首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ability of high hydrostatic pressure processing to promote changes in both the structural properties of fiber and the interaction of fiber with water were addressed. Both coarse and fine bran from milling of common wheat were considered. Treatment‐induced morphological changes were most pronounced in fine bran, whereas treatment of coarse bran resulted in the largest change in water‐holding capacity. The significance of the process‐induced changes is discussed in terms of their practical relevance in the production of fiber‐enriched foods.  相似文献   

2.
A second‐degree simplex lattice mixture design was used to study the effects of soy, dairy, and soy‐dairy blends of powdered proteins in three high‐protein food bar models (sugar syrup, polyol syrup, and reduced‐sugar syrup). Overall protein performance was evaluated based on textural changes during accelerated storage, bar integrity, and dough stickiness and was a strong function of the syrup model used (R2 = 92.33%). Nuclear magnetic resonance (NMR) relaxometry was used to measure relaxation times (T2, T2*, and T1) at 20°C and to create state diagrams (temperature, T2* curves) for the individual powdered proteins and syrups over a temperature range of –35 to 50°C. Increases in relaxation times for powdered protein samples were indicative of better overall protein performance, whereas increases in relaxation times for syrup samples were associated with increases in moisture content and concentration of polyols. Increases in water activity (aw) of the bars during accelerated storage suggested an elevated rate of hardening for polyol‐containing bars that was caused by a decrease in the amount of water capable of acting as a plasticizer in the product. Proteins were separated into four types (A, B, C, and D) based on the shape of the state diagram curve. Predicted to be the most stable, type D proteins (SUPRO 313 and SUPRO 430) offered the most versatility and, when blended with other proteins, often induced synergistic softening effects in the nutrition bars which led to an extended product shelf life. The NMR state diagram technique appears to be a valuable tool for predicting overall performance of powdered proteins in sugar‐, polyol‐, and reduced‐sugar syrup based food bars.  相似文献   

3.
The efficiency of fractionating cereal grains (e.g., dry corn milling) can be evaluated and monitored by quantifying the proportions of seed tissues in each of the recovered fractions. The quantities of individual tissues are typically estimated using indirect methods such as quantifying fiber or ash to indicate pericarp and tip cap contents, and oil to indicate germ content. More direct and reliable methods are possible with tissue‐specific markers. We used two transgenic maize lines, one containing the fluorescent protein green fluorescent protein (GFP) variant S65T expressed in endosperm, and the other containing GFP expressed in germ to determine the fate of each tissue in the dry‐milling fractionation process. The two lines were dry‐milled to produce three fractions (bran‐, endosperm‐, and germ‐rich fractions) and GFP fluorescence was quantified in each fraction to estimate the tissue composition. Using a simplified laboratory dry‐milling procedure and our GFP‐containing grain, we determined that the endosperm‐rich fraction contained 4% germ tissue, the germ‐rich fraction contained 28% germ, 20% endosperm, and 52% nonendosperm and nonembryo tissues, and the bran‐rich fraction contained 44% endosperm, 13% germ, and 43% nonendosperm and nonembryo tissues. GFP‐containing grain can be used to optimize existing fractionation methods and to develop improved processing strategies.  相似文献   

4.
Rice grain breakage during milling is a problem in many parts of Asia. It has been suggested that nitrogen (N) fertilizer can improve the milling quality of rice. Therefore, this study investigates effects of N fertilization on grain N concentration, endosperm storage protein distribution, and milling quality of rice. Four Thai extra long grain commercial rice cultivars (KDML105, KLG1, PTT1, and CNT1) were grown at Chiang Mai University in the wet season of 2001 with 0 or 120 kg of N/ha at flowering. Anatomical sections showed that there was more storage protein accumulated in the lateral regions of polished grain of high N concentration than in grain of low N concentration. Percent (%) unbroken rice was positively correlated with relative abundance of storage protein in the lateral region of the endosperm in all cultivars. Applying N increased head rice N concentration in all cultivars, whereas % unbroken rice was increased in KLG1 and CNT1. KDML105 cultivar, on the other hand, already had high % unbroken rice and more abundant storage protein in the lateral region with the grain of low N concentration. It is hypothesized that high density of storage protein in the lateral region of the endosperm provides resilience and lessens grain breakage during milling. The additional protein may increase hardness in rice grains and thus could make the rice more resistant to breakage during milling. Furthermore, N fertilization may enhance the nutritional quality of rice grain by increasing the glutelin content, which is rich in lysine.  相似文献   

