首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Freezing and prolonged frozen storage of dough results in constant deterioration in the overall quality of the final product. In this study the effect of wheat bran and wheat aleurone as sources of arabinoxylan (AX) on the quality of bread baked from yeasted frozen dough was investigated. Wheat fiber sources were milled to pass through a 0.5 mm screen, prehydrated for 15 min, and incorporated into refined wheat flour at 15% replacement level. Dough products were prepared from refined flour (control A), whole wheat flour (control B), aleurone composite flour (composite flour A), and bran composite flour (composite flour B) and stored at –18°C for 28 weeks. Dough samples were evaluated for breadmaking quality at zero time, 14 weeks, and 28 weeks of storage. Quality parameters evaluated were loaf weight, loaf specific volume, and crumb firmness. Composite flour bread samples showed the most resistance to freeze damage (less reduction in the overall product quality), indicating a possible role of some fiber components (e.g., AX) in minimizing water redistribution in the dough system and therefore lessening adverse modifications to the gluten structure. The data suggest that the shelf life of frozen dough and quality of obtained bread can be improved with the addition of an AX source.  相似文献   

2.
Variations in physical and compositional bran characteristics among different sources and classes of wheat and their association with bread‐baking quality of whole grain wheat flour (WWF) were investigated with bran obtained from Quadrumat milling of 12 U.S. wheat varieties and Bühler milling of six Korean wheat varieties. Bran was characterized for composition including protein, fat, ash, dietary fiber, phenolics, and phytate. U.S. soft and club wheat brans were lower in insoluble dietary fiber (IDF) and phytate content (40.7–44.7% and 10.3–17.1 mg of phytate/g of bran, respectively) compared with U.S. hard wheat bran (46.0–51.3% and 16.5–22.2 mg of phytate/g of bran, respectively). Bran of various wheat varieties was blended with a hard red spring wheat flour at a ratio of 1:4 to prepare WWFs for determination of dough properties and bread‐baking quality. WWFs with U.S. hard wheat bran generally exhibited higher dough water absorption and longer dough mixing time, and they produced smaller loaf volume of bread than WWFs of U.S. soft and club wheat bran. WWFs of two U.S. hard wheat varieties (ID3735 and Scarlet) produced much smaller loaves of bread (<573 mL) than those of other U.S. hard wheat varieties (>625 mL). IDF content, phytate content, and water retention capacity of bran exhibited significant relationships with loaf volume of WWF bread, whereas no relationship was observed between protein content of bran and loaf volume of bread. It appears that U.S. soft and club wheat bran, probably owing to relatively low IDF and phytate contents, has smaller negative effects on mixing properties of WWF dough and loaf volume of bread than U.S. hard wheat bran.  相似文献   

3.
The influence of bran particle size on bread‐baking quality of whole grain wheat flour (WWF) and starch retrogradation was studied. Higher water absorption of dough prepared from WWF with added gluten to attain 18% protein was observed for WWFs of fine bran than those of coarse bran, whereas no significant difference in dough mixing time was detected for WWFs of varying bran particle size. The effects of bran particle size on loaf volume of WWF bread and crumb firmness during storage were more evident in hard white wheat than in hard red wheat. A greater degree of starch retrogradation in bread crumb stored for seven days at 4°C was observed in WWFs of fine bran than those of coarse bran. The gels prepared from starch–fine bran blends were harder than those prepared from starch–unground bran blends when stored for one and seven days at 4°C. Furthermore, a greater degree of starch retrogradation was observed in gelatinized starch containing fine bran than that containing unground bran after storage for seven days at 4°C. It is probable that finely ground bran takes away more water from gelatinized starch than coarsely ground bran, increasing the extent of starch retrogradation in bread and gels during storage.  相似文献   

