首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Active fractions of soil carbon (C) and nitrogen (N) can undergo seasonal changes due to environmental and cultural factors, thereby influencing plant N availability and soil organic matter (SOM) conservation. Our objective was to determine the effect of tillage (conventional and none) on the seasonal dynamics of potential C and N mineralization, soil microbial biomass C (SMBC), specific respiratory activity of SMBC(SRAC), and inorganic soil N in a sorghum [Sorghum bicolor (L.) Moench]-wheat (Triticum aestivum L.)/soybean [Glycine max (L.) Merr.] rotation and in a wheat/soybean double crop. A Weswood silty clay loam (fine, mixed, thermic Fluventic Ustochrept) in southcentral Texas was sampled to 200 mm depth 57 times during a 2-yr period. Potential C mineralization was lowest (≈?2 to 3 g · m?2 · d?1) midway during the sorghum and soybean growing seasons and highest (≈?3 to 4 g · m?2 · d?1) at the end of the wheat growing season and following harvest of all crops. Addition of crop residues increased SMBC for one to three months. Potential N mineralization was coupled with potential C mineralization, SRAC, and changes in SMBC at most times, except during the wheat growing season and shortly after sorghum and soybean residue addition when increased N immobilization was probably caused by rhizodeposition and residues with low N concentration. Seasonal variation of inorganic soil N was 19 to 27%, of potential C and N mineralization and SRAC was 8 to 23%, and of SMBC was 7 to 10%. Soil under conventional tillage experienced greater seasonal variation in potential C and N mineralization, SRAC, bulk density, and water-filled pore space than under no tillage. High residue input with intensive cropping and surface placement of residues were necessary to increase the long-term level of active C and N properties of this thermic-region soil due to rapid turnover of C input.  相似文献   

2.
Purpose: Role of no-tillage (NT) in soil conservation has been already established but its influence on soil organic carbon (SOC) is still under debate.

Materials and methods: Three paired sites, with NT and chisel-plow (CT) fields adjacent to each other were selected for this study. Fields were under the same tillage practices for more than 20 years. Fields were sampled up to 90?cm depth to determine SOC and different C pools based on soil CO2 flux during 86?d of incubation.

Results and conclusion: Significant differences in SOC and its pools were limited within the surface 0–15?cm depth only. Profile SOC did not vary between NT and CT. Tillage had a significant influence on soil C pools but the effect was not consistent across sites.  相似文献   

3.
Agricultural management practices are known to influence soil organic C. While changes in total organic C (TOC) are relatively less discernible over short to medium-term, some extractable pools of TOC are considered early indicators of changes in TOC. Therefore, to devise nutrient management practices that can lead to C sequestration, it is important to study their effect on soil organic C pools that may respond rapidly to management. We studied the impact of balanced (NPK) and imbalanced (N, NP, NK and PK) application of fertilizer nutrients without and with farmyard manure (FYM) on total and labile pools of organic C viz. water soluble (WEOC), potassium permanganate oxidizable (KMnO4-C), microbial biomass (MBC) and fractions of decreasing oxidizability after 5-cycles of rice-wheat cropping. Integrated use of NPK and FYM significantly increased TOC and extractable C pools in both surface (0–7.5 cm) and sub-surface (7.5–15 cm) soil. Majority of TOC (72%) was stabilized in less labile and recalcitrant fractions; the magnitude being higher under balanced (NPK+FYM) than imbalanced nutrient management (N+FYM). The results showed that balanced fertilizer application conjointly with FYM besides enlarging TOC pool favorably impacts soil organic matter composition under rice-wheat system.  相似文献   