5.
Starch was isolated from three different barleys with normal, highamylose, or high‐amylopectin (waxy) starch. The laboratory‐scale starch isolation procedure included crushing of grains, steeping, wet milling, and sequential filtration and washing with water and alkali, respectively. Yield and content of starch, protein, and dietary fiber, including β‐glucan, were analyzed in isolated starch and in the by‐products obtained. Starch yield was 25–34%, and this fraction contained 96% starch, 0.2–0.3% protein, and 0.1% ash. Most of the remaining starch was found in the coarse material removed by filtration after wet milling, especially for the high‐amylose barley, and in the starch tailings. Microscopy studies showed that isolated starch contained mostly A‐granules and the starch tailings contained mostly B‐granules. Protein concentration was highest in the alkali‐soluble fraction (54%), whereas dietary fiber concentration was highest in the material removed by filtration after alkali treatment for the normal and waxy barleys (55%). The β‐glucan content was especially high for the waxy barley in this fraction (26%). The study thus showed that it was possible to enrich chemical constituents in the by‐products but that there were large differences between barleys. This result indicates a need for modifications in the isolation procedures for different barleys to obtain high yields of starch and different by‐products. Valuable by‐products enriched in β‐glucan or protein, for example, may render starch production more profitable.  相似文献   

6.
Germinated brown rice is popular in Asia for its increased γ‐aminobutyric acid (GABA) content and sweeter and softer texture compared with conventional brown rice. However, most studies investigated germinated rice properties on medium‐grain or aromatic rice. The objective of this study was to compare differences between a medium‐grain (Jupiter) and a long‐grain (Wells) rice under similar germination conditions on their milling, physicochemical, and textural properties over the course of germination. Rough rice was soaked in water at 25°C for 12 h and then incubated at 30–34°C for four germination durations. Wells had a higher breakage percentage and a greater weight decrease than Jupiter during germination. Wells had a significantly lower GABA content before germination and at the first two germination durations than Jupiter, but the GABA content in Wells significantly increased at the third germination duration to become significantly higher than that of Jupiter. There were no significant changes in gelatinization temperatures and pasting properties of germinated rice from both cultivars at different germination durations. The cooked rice hardness from Wells decreased at the longest germination duration, whereas Jupiter showed a more significant decrease in cooked rice stickiness from germination. The results demonstrate that the impacts of germination on physical, chemical, and textural properties of rice were affected by grain type and germination duration.  相似文献   

7.
To determine the variations of amino acid and protein during milling and steamed breadmaking, two types of wheat cultivars belonging to soft and hard wheat types were used. The results showed that losses occurred in 17 amino acids during milling. The mean loss of threonine (18.0%) was the highest, which was followed by proline (15.5%), methionine (15.1%), and histidine (15.1%). The losses of tyrosine and lysine were the lowest (8.1 and 9.7%, respectively). Losses were also found for 17 amino acids during steamed breadmaking. The highest loss was observed in alanine (17.1%), with tyrosine (12.5%) close behind, and leucine (4.3%) exhibiting the lowest loss. The mean protein contents for whole‐wheat meal, flour, and steamed bread prepared from the test materials were 15.25, 14.27, and 14.33%, respectively. This meant that protein content decreased during milling; however, a slight increase was observed during steamed breadmaking. Amino acid scores of lysine in whole‐wheat meal, flour, and steamed bread prepared from the test materials were 45.4, 41.0, and 38.2, respectively. The general trend in the variations of protein and amino acids was similar in the two wheat cultivars tested.  相似文献   

8.
Germinated brown rice is considered a more nutritious and palatable cooked product than conventional brown rice. However, germination usually decreases rice milling yield and alters some physicochemical properties. Parboiling is commonly used to increase milling yield and retain nutrients, but it also changes rice color and texture. The objective of this study was to investigate the effect of parboiling on milling, physicochemical, and textural properties of a medium‐grain and a long‐grain rice after germination at varying durations. Germinated rice samples of three germination durations were prepared with one germination time before the optimum time at which 70% of rice revealed hull protrusion, the optimum time, and one time after. Germinated rice was then immediately parboiled at 120°C for 20 min and was then immediately dried. The milling, physicochemical, and textural properties of parboiled germinated rice from both cultivars were determined. Parboiling significantly decreased the percentage of brokens, whiteness, and the apparent amylose content and increased γ‐aminobutyric acid content (GABA) in the nongerminated rice and rice at the first germination duration for both cultivars. Parboiling reduced pasting viscosities for both cultivars, but Jupiter still exhibited higher pasting viscosities than Wells. Cooked parboiled germinated rice was overall softer than nonparboiled rice because of kernel splitting, but Wells remained harder and less sticky than Jupiter. In conclusion, it is beneficial to combine parboiling with germination to enhance nutritional values and improve milling properties without affecting textural properties for both rice cultivars.  相似文献   

