首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 0 毫秒
1.
The molecular structure and some physicochemical properties of starches from two high‐amylose cultivars of barley, high‐amylose Glacier A (HAG‐A) and N (HAG‐N), were examined and compared with those of a normal cultivar, Normal Glacier (NG). The true amylose contents of HAG‐A, HAG‐N, and NG were 41.0, 33.4, and 23.0%, respectively. Iodine affinities before and after defatting of starch, and thermograms of differential scanning calorimetry, indicated that HAG‐A and HAG‐N starches had a higher proportion of amylose‐lipid complex than did NG starch. The amylopectins from HAG‐A and HAG‐N were similar to NG amylopectin in average chain length (18–19), β‐amylolysis limit (β‐AL 56–57%), number‐average degrees of polymerization (DPn 6,000–7,500) and chain length distribution. Very long chains (1–2%) were found in amylopectins from all cultivars. HAG‐A amylopectin had a larger amount of phosphorus (214 ppm) than the others. The amyloses from HAG‐A and HAG‐N resembled NG amylose in DPn (950–1,080) and β‐AL (70–74%). However, HAG‐A and HAG‐N had a larger number of chains per molecule (NC 2.4–2.7) than NG amylose (1.8) and contained the branched amylose with a higher NC (9.5–10.6) than that of NG amylose (5.8), although molar fractions of the branched amylose (15–20%) were similar.  相似文献   

2.
《Cereal Chemistry》2017,94(3):524-531
The aim of this study was to characterize the physicochemical, functional, and digestion properties of bagasses derived from broad beans, chickpeas, lentils, and white beans, and to isolate the starch and a fiber‐rich fraction that can be used as a food ingredient. The bagasses showed different chemical compositions that were related to their botanical origin. The further processing that involved mechanical separation of starch yielded up to 69.65% with ≥80.12% recovery and high purity (≥94.42%), and a fiber‐rich fraction (total dietary fiber content ≥72.75%) in which the majority was insoluble fiber. The starch digestion fractions of the isolated lentil starch showed the highest amount of slowly digestible starch (30.76%), whereas the white bean contained the highest resistant starch content (15.65%). All starches showed predicted glycemic indexes ≤ 66.90, which classify them as medium glycemic foods. In vitro protein digestion was higher for the bagasse fraction (up to 89.78%), followed by the fiber‐rich fraction (84.36%). This research demonstrates that it is possible to revalorize the use of pulses bagasse, which could contribute to enhance the technological and economic output of the protein isolation process, rendering two potentially functional fractions.  相似文献   

3.
用过碳酰胺溶液(与尿素溶液作对照)对中国南方3种酸性土壤和中国北方3种碱性土壤进行室内土培试验,研究氮肥施用对土壤pH和5种交换态金属(Mn、Cu、Zn、Ca、Mg)离子含量的影响。结果表明:酸性土壤pH在短期内随过碳酰胺浓度增大而急剧上升,碱性土壤pH则随过碳酰胺浓度增加呈先增加再减少然后又增加,且其变化幅度小于酸性土壤;动态试验表明,pH上升的现象是短期的,6种土壤pH达到最大值后缓慢下降,9d后3种碱性土壤的pH均降到比原来更低的程度。酸性土壤中交换性Mn、Cu、Zn的整体变化趋势表现为随过碳酰胺施用时间延长呈先降低再逐步上升,与土壤pH呈负相关;而碱性土壤中交换态Mn、Cu、Zn的含量变化不明显。6种土壤中交换态金属Ca、Mg离子含量的变化与土壤pH变化基本呈正相关。研究表明,与施用普通尿素相比,作为一种新型氮肥,施用过碳酰胺对土壤中金属元素活性不会产生新的负影响。  相似文献   

4.
Several silicon (Si) sources have been reported to be effective in terms of their effectiveness on rice growth and yield. Apart from that, it is crucial to understand the bioavailability of silicon from different silicon sources for adequate plant uptake and its performances in varying types of soils. In this point of view, a pot experiment was conducted to assess the bioavailability of silicon from three Si sources and its effect on yield of rice crop in three contrasting soils. Acidic (pH 5.86), neutral (pH 7.10), and alkaline (pH 9.38) soils collected from different locations in Karnataka were amended with calcium silicate, diatomite, and rice husk biochar (RHB) as Si sources. Silica was applied at 0, 250, and 500 kg Si ha?1, and the pots were maintained under submerged condition. There was a significant increase in the yield parameters such as panicle number pot?1, panicle length pot?1, straw dry weight pot?1, and grain weight pot?1 in acidic and neutral soils with the application of Si over no Si treatment, whereas only straw dry weight pot?1 increased significantly with the application of Si sources over control in alkaline soil. Higher Si content and uptake was noticed in neutral soil followed by acidic and alkaline soils. The bioavailability of Si increased with the application of Si sources but varied based on the types of soil. Application of calcium silicate followed by diatomite performed better in acidic and neutral soils whereas RHB was a better source of Si in alkaline soil. A significant difference in plant-available silicon status of the soil was noticed with the application of Si sources over control in all three studied soils.  相似文献   