4.
Conservation management systems can improve soil organic matter stocks and contribute to atmospheric C mitigation. This study was carried out in a 18-year long-term experiment conducted on a subtropical Acrisol in Southern Brazil to assess the potential of tillage systems [conventional tillage (CT) and no-till (NT)], cropping systems [oat/maize (O/M), vetch/maize (V/M) and oat + vetch/maize + cowpea (OV/MC)] and N fertilization [0 kg N ha−1 year−1 (0 N) and 180 kg N ha−1 year−1 (180 N)] for mitigating atmospheric C. For that, the soil organic carbon (SOC) accumulation and the C equivalent (CE) costs of the investigated management systems were taken into account in comparison to the CT O/M 0 N used as reference system. No-till is known to produce a less oxidative environment than CT and resulted in SOC accumulation, mainly in the 0–5 cm soil layer, at rates related to the addition of crop residues, which were increased by legume cover crops and N fertilization. Considering the reference treatment, the SOC accumulation rates in the 0–20 cm layer varied from 0.09 to 0.34 Mg ha−1 year−1 in CT and from 0.19 to 0.65 Mg ha−1 year−1 in NT. However, the SOC accumulation rates peaked during the first years (5th to 9th) after the adoption of the management practices and decreased exponentially over time, indicating that conservation soil management was a short-term strategy for atmospheric C mitigation. On the other hand, when the CE costs of tillage operations were taken into account, the benefits of NT to C mitigation compared to CT were enhanced. When CE costs related to N-based fertilizers were taken into account, the increases in SOC accumulation due to N did not necessarily improve atmospheric C mitigation, although this does not diminish the agricultural and economic importance of inorganic N fertilization.  相似文献   

5.
土壤有机质因组成和稳定机制等差异,具有很大的分解异质性,研究其分组特征,对于了解土壤有机质的质量具有十分重要的意义。本文利用物理分组法,对于土壤有机质组分性质影响少的优点,比较了长期不同施肥黑土不同组分碳氮库的数量变化。结果发现,23年后化肥(NPK)处理和化肥配施秸秆(NPKS)处理土壤有机碳、全氮含量波动不大。化肥配施有机肥(NPKM)处理土壤有机碳、全氮含量显著增加(P0.01)。进一步碳氮分组发现,有机无机配施(NPKS和NPKM)显著降低了有机质与矿质结合组分(150μm MF)的含量;NPKM处理显著增加了黑土粗有机质组分(150μm MOM)的比例。将大于150μm组分中有机质与矿质结合部分去除作为易分解库,剩余组分作为耐分解库,比较3种处理发现,与NPK处理相比,NPKS和NPKM处理易分解有机碳比例增加0.9和5.9个百分点;耐分解有机碳比例分别为下降14.2和18.8个百分点。易分解有机氮比例增加1.8和9.9个百分点;耐分解有机氮下降2.7和5.3个百分点。上述研究表明,NPKS和NPKM可以改善黑土土壤有机氮和土壤有机碳的数量和品质,且NPKM的效果显著优于NPKS处理。  相似文献   

6.
Journal of Soils and Sediments - Deforestation is one of the ecosystem disservices associated with accelerated loss of soil organic carbon (SOC) and nitrogen (TN). The objective of our study was to...  相似文献   

7.
8.
With increasing food demand worldwide, agriculture in semiarid and arid regions becomes increasingly important, though knowledge about organic matter (OM) conserving management systems is scarce. This study aimed at examining organic C (OC) and nitrogen (N) concentrations in various soil OM pools affected by 26-years application of chemical fertilizer and farmyard manure at an arid site of Gansu Province, China. Macro OM (>0.05 mm) was extracted by wet sieving and then separated into light macro OM (<1.8 g cm−3) and heavy macro OM (>1.8 g cm−3) sub-fractions; bulk soil was differentiated into free particulate OM (FPOM, <1.6 g cm−3), occluded particulate OM (OPOM, 1.6-1.8 g cm−3) and mineral-associated OM (>1.8 g cm−3). OC and N concentrations of heavy macro OM and FPOM were slightly affected by long-term N fertilization alone and its combination with P and K, but their magnitudes of change had not significantly contributed to total soil OC and N concentrations. Farmyard manure increased light macro OC and N by 58 and 70%, heavy macro OC and N by 86 and 117%, free particulate OC and N by 29 and 55%, occluded particulate OC and N by 29 and 55%, and mineral-associated OC and N by 44 and 48%, respectively, compared to nil-manure. Mineral fertilization improved soil OM quality by decreasing C/N ratio in the light macro OM and FPOM fractions where farmyard manure was absent. Organic manure led to a decline of the C/N ratio in all physically-separated OM fractions possibly due to the increased input of processed organic materials. We found about two thirds of macro OM was actually located within 2-0.05 mm organo-mineral associations or/and aggregates. In conclusion, this study stresses the vital importance to apply organic manure to the wheat-corn production system characterized by straw removal and conventional tillage in the region.  相似文献   