9.
A transgenic corn (amylase corn) has been developed that produces an endogenous α‐amylase that is activated in the presence of water and elevated temperature (>70°C). Wet‐ and dry‐milling characteristics of amylase corn were evaluated using laboratory wet‐ and dry‐milling procedures. Different amounts of amylase corn (0.1–10%) were added to dent corn (with the same genetic background as the amylase corn) as treatments. Samples were evaluated for wet‐ and dry‐milling fraction yields using 1‐kg laboratory procedures. Milling yields for all amylase corn treatments were compared with the control treatment (0% amylase corn or 100% dent corn). No significant differences were observed in wet‐ and dry‐milling yields between the control and the 0.1, 1, and 10% amylase corn treatments. Most of the amylase activity (77%) in wet‐milling fractions was detected in the protein fraction. In dry‐milling, amylase activity (68.8%) was detected in endosperm fractions (fines, small grits, and large grits).  相似文献   

10.
Wet okara (soy milk residue), as a functional ingredient, was evaluated to be added to a coconut‐based snack at 10, 20, 30, 40, and 50% levels to replace dry coconut in the formula. Certain physicochemical, nutritional, and sensory properties of the samples were evaluated. A coconut‐based, soft, baked snack with incorporated okara showed higher total fiber and much lower fat content than the control, which significantly improved the nutritional profile of the samples. Samples 3 and 4 (which had 30 and 40% replacement of coconut with wet okara, respectively) received the highest overall sensory score (8.4), which was significantly higher than the score of a control sample (7.5). Sample 3 also had a significantly improved nutritional profile per serving size, such as an increased fiber content of 6.11 ± 0.04 g/100 g and a decreased fat content of 17.57 ± 0.02 g/100 g, and sample 4 had an increased fiber content of 6.19 ± 0.03 g/100 g and a decreased fat content of 15.64 ± 0.03 g/100 g compared with the control sample. The appearance, color, flavor, physical measurements (instrumental texture profile analysis), and water activity of samples 3 and 4 were not significantly different from the control sample and demonstrated potential application of this formulation in the baking industry, proving that the wet okara can be successfully used as a value‐added functional ingredient.  相似文献   

11.
The objectives of this research were to study the effects of slurry specific gravity, starch table slope, slurry pumping rate, and their interactions on starch recovery and purity; and to propose a small‐scale laboratory wet‐milling procedure for wheat. First‐order and second‐order response surface regression models were developed to study the effects and interactions of slurry specific gravity, starch table slope, and slurry pumping rate on starch and gluten separation for a 100‐g wheat wet‐milling procedure. The starch and starch protein content data fit the first‐order models (R2 = 0.99 and 0.96) better than the second‐order models (R2 = 0.98 and 0.93). Regression results from the first‐order models indicated that specific gravity, table slope, pumping rate, and their interactions all had a significant effect on starch yield and purity. However, these effects could be simplified as the effect of the resident time of starch and gluten slurry on the starch table and the specific gravity. Starch yield increased as resident time increased and specific gravity decreased. Protein content in starch decreased as the resident time decreased and the specific gravity increased. The separation condition with specific gravity of 3 Bé, table slope of 1.04 cm/m, and pumping rate of 50 mL/min was recommended. Under this condition, starch recovery was 85.6% and protein content of starch was 0.42%, which was similar to the 1.5‐kg laboratory methods in starch recovery. Total solids recovery was 98.1%, which is similar to that from 1.5‐kg laboratory methods. These results indicated that precision of the 100‐g wheat wet‐milling procedure was similar to that of the 1.5‐kg laboratory methods.  相似文献   