4.
The aim of this work was to elucidate the underlying physical mechanism(s) by which bran influences whole grain dough properties by monitoring the state of water and gluten secondary structure in wheat flour and bran doughs containing 35–50% moisture and 0–10% added bran. The system was studied with attenuated total reflectance (ATR) FTIR spectroscopy. Comparison of the OH stretch band of water in flour dough with that in H2O‐D2O mixtures having the same water content revealed the formation of two distinct water populations in flour dough corresponding to IR absorption frequencies at 3,600 and 3,200 cm–1. The band intensity at 3,200 cm–1, which is related to water bound to the dough matrix, decreased and shifted to lower frequencies with increasing moisture content of the dough. Addition of bran to the dough caused redistribution of water in the flour and bran dough system, as evidenced by shifts in OH stretch frequency in the 3,200 cm–1 region to higher frequencies and a reduction in monomeric water (free water). This water redistribution affected the secondary structure of gluten in the dough, as evidenced by changes in the second‐derivative ATR‐FTIR difference spectra in the amide I region. Bran addition caused an increase in β‐sheet content and a decrease in β‐turn (β‐spiral) content. However, this bran‐induced transconformational change in gluten was more significant in the 2137 flour dough than in Overley flour dough. This study revealed that when bran is added to flour dough, water redistribution among dough components promotes partial dehydration of gluten and collapse of β‐spirals into β‐sheet structures. This transconformational change may be the physical basis for the poor quality of bread containing added bran.  相似文献   

5.
Different bran pretreatments and bran cultivars were investigated with the aim of alleviating the adverse effects caused by bran addition in brown (fiber-rich) bread. Three different bran treatments: hydration, wet heat, and wet oxidation, all hydrate bran before its addition to other breadmaking ingredients. Four different bran cultivars were investigated. All treatments improved brown bread quality significantly, resulting in larger, softer loafs. All treatments resulted in an increase in the water absorption of brown bread doughs and a decrease in potentially oxidizable substances (POS) in brans. It is suggested that prehydration treatment activates bran lipoxy-Different bran pretreatments and bran cultivars were investigated with the aim of alleviating the adverse effects caused by bran addition in brown (fiber-rich) bread. Three different bran treatments: hydration, wet heat, and wet oxidation, all hydrate bran before its addition to other breadmaking ingredients. Four different bran cultivars were investigated. All treatments improved brown bread quality significantly, resulting in larger, softer loafs. All treatments resulted in an increase in the water absorption of brown bread doughs and a decrease in potentially oxidizable substances (POS) in brans. It is suggested that prehydration treatment activates bran lipoxygenase which oxidizes POS in bran, reducing bran's contribution to brown bread dough. A further reduction of these substances is caused by a washout effect of the treatments. On average across all bran cultivars, the hydration and wet oxidation treatments improved brown bread quality significantly more than the wet heat treatment, which also reduced the bran POS significantly less than the other treatments, probably due to its rapid inactivation of lipoxygenase. The bran cultivars differed significantly in their effects on brown bread quality, suggesting that bran selection according to cultivar should be considered.  相似文献   

6.
The effect of hydration level on processing properties and the effects of hydration level, concentration of buckwheat bran flour and drying temperature on the physical and cooking quality of spaghetti were determined. Specific mechanical energy transferred to the dough during extrusion decreased 69% for semolina and 79% for semolina containing 30%, w/w, buckwheat bran flour, as hydration level increased 29–32% absorption. Little or no postdrier checking occurred in spaghetti made from semolina or spaghetti containing buckwheat bran flour when dried at high (70°C) or ultrahigh temperature (90°C). When dried at low temperature (40°C), tolerance to postdrier checking of spaghetti decreased as buckwheat bran flour increased 0–30% (w/w). Hydration level before extrusion did not affect cooking loss of spaghetti made from semolina. However, cooking loss was greater from spaghetti made with semolinabuckwheat bran flour that was hydrated to 32% compared with 29–31% absorption. Cooked firmness of spaghetti containing buckwheat bran flour decreased from 0.588–0.471 Nm as hydration increased from 29–32% absorption. Cooking loss was lower and cooked firmness was greater when spaghetti containing buckwheat bran flour was dried at ultrahigh than at low temperature.  相似文献   

7.
In this study, effects of increasing levels of wheat bran and barley flour on dough properties and bazlama quality were investigated. Bazlama is a flat bread commonly consumed in Turkey. Flours of wheat cultivars Gün and Gerek, flour of barley cultivar Tokak, and Gerek bran mixture were used. Part of the wheat flours were replaced with barley flour at 10, 20, 30, and 40% levels and Gerek bran mixture at 5, 10, 15, and 20% levels. Farinogram properties of mixtures were determined. Bazlama samples were subjected to sensory analysis for external appearance, shape and symmetry, crust color, crumb color and structure, mouthfeel, taste and aroma. Increasing levels of bran and barley flour caused decreases in all sensory properties. The deteriorative effect of barley flour on bazlama properties was generally more obvious when compared to bran supplementation. However, all bazlama samples were considered acceptable. Penetrometer values of bazlama samples showed that increasing levels of barley flour created significantly softer bazlama. However, in bran-supplemented bazlama samples, effect of bran on softness was found to be insignificant in both cultivars. Bazlama samples supplemented with bran had lower L values and higher a and b values for color when compared to those supplemented with barley flour. In all samples, effect of increasing levels of barley flour on residual β-glucan was found to be insignificant in both cultivars. Acid detergent fiber and neutral detergent fiber values increased with increasing levels of bran, and the changes in both cultivars were similar.  相似文献   