9.
Based on data from 10-year field experiments on residue/fertilizer management in the dryland farming region of northern China, Century model was used to simulate the site-specific ecosystem dynamics through adjustment of the model's parameters, and the applicability of the model to propose soil organic carbon (SOC) management temporally and spatially, in cases such as of tillage/residue/fertilization management options, was identified v/a scenario analysis.Results between simulations and actual measurements were in close agreement when appropriate applications of stover,manure and inorganic fertilizer were combined. Simulations of extreme C/N ratios with added organic materials tended to underestimate the measured effects. Scenarios of changed tillage methods, residue practices and fertilization options showed potential to maintain and enhance SOC in the long run, while increasing inorganic N slowed down the SOC turnover rate but did not create a net C sink without any organic C input. The Century model simulation showed a good relationship between annual C inputs to the soil and the rate of C sequestration in the top 20 cm layer and provided quantitative estimations of changes in parameters crucial for sustainable land use and management. Conservation tillage practices for sustainable land use should be integrated with residue management and appreciable organic and inorganic fertilizer application, adapted according to the local residue resource, soil fertility and production conditions. At least 50% residue return into the soil was needed annually for maintenance of SOC balance, and manure amendment was important for enhancement of SOC in small crop-livestock systems in which crop residue land application was limited.  相似文献   

10.
Abstract. The effects of nitrogen fertilizer and tillage systems on soil organic carbon (SOC) storage have been tested in many field experiments worldwide. The published results of this research are here compiled for evaluation of the impact of management practices on carbon sequestration. Paired data from 137 sites with varying nitrogen rates and 161 sites with contrasting tillage systems were included. Nitrogen fertilizer increased SOC but only when crop residues were returned to the soil; a multiple regression model accounted for just over half the variance (R2=0.56, P=0.001). The model included as independent variables: cumulative nitrogen fertilizer rate; rainfall; temperature; soil texture; and a cropping intensity index, calculated as a combination of the number of crops per year and percentage of corn in the rotation. Carbon sequestration increased as more nitrogen was applied to the system, and as rainfall or cropping intensity increased. At sites with higher mean temperatures and also in fine textured soils, carbon sequestration decreased. When the carbon costs of production, transportation and application of fertilizer are subtracted from the carbon sequestration predicted by the model, it appears that nitrogen fertilizer‐use in tropical regions results in no additional carbon sequestration, whereas in temperate climates, it appears to promote net carbon sequestration. No differences in SOC were found between reduced till (chisel, disc, and sweep till) and no‐till, whereas conventional tillage (mouldboard plough, disc plough) was associated with less SOC. The accumulation of SOC under conservation tillage (reduced and no till) was an S ‐shape time dependent process, which reached a steady state after 25–30 years, but this relationship only accounted for 26% of the variance. Averaging out SOC differences in all the experiments under conservation tillage, there was an increase of 2.1 t C ha?1 over ploughing. However, when only those cases that had apparently reached equilibrium were included (all no till vs. conventional tillage comparisons from temperate regions), mean SOC increased by approximately 12 t C ha?1. This estimate is larger than others previously reported. Carbon sequestration under conservation tillage was not significantly related to climate, soil texture or rotation.  相似文献   

11.
《Applied soil ecology》2006,31(1-2):32-42
Microcosm and litterbag experiments were conducted to determine the effects of litter quality, soil properties and microclimate differences on soil carbon (C) and nitrogen (N) mineralization in alley cropping systems. Bulk soils were collected from 0 to 20 cm depth at three sites: a 21-year old pecan (Carya illinoinensis)/bluegrass (Poa trivialis) intercrop (Pecan site) in north-central Missouri, a 12-year old silver maple (Acer saccharinum)/soybean (Glycine max)–maize (Zea mays) rotation (Maple site) in northeastern Missouri and a restored prairie site (MDC site) in southwestern Missouri. Seven tree and crop litters with varying composition were collected, including pecan, silver maple, chestnut and walnut leaf litter (tree litter) and maize, soybean and bluegrass residues (crop litter). Aerobic microcosm incubations were maintained at 25 °C and a soil water potential of −47 kPa. Unamended MDC soil mineralized 24 and 18% more CO2 than the Pecan and Maple soils, respectively. Soil amended with crop litter mineralized on average 32% more CO2 than when amended with tree litter. Net N mineralization from soybean litter was 40 mg kg−1, while all other litter immobilized N for various durations. A double pool and a single pool model best described C and N mineralization from amended soils, respectively. Cumulative CO2 mineralized, labile C fraction (C1) and potentially mineralizable C (C0) were correlated to litter total N and lignin contents and to (lignin + polyphenol):N ratio. In the field, bluegrass litter decomposed and released N twice as fast as pecan leaf litter. Soybean, maize and silver maple litter released 84, 75 and 63% of initial N, respectively, 308 days after field placement, while no differences in mass loss was observed among the three litter materials. At the Maple site, mass and N remaining, 308 days after field placement was lower at the middle of the alley, corresponding to higher soil temperature and water content. No differences in mass loss and N release patterns were observed at the Pecan site. Microclimate and litter quality effects can lead to differences in nutrient availability in alley cropping systems.  相似文献   