12.
The chemometric calibration of near‐infrared Fourier‐transform Raman (NIR‐FT/Raman) spectroscopy was investigated for the purpose of providing a rigorous spectroscopic technique to analyze rice flour for protein and apparent amylose content. Ninety rice samples from a 1996 collection of short, medium, and long grain rice grown in four states of the United States, as well as Taiwan, Korea, and Australia were investigated. Milled rice flour samples were scanned in rotating cups with a 1,064 nm (NIR) excitation laser using 500 mW of power. Raman scatter was collected using a liquid N2 cooled Ge detector over the Raman shift range of 175–3,600 cm‐1. The spectral data was preprocessed using baseline correction with and without derivatives or with derivatives alone and normalization. Nearly equivalent results were obtained using all of the preprocessing methods with partial least squares (PLS) models. However, models using baseline correction and normalization of the entire spectrum, without derivatives, showed slightly better performance based on the criteria of highest r2 and the lowest SEP with low bias. Calibration samples (n = 57) and validation samples (n = 33) were chosen to have similar respective distributions for protein and apparent amylose. The best model for protein was obtained using six factors giving r2 = 0.992, SEP = 0.138%, and bias = ‐0.009%. The best model for apparent amylose was obtained using eight factors giving r2 = 0.985, SEP = 1.05%, and bias = ‐0.006%.  相似文献   

13.
The use of the derivative method for near‐infrared (NIR) calibration was investigated to determine protein and amylose content in rice flour. Samples for two years, 1996 and 1999, were combined to give a wide range of the constituents for development of the calibration model. The NIR spectral data were transformed with Savitzky‐Golay derivative with multiplicative scatter correction. To develop the best derivative models, the polynomial fits (quadratic, cubic, and quartic), convolution intervals (3–11 points for protein, 3–17 points for amylose), and derivative orders (1st derivative D1; 2nd derivative D2) were investigated. For the protein analysis, all polynomial fits with 3–11 points were acceptable to develop both the D1 and D2 models. However, the three‐point quadratic and five‐point quartic fits were not acceptable for the D1 model, and the three‐point quadratic fit was not acceptable for D2. For the amylose analysis, the D1 model produced generally better results than D2. Higher convolution intervals were required for the D2 model, whereas the D1 model was not affected by convolution intervals. A quadratic (or cubic) fit with 17‐point convolution interval was acceptable for the amylose D2 model, and the quadratic fit with 5–11 points and cubic (or quartic) fit with 7–17 points were suitable for the D1 model. Based on the standard error of cross‐validation (SECV), the calibration models developed using data for two years resulted in good precision with an SECV of 0.23% for protein using four factors and an SECV of 1.0% for amylose using 10 factors.  相似文献   

14.
15.
Marketing of coproducts such as corn gluten meal (CGM) and corn gluten feed (CGF) is important to the maize wet‐milling industry. High phosphorus concentrations could lead to limited markets for CGF due to its potential to increase phosphorus in animal wastes. The objective was to measure the concentration and flow of phosphorus in the wet‐milling process and identify streams that could be altered. Samples were taken from 21 process streams of three facilities and the phosphorus content of each was determined. Flow of phosphorus was simulated using a computer model for a 2,700 tonne/day (105,000 bu/day) wet‐milling plant. Phosphorus concentrations of streams varied from <10 mg/kg to >14,000 mg/kg. Phosphorus content of many streams differed significantly among facilities. Flow of phosphorus (kg/day) varied dramatically among streams. However light steepwater, light gluten, and process water streams (5,960, 3,080, and 970 kg/day, respectively) accounted for much of the phosphorus flow. Modification of these streams could reduce phosphorus content of coproducts. The high phosphorus content of either CGF or CGM could be reduced markedly if phosphorus was reduced in the appropriate streams.  相似文献   

16.
Pearling by‐products and the pearled products of two commercial stocks of hulled barley, pearled according to an industrial process consisting of five consecutive pearling steps, were analyzed for β‐glucans, dietary fiber (total, soluble, and insoluble), protein, lipid, ash, and digestible carbohydrate. The data showed that the pearling flour fractions, abraded in the fourth and fifth hullers, contained interesting amounts of β‐glucans (3.9–5.1% db) from a nutritional point of view. These fractions were subsequently enriched in β‐glucans using a milling‐sieving process to double β‐glucan content (9.1–10.5% db). Functional pastas, enriched with β‐glucans and dietary fiber, were produced by substituting 50% of standard durum wheat semolina with β‐glucan‐enriched barley flour fractions. Although darker than durum wheat pasta, these pastas had good cooking qualities with regard to stickiness, bulkiness, firmness, and total organic matter released in rinsing water. The dietary fiber (13.1–16.1% wb) and β‐glucan (4.3–5.0% wb) contents in the barley pastas were much higher than in the control (4.0 and 0.3% wb, respectively). These values amply meet the FDA requirements of 5 g of dietary fiber and 0.75 g of β‐glucans per serving (56 g in the United States and 80 g in Italy). At present, the FDA has authorized the health claim “may reduce the risk of heart disease” for food containing β‐glucans from oat and psyllium only.  相似文献   