8.
《Cereal Chemistry》2017,94(3):581-587
Wheat bran is a low‐cost by‐product abundantly produced by the wheat flour industry. As a staple food of China, Chinese steamed bread (CSB) represents about 40% of China's wheat consumption. This study investigated the effects of incorporating wheat bran into the CSB at different levels (5, 10, and 15%). The dough behavior was measured by analyzing rheological properties. Quality of CSB was analyzed from two perspectives: physical properties and nutritional quality. For physical properties, specific volume, loaf height, moisture, and texture were measured by 1 . The predicted glycemic response of the bread was analyzed by using an in vitro digestion method. The results illustrated that the incorporation of wheat bran into wheat flour reduced the extensibility of the dough, decreased specific volume, and increased bread hardness, gumminess, and chewiness. However, this study also showed that addition of wheat bran can decrease the predicted glycemic response of steamed bread by up to 39%.  相似文献   

9.
Hydrothermal treatments, which are routine in oat processing, have profound effects on oat flour dough rheological properties. The influence of roasting and steam treatments of oat grain on dough mixing and breadbaking properties was investigated when hydrothermally treated oat flour was blended with wheat flour. Roasting of oat grain (105°C, 2 hr) resulted in oat flours that were highly detrimental to wheat flour dough mixing properties and breadbaking quality. Steaming (105°C, 20 min) or a combination of roasting and steaming of oat grain significantly improved the breadbaking potential of the oat flours. The addition of oat flours increased water absorption and mixing requirements of the wheat flour dough and also decreased bread loaf volume. However, at the 10% substitution level, steamed oat flours exhibited only a gluten dilution effect on bread loaf volume when wheat starch was used as a reference. Oat flour in the breadbaking system decreased the retrogradation rate of bread crumb starch. The results indicate that adequate hydrothermal treatments of oat grain are necessary for oat flour breadbaking applications. Steamed oat flours used at a 10% level retarded bread staling without adversely affecting the loaf volume.  相似文献   

10.
麦麸酚基木聚糖对发酵面团特性和馒头品质的影响   总被引:3,自引:1,他引:3  
王晓曦  范玲  马森  王瑞  陈成 《农业工程学报》2015,31(17):302-307
为了提高麦麸的附加值、馒头的品质以及增强馒头的营养价值,该试验以小麦粉为原料,采用2个分子量的麦麸酚基木聚糖(820、581 kD),研究不同添加量(0.25%、0.5%、1.0%、2.0%)对发酵面团特性以及馒头品质的影响。结果表明:随着麦麸酚基木聚糖添加量的增加,发酵面团的弹性模量、质子密度A22先增加后下降,黏性模量、质子密度A23增加,弛豫时间T22下降;馒头的亮度下降,红度和黄度增加,比容、黏聚性、回复性先增加后下降,硬度、咀嚼性先下降后上升,黏附性下降,馒头的感官得分先上升后下降。高分子量的麦麸酚基木聚糖,其发酵面团的弹性模量和黏性模量变幅较大,弛豫时间T22、T23较大、质子密度A21较小,低分子量的麦麸酚基木聚糖,其馒头比容和弹性较大,但馒头硬度和咀嚼性相对也较大。麦麸酚基木聚糖添加量在0.5%时,对发酵面团以及馒头品质改善效果最好。添加量在1.0%内,发酵面团特性以及馒头品质均可接受。高分子量的酚基木聚糖对发酵面团以及馒头品质改善效果高于低分子量的酚基木聚糖。研究结果为麦麸酚基木聚糖广泛应用于馒头中,提高馒头品质及营养价值提供理论依据。  相似文献   