12.
【目的】探讨东北黑土区长期有机培肥对土壤有机碳、全氮含量及产量稳定性的影响,为优化黑土培肥技术及玉米稳产高效提供指导。【方法】以38年长期定位试验为研究平台,选择6个施肥处理:不施肥 (CK),氮磷钾配施 (N 150 kg/hm2、P2O5 75 kg/hm2、K2O 75 kg/hm2,NPK),常量有机肥 (有机肥30 t/hm2,折纯N 150 kg/hm2、P2O5 135 kg/hm2、K2O 45 kg/hm2,M2),常量有机肥配施氮磷钾肥 (M2NPK),高量有机肥 (有机肥60 t/hm2,M4),高量有机肥配施氮磷钾肥 (M4NPK)。测定耕层土壤有机碳、全氮含量及玉米籽粒产量。【结果】玉米籽粒产量以M4NPK处理最高,平均产量为9637 kg/hm2,其次是M2NPK处理,平均产量为9422 kg/hm2,CK处理产量最低,平均产量为3551 kg/hm2,且显著低于其他各处理。前10年试验施用有机肥可显著提升土壤基础地力,降低玉米籽粒产量对化肥的依赖,M2与M4处理的籽粒产量与NPK处理均无显著差异。之后至2017年,单施有机肥处理玉米产量较NPK处理平均提高3.8%。拟合方程表明,地力产量每增加1000 kg/hm2,肥料贡献率降低9.2%~12.2%。在培肥30年后,肥料对籽粒产量贡献率开始下降。有机无机配施处理下,玉米产量变异系数较低,平均为19.3%,产量可持续性指数SYI为0.58,达到稳定水平。土壤有机碳含量随施肥年限在不同施肥处理间差异逐步变大,且在10年后出现显著差异,增施有机肥后,土壤有机碳显著增加,以M4NPK和M4处理最高;土壤全氮与土壤有机碳呈显著正相关 (r = 0.826**),土壤有机碳每升高1 g/kg,土壤全氮含量增加0.086 g/kg。施用有机肥,玉米籽粒产量与土壤有机碳、土壤全氮含量显著正相关,表明长期有机培肥对实现玉米高产稳产具有重要贡献。【结论】在供试黑土条件下,单施有机肥在一段时间内主要提高土壤有机碳含量,有机碳达到一定水平后才可以提高产量。有机肥配合氮磷钾化肥可以快速有效提高土壤有机碳和全氮含量,提高玉米产量。本试验条件下,有机无机配合施用的土壤有机碳年增加量为0.35~0.47 g/kg,全氮含量增加46.3%~84.2%,玉米产量稳定系数 (SYI = 0.58) 达到较高水平。土壤基础地力的提高可减少玉米产量对外源肥料的依赖,地力产量每增加1000 kg/hm2,肥料贡献率降低9.2%~12.2%。因此,有机肥配施化肥是黑土区保证玉米稳产高产、不断提升土壤肥力、保障黑土资源可持续利用的重要措施。  相似文献   

13.
Maintaining soil organic carbon (SOC) in arid ecosystem is important for soil productivity and restoration of deserted sandy soil in western plain of India. There is a need to understand how the cropping systems changes may alter SOC pools including total organic carbon (TOC), particulate organic C (POC), water soluble carbon (WSC), very labile C (VLC), labile C (LC), less labile C (LLC) and non-labile C (NLC) in arid climate. We selected seven major agricultural systems for this study viz., barren, fallow, barley–fallow, mustard–moth bean, chickpea–groundnut, wheat–green gram and wheat–pearl millet. Result revealed that conversion of sandy barren lands to agricultural systems significantly increased available nutrients and SOC pools. Among all studied cropping systems, the highest values of TOC (6.12 g kg?1), POC (1.53 g kg?1) and WSC (0.19 g kg?1) were maintained in pearl millet–wheat system, while the lowest values of carbon pools observed in fallow and barren land. Strong relationships (P < 0.05) were exhibited between VLC and LC with available nutrients. The highest carbon management index (299) indicates that wheat–pearl millet system has greater soil quality for enhancing crop productivity, nutrient availability and carbon sequestration of arid soil.  相似文献   

