facing, ATPase-inactive state of MetNI to inhibit further ligand translocation into the cell.  相似文献   

11.
Adenosine triphosphate (ATP) hydrolysis in the nitrogenase complex controls the cycle of association and dissociation between the electron donor adenosine triphosphatase (ATPase) (Fe-protein) and its target catalytic protein (MoFe-protein), driving the reduction of dinitrogen into ammonia. Crystal structures in different nucleotide states have been determined that identify conformational changes in the nitrogenase complex during ATP turnover. These structures reveal distinct and mutually exclusive interaction sites on the MoFe-protein surface that are selectively populated, depending on the Fe-protein nucleotide state. A consequence of these different docking geometries is that the distance between redox cofactors, a critical determinant of the intermolecular electron transfer rate, is coupled to the nucleotide state. More generally, stabilization of distinct docking geometries by different nucleotide states, as seen for nitrogenase, could enable nucleotide hydrolysis to drive the relative motion of protein partners in molecular motors and other systems.  相似文献   

12.
The TFP1 gene of the yeast Saccharomyces cerevisiae encodes two proteins: the 69-kilodalton (kD) catalytic subunit of the vacuolar proton-translocating adenosine triphosphatase (H(+)-ATPase) and a 50-kD protein. The 69-kD subunit is encoded by the 5' and 3' thirds of the TFP1 coding region, whereas the 50-kD protein is encoded by the central third. Evidence is presented that both the 69-kD and 50-kD proteins are obtained from a single translation product that is cleaved to release the 50-kD protein and spliced to form the 69-kD subunit.  相似文献   

13.
Inhibiting protein synthesis by incubating C6-2B rat astrocytoma cells with cycloheximide or emetine for periods up to 24 hours caused a progressive decrease in the accumulation of adenosine 3',5'-monophosphate (cyclic AMP) when the cells were challenged for 30 minutes with 100 microM forskolin. In contrast, cholera toxin-stimulated (6 nM, 3 hours) cyclic AMP accumulation was not diminished in cycloheximide-treated cells, and cyclic AMP was only minimally diminished in response to a 30-minute challenge with 10 microM (-)-isoproterenol. These experiments suggest the presence of a previously unrecognized cyclase component, which is essential for forskolin-stimulated cyclic AMP accumulation and has a shorter half-life than the beta-adrenergic receptor, the guanine nucleotide regulatory proteins, or the cyclase catalytic component.  相似文献   

14.
Guanine nucleotide binding (G) proteins (subunit composition alpha beta gamma) dissociate on activation with guanosine triphosphate (GTP) analogs and magnesium to give alpha-guanine nucleotide complexes and free beta gamma subunits. Whether the opening of potassium channels by the recently described Gk in isolated membrane patches from mammalian atrial myocytes was mediated by the alpha k subunit or beta gamma dimer was tested. The alpha k subunit was found to be active, while the beta gamma dimer was inactive in stimulating potassium channel activity. Thus, Gk resembles Gs, the stimulatory regulatory component of adenylyl cyclase, and transducin, the regulatory component of the visual system, in that it regulates its effector function--the activity of the ligand-gated potassium channel--through its guanine nucleotide binding subunit.  相似文献   

15.
Specific interactions in RNA enzyme-substrate complexes   总被引:27,自引:0,他引:27  
Analysis of crosslinked complexes of M1 RNA, the catalytic RNA subunit of ribonuclease P from Escherichia coli, and transfer RNA precursor substrates has led to the identification of regions in the enzyme and in the substrate that are in close physical proximity to each other. The nucleotide in M1 RNA, residue C92, which participates in a crosslink with the substrate was deleted and the resulting mutant M1 RNA was shown to cleave substrates lacking the 3' terminal CCAUCA sequence at sites several nucleotides away from the normal site of cleavage. The presence or absence of the 3' terminal CCAUCA sequence in transfer RNA precursor substrates markedly affects the way in which these substrates interact with the catalytic RNA in the enzyme-substrate complex. The contacts between wild-type M1 RNA and its substrate are in a region that resembles part of the transfer RNA "E" (exit) site in 23S ribosomal RNA. These data demonstrate that in RNA's with very different cellular functions, there are domains with similar structural and functional properties and that there is a nucleotide in M1 RNA that affects the site of cleavage by the enzyme.  相似文献   