11.
We prepared bread dough A (a mixture of wheat flour, sugar, salt, and water), bread dough B (a mixture of bread dough A and yeast), and bread dough C (first‐proofed, molded, and second‐proofed bread dough B) and froze them at –20°C for six days. They were thawed at 4°C for 16 hr and subjected to their breadmaking processes. The results indicated that breadmaking properties (bread height [mm] and specific volume [cm3/g]) after bread dough A and B processes were the same as those of control bread dough (unfrozen dough). However, in the case of bread dough C, the resulting bread showed depression of the properties. The amount of centrifuged liquid from thawed bread dough C increased. Sugar was added to thawed bread dough C (bread dough C‐1), and then yeast was further added to bread dough C‐1 (bread dough C‐2), and they were subjected to the breadmaking process. The results showed that the breadmaking properties of bread dough C‐2 were the same as those of the control. It was further found that when the first proof step in the bread dough C‐2 process was omitted, the breadmaking properties were depressed. Frozen and thawed bread dough C was packed into a plastic tube, and extension of the dough was compared with that of control dough under reduced pressure. Bread dough C extended to 50 mm, compared with 70 mm for control dough. First proof, mold, and second proof steps of dough C‐2 caused it to extend to the same height as control dough. It was concluded that the increased amount of the separated liquid in thawed dough C caused depression of breadmaking properties resulting from lack of water in the appropriate places to provide the expected properties, but these properties could be restored to the levels of control bread dough by the addition of sugar and yeast following the first proof, mold, and second proof steps.  相似文献   

12.
Flours differing in water content of 10% (F10), 12% (F12), and 14% (F14) were stored for 16 weeks at 22, 32, and 45°C. The major changes in lipids concerned the free fatty acids (increase) and the triglycerides (decrease). In all cases, the changes increased with increasing storage temperature and water content. After 16 weeks of storage, the losses in lipoxygenase (LOX) activity increased with increasing flour moisture and storage temperature from 10% for F10 at 22°C to 100% for F14 at 45°C. At the end of storage at 22 and 32°C, the bread volumes decreased by 10 and 25%, respectively, with no statistical differences (P < 0.05) between the samples. At 45°C, the volume losses were equal to 35, 46, and 61% for the F10, F12, and F14 samples, respectively. In the same time, the flour oxidative ability (oxygen uptake during dough mixing) increased for the F10 and F12 samples with increasing storage temperature, whereas it decreased for the F14 samples stored at 45°C. Therefore, provided the residual LOX activity is sufficient (omission of the F14 samples stored at 45°C), the flour oxidative ability increased during storage and is positively correlated to its oxidable PUFA content.  相似文献   

13.
Whole sorghum flour was fermented (a five‐day natural lactic acid fermentation) and dried under forced draught at 60°C, and evaluated for its effect on sorghum and wheat composite bread quality. In comparison with unfermented sorghum flour, fermentation decreased the flour pH from 6.2 to 3.4, decreased total starch and water‐soluble proteins, and increased enzyme‐susceptible starch, total protein, and the in vitro protein digestibility (IVPD). Fermentation and drying did not decrease the pasting temperature of sorghum flour, but slightly increased its peak and final viscosity. In comparison with composite bread dough containing unfermented sorghum flour, fermented and dried sorghum flour decreased the pH of the dough from 5.8 to 4.9, increased bread volume by ≈4%, improved crumb structure, and slightly decreased crumb firmness. IVPD of the composite bread was also improved. Mixing wet fermented sorghum flour directly with wheat flour (sourdough‐type process) further increased loaf volume and weight and reduced crumb firmness, and simplified the breadmaking process. It appears that the low pH of fermented sorghum flour inactivated amylases and increased the viscosity of sorghum flour, thus improving the gas‐holding capacity of sorghum and wheat composite dough. Fermentation of sorghum flour, particularly in a sourdough breadmaking process, appears to have considerable potential for increasing sorghum utilization in bread.  相似文献   