14.
The long-term effects of cropping systems and management practices on soil properties provide essential information for assessing sustainability and environmental impact. Field experiments were undertaken in southern Spain to evaluate the long-term effects of tillage, crop rotation and nitrogen (N) fertilization on the organic matter (OM) and mineral nitrogen (Nmin) contents of soil in a rain-fed Mediterranean agricultural system over a 6-year period. Tillage treatments included no tillage (NT) and conventional tillage (CT), crop rotations were of 2 yr with wheat (Triticum aestivum L.)-sunflower (Helianthus annuus L.) (WS), wheat-chickpea (Cicer arietinum L.) (WP), wheat-faba bean (Vicia faba L.) (WB), wheat-fallow (WF), and in addition, continuous wheat (CW). Nitrogen fertilizer rates were 50, 100, and 150 kg N ha−1. A split-split plot design with four replications was used. Soil samples were collected from a depth of 90 cm at the beginning of the experiment and 6 yr later. Soil samples were also collected from a depth of 30 cm after 4 yr. These samples, like those obtained at the beginning of the experiment, were subjected to comprehensive physico-chemical analyses. The soil samples that were collected 6 yr later were analyzed for OM, NH4+---N and NO3---N at the 0–30, 30–60 and 60–90 cm soil depths. The tillage method did not influence the OM or Nmin contents of the soil, nor did legume rotations increase the OM content of soil relative to CW. A longer period may have been required for differences between treatments to be observed owing to the small amount of crop residue that is returned to soil under rain-fed conditions of semi-arid climates. The WF rotation did not raise the Nmin content of the soil relative to the other rotations. The consistent significant interaction between tillage and crop rotation testifies to the differential effect of the management system on the OM content and N status of the soil. The ammonium levels clearly exceeded those of NO3---N throughout the soil profile. The high Nmin content of the soils reveals the presence of abundant N resources that should be borne in mind in establishing N fertilization schemes for crops under highly variable climatic conditions including scant rainfall such as those of the Mediterranean region.  相似文献   

15.
A field study was conducted to assess the long-term effects of no-tillage (NT) and conventional tillage (CT), and the short-term effects following tillage conversion from CT to NT (NTn) and from NT to CT (CTn) on soil quality (SQ) indicators in a semi-humid climate. First, plots of a long-term tillage experiment on a Luvic Phaeozem initiated in 1986 were split into two subplots in 2012, yielding four treatments: NT, CT, NTn and CTn. In 2015, composite soil samples were collected from each treatment and from a natural site (Ref) at depths 0–5, 5–10, 10–20 and 0–20 cm. Several indicators were determined: soil organic carbon (SOC) and nitrogen (SON); particulate organic C (POM-C) and N (POM-N); potential N mineralization (PMN) and soil respiration (Rs). Moreover, bulk density was determined in long-term tillage systems. Different ratios between indicators were calculated, with emphasis on its function in the agroecosystem, that is functional indicators. Significant differences in SOC, SON and PMN were found between CT and NT at most depths. In contrast, 3 years after tillage conversion, only a part of the SQ indicators studied were modified mainly at the 0–10 cm depth. The functional indicators showed differences between tillage systems in the long-term and after short-term tillage conversion depending on the depth; however, the PMN/SON ratio demonstrated differences at all depths. Under these conditions, this ratio-related to easily mineralizable N fraction proved to be a promising indicator for assessing SQ under contrasting tillage systems regardless of the sampling depth.  相似文献   

16.
 Studies were conducted to evaluate the relationships among different active N pools of organic matter in soils at two long-term cropping systems in Iowa. Results indicated that multi-cropping systems, particularly meadow-based systems, enhanced bioactivities of soils. Mono-cropping systems, particularly soybean, reduced soil microbial biomass and enzyme activities. The mineralizable N pool (potential N mineralization;N o) was more sensitive to changes in the size of the microbial biomass N (Nmic) than to changes in organic N. One unit change in organic N did not lead to substantial changes in N o, but 1 unit change in Nmic resulted in three or more units change in N o. The active N pools and turnover rate were more sensitive to changes in organic C than to changes in microbial biomass C (Cmic). A unit change in organic C resulted in 10.6 units change in N o, but a unit change in Cmic resulted in only 0.8 unit change in N o. Cmic or Nmic are better indexes than organic C or N for the estimation of N o or N availability, because biomass values are more highly correlated with cumulative N mineralized during 24 weeks of incubation, with r values ranging from 0.57 (P<0.001) to 0.88 (P<0.001). Received: 18 October 1999  相似文献   