16.
17.
Lee G  Bratkowski MA  Ding F  Ke A  Ha T 《Science (New York, N.Y.)》2012,336(6089):1726-1729
Rrp44 (Dis3) is a key catalytic subunit of the yeast exosome complex and can processively digest structured RNA one nucleotide at a time in the 3' to 5' direction. Its motor function is powered by the energy released from the hydrolytic nuclease reaction instead of adenosine triphosphate hydrolysis as in conventional helicases. Single-molecule fluorescence analysis revealed that instead of unwinding RNA in single base pair steps, Rrp44 accumulates the energy released by multiple single nucleotide step hydrolysis reactions until about four base pairs are unwound in a burst. Kinetic analyses showed that RNA unwinding, not cleavage or strand release, determines the overall RNA degradation rate and that the unwinding step size is determined by the nonlinear elasticity of the Rrp44/RNA complex, but not by duplex stability.  相似文献   

18.
A G protein directly regulates mammalian cardiac calcium channels   总被引:45,自引:0,他引:45  
A possible direct effect of guanine nucleotide binding (G) proteins on calcium channels was examined in membrane patches excised from guinea pig cardiac myocytes and bovine cardiac sarcolemmal vesicles incorporated into planar lipid bilayers. The guanosine triphosphate analog, GTP gamma S, prolonged the survival of excised calcium channels independently of the presence of adenosine 3',5'-monophosphate (cAMP), adenosine triphosphate, cAMP-activated protein kinase, and the protein kinase C activator tetradecanoyl phorbol acetate. A specific G protein, activated Gs, or its alpha subunit, purified from the plasma membranes of human erythrocytes, prolonged the survival of excised channels and stimulated the activity of incorporated channels. Thus, in addition to regulating calcium channels indirectly through activation of cytoplasmic kinases, G proteins can regulate calcium channels directly. Since they also directly regulate a subset of potassium channels, G proteins are now known to directly gate two classes of membrane ion channels.  相似文献   

19.
The protein kinase domain of the ANP receptor is required for signaling   总被引:15,自引:0,他引:15  
A plasma membrane form of guanylate cyclase is a cell surface receptor for atrial natriuretic peptide (ANP). In response to ANP binding, the receptor-enzyme produces increased amounts of the second messenger, guanosine 3',5'-monophosphate. Maximal activation of the cyclase requires the presence of adenosine 5'-triphosphate (ATP) or nonhydrolyzable ATP analogs. The intracellular region of the receptor contains at least two domains with homology to other proteins, one possessing sequence similarity to protein kinase catalytic domains, the other to regions of unknown function in a cytoplasmic form of guanylate cyclase and in adenylate cyclase. It is now shown that the protein kinase-like domain functions as a regulatory element and that the second domain possesses catalytic activity. When the kinase-like domain was removed by deletion mutagenesis, the resulting ANP receptor retained guanylate cyclase activity, but this activity was independent of ANP and its stimulation by ATP was markedly reduced. A model for signal transduction is suggested in which binding of ANP to the extracellular domain of its receptor initiates a conformational change in the protein kinase-like domain, resulting in derepression of guanylate cyclase activity.  相似文献   

20.
Many biological processes are regulated through the selective dephosphorylation of proteins. Protein serine-threonine phosphatases are assembled from catalytic subunits bound to diverse regulatory subunits that provide substrate specificity and subcellular localization. We describe a small molecule, guanabenz, that bound to a regulatory subunit of protein phosphatase 1, PPP1R15A/GADD34, selectively disrupting the stress-induced dephosphorylation of the α subunit of translation initiation factor 2 (eIF2α). Without affecting the related PPP1R15B-phosphatase complex and constitutive protein synthesis, guanabenz prolonged eIF2α phosphorylation in human stressed cells, adjusting the protein production rates to levels manageable by available chaperones. This favored protein folding and thereby rescued cells from protein misfolding stress. Thus, regulatory subunits of phosphatases are drug targets, a property used here to restore proteostasis in stressed cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号