14.
Bread was prepared from wheat flour and wheat flour fortified with either 3, 5, and 7% legume hulls or insoluble cotyledon fibers, or with 1, 3, and 5% soluble cotyledon fibers isolated from pea, lentil, and chickpea flours. Incorporation of hulls or insoluble fibers resulted in increases in dough water absorption by 2–16% and increases in mixing time of dough by 22–147 sec. Addition of soluble fiber resulted in decreases in water absorption as the substitution rate increased and similar mixing times to the control dough. Loaf weights of breads containing hulls or insoluble fibers were generally higher than that of control bread at 149.4–166.5 g. However, the loaf volume of breads fortified with legume hulls and fibers (685–1,010 mL) was lower than that of the control bread (1,021 mL). Breads containing soluble fibers were more attractive in terms of crumb uniformity and color than breads containing either hulls or insoluble fibers. Breads fortified with legume hulls and fibers were higher in moisture content than control bread regardless of the type, source, or fortification rate. Bread fortified with up to 7% hulls or insoluble cotyledon fibers or up to 3% soluble cotyledon fibers, with the exception of 7% insoluble pea fiber, exhibited similar firmness after seven days of storage compared with the control bread, despite their smaller loaf volume. Breads containing hull fibers exhibited the lowest starch transition enthalpies as determined by DSC after seven days of storage, while the starch transition enthalpies of breads containing added soluble or insoluble fiber were not significantly different from the control bread.  相似文献   

15.
The effect of protein quality, protein content, bran addition, diacetyl tartaric acid ester of monoglycerides (DATEM), proving time, and their interaction on hearth bread characteristics were studied by size‐exclusion fast protein liquid chromatography, Kieffer dough and gluten extensibility rig, and small‐scale baking of hearth loaves. Protein quality influenced size and shape of the hearth loaves positively. Enhanced protein content increased loaf volume and decreased the form ratio of hearth loaves. The effect of protein quality and protein content was dependent on the size‐distribution of the proteins in flour, which affected the viscoelastic properties of the dough. Doughs made from flours with strong protein quality can be proved for a longer time and thereby expand more than doughs made from weak protein quality flours. Doughs made from strong protein quality flours tolerated bran addition better than doughs made from weak protein quality flours. Doughs made from high protein content flours were more suited for hearth bread production with bran than doughs made from flours with low protein content. DATEM had small effect on dough properties and hearth loaf characteristics compared with the other factors.  相似文献   

16.
《Cereal Chemistry》2017,94(2):242-250
The global market for frozen bread dough is rising; however, its quality could deteriorate during extended storage. Our previous study indicated that undesirable changes caused by freezing could be reduced by adding arabinoxylan‐rich fiber sources. The present study investigated the changes in arabinoxylan properties of yeasted dough during frozen storage. Dough samples made from refined, whole, and fiber‐enriched (15% either wheat aleurone or bran) flours were stored at –18°C for nine weeks, and structural properties of arabinoxylan were probed during storage. Water‐extractable arabinoxylan (WEAX) content in dough samples increased by about 19–33% during the first three weeks of storage. Prolonged storage of dough (weeks 6 and 9), however, correlated with a decline in WEAX content. Average molecular weight and intrinsic viscosity of WEAX decreased during storage for all frozen dough samples. Arabinose‐to‐xylose ratios also decreased by 11 and 6% for control and composite dough samples, respectively. There was a significant positive correlation (r = 0.89, P < 0.0001) between WEAX content of dough and bread quality throughout the storage period. The results demonstrated that changes in dough quality during frozen storage were related to changes in the content and structure of WEAX that took place during frozen storage.  相似文献   

17.
A 7:3 (w/w) mixture of wheat fiber (WF) and psyllium husk fiber (PHF) was substituted for 10wt% of flour on a 14% mb, and the protein in the blend was restored to 10.3% by incorporating vital wheat gluten. After adding 0.5% sodium stearoyl 2-lactylate, the blend (100 g) was fortified with a combination of fat-coated ascorbic acid (AsA), proteinencased (PE) β-carotene, and cold-water-dispersible (CWD) all-rac-α-tocopheryl acetate (ToAc) at levels of 72, 5.6, and 115 mg, respectively, of active material. Adding the fiber ingredients to the pup loaf formula increased water absorption 25% and mixing time 50% and imparted stickiness to the dough. The fiber and antioxidant bread showed a 10% reduction in loaf volume and a somewhat inferior crumb grain with an off-color caused by small, black specks on a dark gray background. The crumb of the fiber and antioxidant bread remained much softer than control bread during one to seven days of storage at room temperature. Caramel coloring masked the off-color. AsA was lost significantly faster in the fiber and antioxidant bread than in antioxidant bread; the losses of AsA were 97 and 86%, respectively, after three days at 25°C. Approximately 25% of β-carotene was lost from the fiber and antioxidant bread after three days, and 33% after seven days, but the loss of ToAc was <10%. One serving size (one slice, 28 g) of fiber and antioxidant bread was calculated to provide 2.1 g of dietary fiber, or ~8% of daily value, of which ~30% was soluble. The three-day-old slice also contained vitamin E and vitamin A (as β-carotene) at 120–150% and 12–15%, respectively, of the adult recommended daily allowances, but with 16% fewer calories than white pan bread.  相似文献   