17.
The present study aims to understand whether genotypic differences in grain iron (Fe) concentration in four rice genotypes are related to its association with protein bodies containing phytate‐rich inclusions. Rice genotypes with high and low grain Fe concentrations in unpolished brown rice were grown in a greenhouse at Chiang Mai, Thailand, and grains were harvested at maturity. The presence of protein bodies and phytate‐rich inclusions in rice grain tissues were examined by means of light and transmission electron microscopy (TEM). The composition of mineral elements in different grain tissues was examined using energy dispersive X‐ray microanalysis (EDX) and chemical analysis. The relative distribution pattern of protein bodies in the tissues was similar among the four rice genotypes, which resembled the pattern of grain N concentrations in these tissues. The high grain Fe genotypes (based on brown rice Fe concentration) had more protein bodies containing phytate‐rich inclusions in the embryo and aleurone layer tissues than the low Fe genotypes. Phytate‐rich inclusions were not detected in the endosperm tissues in all genotypes. In conclusion, the presence of protein bodies with phytate‐rich inclusions predominantly in the embryo and aleurone regions of the grain is an important parameter contributing to the variation in brown rice Fe concentration among the genotypes, but not in the white rice (the endosperm). Iron associated with the phytate‐rich inclusions present in the embryo and aleurone layer tissues are largely lost during the polishing process to produce white rice.  相似文献   

18.
During testing of wheats at the early generation developmental stage, often there is not enough seed to mill for bake testing products such as sugar‐snap cookie diameter. This study reports a prediction equation for sugar‐snap cookie diameter that uses sucrose solvent retention capacity (SRC), wheat milling softness, and flour protein content. A total of 507 wheats were milled using three laboratory milling systems (short, medium, and long mill flow). Prediction equations were similar for all three mills. Standard errors of prediction were <2% of the mean estimate of cookie diameter. Additional observations eliminated lactic acid SRC (an indication of glutenin strength), alkaline water retention capacity (a traditional predictor of pastry quality), and flour yield (the main milling quality characteristic) from the prediction model.  相似文献   

19.
We have modeled a rice extrusion process focusing specifically on the starch gelatinization and water solubility index (WSI) as a function of extrusion system and process parameters. Using a twin‐screw extruder, we examined in detail the effect of screw speed (350–580 rpm), barrel temperature, different screw configurations, and moisture content of rice flour on both extrusion system parameters (product temperature, specific mechanical energy [SME], and residence time distribution [RTD]) and extrudate characteristics (expansion, density, WSI, and water absorption index [WAI]). Changes in WSI were monitored to reveal a relationship between the reaction kinetics during extrusion and WSI. Reaction kinetics models were developed to predict WSI during extrusion. WSI followed a pseudo first‐order reaction kinetics model. It became apparent that the rate constant is a function of both temperature and SME. We have developed an adaptation of the kinetic model based on the Arrhenius equation that shows better correlations with SME and distinguishes data from different screw configurations. This adaptation of the model improved predictability of WSI, thereby linking the extrusion conditions with the extruded product properties.  相似文献   

20.
The interactions taking place in composite dough containing rice flour and soybean proteins (5% w/w) in the presence of transglutaminase, an enzyme with cross‐linking activity, were studied using different electrophoretic analyses. The interaction between rice proteins and soybean proteins was intensified by the formation of new intermolecular covalent bonds catalyzed by transglutaminase and the indirect formation of disulfide bonds among proteins. The main protein fractions involved in those interactions were both β‐conglycinin and glycinin of soybean and the glutelins of the rice flour, although albumins and globulins were also cross‐linked. The addition of soybean proteins to rice flour improves the amino acid balance and they also might play an important role on the rice dough properties because soybean proteins interact with rice proteins, yielding protein aggregates of high molecular weight.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号