17.
Long-term effect of mungbean inclusion in lowland rice-wheat and upland maize-wheat systems on soil carbon (C) pools, particulate organic C (POC), and C-stabilization was envisaged in organic, inorganic and without nutrient management practices. In both lowland and upland systems, mungbean inclusion increased very-labile C (Cfrac1) and labile C (Cfrac2) in surface soil (0–0.2 m). Mungbean inclusion in cereal-cereal cropping systems improved POC, being higher in lowland (107.4%). Lowland rice-based system had higher passive C-pool (11.1 Mg C ha?1) over upland maize-based system (6.6 Mg C ha?1) indicating that rice ecology facilitates the stabilization of passive C-pool, which has longer persistence in soil. Organic nutrient management (farmyard manure + full crop residue + biofertilizers) increased Cfrac1 and carbon management index (CMI) over inorganic treatment. In surface soil, higher CMI values were evident in mungbean included cropping systems in both lowland and upland conditions. Mungbean inclusion increased grain yield of cereal crops, and yield improvement followed the order of maize (23.7–31.3%) > rice (16.9–27.0%) > wheat (lowland 7.0–10.7%; upland 5.4–16.6%). Thus, the inclusion of summer mungbean in cereal-cereal cropping systems could be a long-term strategy to enrich soil organic C and to ensure sustainability of cereal-cereal cropping systems.  相似文献   

18.
长期施用有机肥对稻麦轮作体系土壤有机碳氮组分的影响   总被引:4,自引:1,他引:4  
【目的】 以湖北武汉地区长期稻麦轮作制度下施肥试验地作为研究对象,研究了长期不同施肥处理对耕层土壤有机碳、全氮及活性碳氮组分的影响,为优化稻麦轮作体系下施肥措施,实现土壤固碳减排,培肥土壤提供理论依据。 【方法】 长期施肥试验开始于1981年,试验处理包括不施肥 (CK)、施化学氮肥 (N)、施化学氮磷肥 (NP)、施化学氮磷钾肥 (NPK)、单施有机肥 (M) 及有机无机肥配施处理 (NPKM)。收集2017年小麦收获后耕层 (0—20 cm) 土壤,测定各小区土壤中的有机碳 (SOC)、全氮 (TN)、微生物量碳氮 (MBC、MBN)、水溶性碳 (DOC)、热水溶性有机碳 (HWSC)、颗粒有机碳氮 (POC和PON)、轻组有机碳氮 (LFOC和LFON) 及氯化钾浸提氮 (KEN,即水溶性无机氮) 的含量并分析各指标间的关系。 【结果】 1) 除KEN外,长期施用有机肥显著增加耕层土壤的各碳氮组分含量,特别是有机无机肥配施处理。2) 各活性有机碳组分占SOC的百分比由高到低排序为POC > LFOC > HWSC > MBC > DOC,各氮组分占TN的百分比由高到低排序为PON > LFON > MBN > KEN,其中POC占SOC的24.04%~37.64%,PON占TN的12.09%~20.24%,且有机肥处理下POC/SOC、PON/TN显著高于其余处理。3) 通过对土壤有机碳及各活性有机碳的对施肥的敏感性分析可得,各活性碳敏感性指数均显著高于SOC,且DOC的敏感性最高。4) 通过各组分间相关性分析可知,除KEN外,各碳、氮组分间显著正相关,其中DOC与SOC、PON与TN关系更为紧密,表明DOC及PON可较好地反应出SOC、TN的变化情况。 【结论】 在湖北稻麦轮作地区,长期有机无机肥配施处理显著增加了土壤碳库及氮库,促进了土壤碳、氮的积累,尤其是颗粒有机碳和有机氮 (POC和PON)。水溶性碳 (DOC) 对施肥反应最为敏感,可作为指示该地区有机物早期变化的指示物。   相似文献   