18.
This research studied developing quick cooking brown rice by investigating the effect of ultrasonic treatment at different temperatures on cooking time and quality. The medium grain brown rice was ultrasonically treated in water at temperatures of 25, 40, and 55°C for 30 min and then dried by air at 25°C to its initial moisture content (11.0 ± 0.6%, wb) before cooking. The microstructure of rice kernel surface, chemical composition, and optimal cooking time of treated brown rice were determined. The pasting and thermal properties and chemical structure of flour and starch from treated brown rice were also examined. The results showed that the optimal cooking times were 37, 35, and 33 min after treatment at 25, 40, and 55°C, respectively, compared to the control of 39.6 min. The ultrasonic treatment resulted in a loss in natural morphology of rice bran, allowing water to be absorbed by a rice kernel easily, particularly at high‐temperature treatment. Even through rice flour still maintained an A‐pattern in the pasting properties, the crystallinity significantly increased after treatment at 55°C. Ultrasonic treatment increased the peak, hold, and final viscosities and decreased the onset temperature (To) and peak temperature (Tp), significantly. Thus, ultrasonic treatment could be used for reducing cooking time of brown rice.  相似文献   

19.
The application of the cold‐ethanol laboratory fractionation method to the bulk separation of wheat starch and gluten is accompanied by incidental dissolution, removal, or redeposition of a small part of the functional gliadin protein. The new distribution resulting from process incidental redeposition of soluble components or by purposeful add‐back of soluble and leached components can lead to differences in functionality and more difficult recovery of native properties. To assess this issue, we exposed several wheat flour types to ethanol and water (50–90% v/v) solutions, water, and absolute ethanol at 22°C and –12°C. The exposure was mass conserving (leached components returned to substrate by evaporation of the solvent without separation of phases) or mass depleting (leached components not returned to substrate). The result of the mass‐conserving contact would be flour with altered protein distributions and intermolecular interactions. The result of the mass‐depleting contact would also include altered protein content. Furthermore, the mass‐conserving contact would model an industrial outcome for a cold‐ethanol process in which leached components would be added back from an alcohol solution. The leaching result was monitored by mixography of the flour, nitrogen analysis, and capillary zone electrophoresis of extracts. Although dough rheology was generally like that of the source flour, there were notable differences. The primary change for mass‐conserving contact was an increase in the time to peak resistance and a decrease in the rate of loss of dough resistance following peak resistance. These changes were in direct proportion to the amount of protein mobilized by the solvent. Leaching at 22°C, prevented dough formation for most aqueous ethanol concentrations and greatly reduced gliadin protein content. Minimal changes were noted for solvent contact at –12°C regardless of the ethanol concentration. The data suggested that 1) the conditions applied in cold‐ethanol enrichment of protein from wheat will generally preserve vital wheat gluten functionality, 2) functionality losses can be recovered by returning the solubilized fractions, and 3) the flour to which the gluten is added may require more mixing.  相似文献   

20.
《Cereal Chemistry》2017,94(2):185-189
Bread flour was replaced with 5, 10, 15, 20, or 25% phosphorylated cross‐linked RS4 resistant wheat starch and augmented with vital wheat gluten to maintain original flour protein content. Effect on dough and bread characteristics, total dietary fiber content, and consumer acceptability were evaluated. Mixograph water absorption was not affected by addition of 5, 10, and 15% RS4; however, a significant 2% increase in absorption occurred with 20 and 25% RS4 addition. Mixograph mix time was increased by 15 s with the addition of 5, 10, and 15% RS4, by 30 s with 20% added RS4, and by 45 s with 25% added RS4. There was not a difference in farinograph absorption of doughs containing all levels of added RS4. Farinograph mixing time increased as addition level increased up to 15% and then decreased at higher addition levels. In general, dough strength and extensibility were not affected by RS4 addition. Levels of added RS4 up to 20% did not affect bread volume. Loaves with 15, 20, and 25% added RS4 contained sufficient fiber to meet the “good source of fiber” claim. A consumer sensory panel reported no difference in liking of flavor, texture, or overall liking of bread containing 15, 20, and 25% RS4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号