19.
长期施肥对红壤不同有机碳库及其周转速率的影响   总被引:8,自引:1,他引:8  
通过土壤有机质物理分组和室内培养的方法,研究了长期定位施肥对红壤不同有机碳库及其周转速率的影响。结果表明:平衡施肥(NPK、2NPK)和施用有机肥(OM、NPKOM)显著提高玉米产量,降低产量年际变异系数,同时也显著提高了土壤有机碳(SOC)和活性有机碳(LOC)的含量。根据有机碳物理分组方法,将SOC分成五部分,其中,与矿物结合的有机碳占绝对优势,微团聚体中的粉黏粒(s+c_mM)和大团聚体中的粉黏粒(s+c_M)分别占SOC的31%~53%和28%~38%,其次为微团聚体间的细颗粒有机质(fPOM)和微团聚体中的细颗粒有机质(iPOM_mM),分别占8%~15%和7%~21%,粗颗粒有机质(cPOM)仅占5%~12%。施有机肥(OM、NPKOM)显著提高了颗粒有机碳组分,包括cPOM、fPOM和iPOM_mM组分碳的数量,但是对矿物结合态碳(s+c_M、s+c_mM)影响不明显。施无机肥对有机碳库组成(除s+c_mM外)影响不显著。在有机肥处理中(OM、NPKOM)土壤有机碳周转速率最快,相应的半衰期最短,是CK处理的0.47倍~0.70倍,是无机肥处理的0.11倍~0.95倍。原土有机碳周转时间与LOC/SOC呈显著正相关(r=0.66*)。研究表明平衡施肥和有机肥能提高土壤地力,同时还有利于土壤有机碳的积累。  相似文献   

20.
Soil is a potential C sink and could offset rising atmospheric CO2. The capacity of soils to store and sequester C will depend on the rate of C inputs from plant productivity relative to C exports controlled by microbial decomposition. Management practices, such as no-tillage and high intensity cropping sequences, have the potential to enhance C and N sequestration in agricultural soils. An investigation was carried out to study the influence of long-term applications of fertilizers and manures on different organic C fractions in a Typic Haplustept under intensive sequence of cropping with maize–wheat–cowpea in a semi-arid sub-tropic of India. In 0–15 cm, the bulk density was lowest (1.52 Mg m−3) in plots treated with 100% NPK + FYM, while the control treatment showed the highest value (1.67 Mg m−3). Balanced application of NPK (100% NPK) showed significantly lower bulk density (1.56 Mg m−3) over either 100% N (1.67 Mg m−3) or 100% NP (1.61 Mg m−3) in surface soils. The application of super-optimal dose of NPK (150% NPK) showed higher total organic C (TOC) (12.9 g C kg−1) over either 50% NPK (9.3 g C kg−1) or 100% NPK (10.0 g C kg−1) in 0–15 cm soil layer. There was an improvement in TOC in 100% NPK or 100% NP (9.3 g C kg−1) over 100% N (8.7 g C kg−1) in the same depth. The application of FYM with 100% NPK showed 15.2, 9.9 and 5.2 g C kg−1 in 0–15, 15–30 and 30–45 cm, respectively. Application of graded doses of NPK from 50 to 150% of recommendation NPK significantly enhanced other organic C fractions like, microbial biomass C (MBC), particulate organic C (POC) and KMnO4 oxidizable C (KMnO4–C) in all the three soil depths. The TOC in 0–45 cm soil depth in 150% NPK (63.5 Mg C ha−1) was increased by 39% over that in 50% NPK treatment (51.5 Mg C ha−1) and 29% over that in 100% NPK treatment (54.1 Mg C ha−1). Integrated use of farmyard manure with 100% NPK (100% NPK + FYM) emerged as the most efficient management system in accumulating largest amount of organic C (72.1 Mg C ha−1) in soil. Nevertheless, this treatment also sequestered highest amount of organic C (731 kg C ha−1 year−1). Particulate organic carbon, a physically protected carbon pool in soil, could well be protected in sub-surface soil layers than in surface soil layer as a means of carbon aggradations. Microbial metabolic quotient (qCO2) was significantly lower in 100% NPK + FYM over other treatments to indicate this to be the most efficient manuring practice to preserve organic carbon in soil where it facilitates aggradations of more recalcitrant organic C in soil. As compared to POC, total TOC proved to be a better predictor of MBC as it strongly correlated with total carbon mineralized from soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号