5.
Switchgrass (Panicum virgatum L.) is a perennial biofuel crop with a high production potential and suitable for growth on marginal land. This study investigates the long-term planting effect of switchgrass on the dynamics of soil moisture, pH, organic carbon (SOC), total nitrogen (TN), nitrate nitrogen (NO3-N) and ammonium nitrogen (NH4+-N) for soils to a depth of 90-cm in a sandy wasteland, Inner Mongolia, China. After crop harvesting in 2015, soil samples were collected from under switchgrass stands established in 2006, 2008, and 2009, native mixture, and a control that was virgin sand. Averaged across six layers, soil moisture and pH was significantly higher under the native mixture than switchgrass or virgin sand. However, SOC and TN were significantly higher under the 2006 switchgrass stand when compared with all other vegetation treatments and the control. The SOC and TN increased from 2.37 and 0.26 g kg?1, respectively, for 2009 switchgrass stand, and to 3.21 and 0.42 g kg?1, respectively, for 2006 switchgrass stand. Meanwhile, SOC and TN contents were 2.51 and 0.27 g kg?1, respectively, under the native mixture. The soil beneath switchgrass and native mixture showed the highest NO3-N and NH4+-N, respectively. The soil moisture increased with depth while SOC, TN, and NO3-N decreased. An obvious trend of increasing moisture, SOC, TN, and mineral N was observed with increasing switchgrass stand age. Thus, growing switchgrass on sandy soils can enhance SOC and TN, improve the availability of mineral N, and generate more appropriate pH conditions for this energy cropping system.  相似文献   

6.
RS4‐type resistant wheat starch (RWS) and resistant potato starch (RPS) were subjected successively to in vitro digestion with pepsin and pancreatin‐bile, and the indigestible residues (82.1% db and 74.1% db, respectively) were recovered and subsequently fermented by in vitro techniques using fresh human fecal microbiota as inoculum. Scanning electron microscopy of the indigestible residues showed surface erosion on the residual granules. Total gas production during the in vitro fermentation increased almost linearly over time with the two resistant starches exhibiting similar gas production rates, as well as a similar rate of production of total short‐chain fatty acids (SCFA). The indigestible fractions from both starches produced acetate as the major SCFA and relatively higher levels of butyrate than propionate, but wheat starch tended to produce more butyrate over time than potato starch. Fractional molar ratios of acetate, propionate, and butyrate from the RWS and RPS were 0.586:0.186:0.228 and 0.577:0.200:0.223, respectively. The calculated caloric contributions of the RWS and RPS are ≈33% lower than for unmodified starch and are comparable to those reported in the literature for RS2 and RS3 high‐amylose maize starches.  相似文献   

7.
对山西省孝义露天煤矿覆土,种植百脉根、苜蓿、柳树—圆柏混交林和油松林土壤的容重、pH值、有机碳、总氮以及土壤呼吸、温度、和水分的季节变化进行了测定,并对土壤呼吸与土壤温度、水分之间的关系进行了模拟分析。结果表明,不同的植被恢复方式对土壤容重、有机碳、碳氮比和土壤呼吸年均值影响较大,而对土壤pH值和总氮未产生显著影响。土壤温度季节变化曲线为单峰,高斯拟合结果为极显著水平相关;土壤水分随季节波动较大;土壤呼吸季节变化近似于单峰曲线,但高斯拟合的相关性并不显著。苜蓿地土壤呼吸与土壤温度单因子的高斯拟合,以及与土壤温度和水分的双因子拟合系数较高,而百脉根和油松林土壤呼吸与土壤水分相关性强。  相似文献   

8.
9.
Muffins containing different amounts and molecular weights (MW) of β‐glucan were evaluated for the effect of β‐glucan on the physical characteristics of the muffins and on in vitro bile acid binding and fermentation with human fecal flora. Wheat flour muffins were prepared with the addition of β‐glucan extracts with high‐, medium‐, or low‐MW. For oat flour muffins, the native oat flour contained high‐MW β‐glucan; the oat flours were treated to create medium‐ and low‐MW β‐glucan within the prepared muffin treatments. For each 60‐g muffin, the amounts of β‐glucan were 0.52, 0.57, and 0.59 g for high‐, medium‐, and low‐MW β‐glucan wheat flour muffins, and 2.38, 2.18, and 2.23 g for high‐, medium‐, and low‐MW β‐glucan oat flour muffins, respectively. The lower the MW of the β‐glucan in muffins, the lower the height and volume of the muffins. The oat flour muffins were less firm and springy than the wheat flour muffins as measured on a texture analyzer; however, MW had no effect on muffin texture. The oat flour muffins bound more bile acid than did the wheat flour muffins. The muffins with high‐MW β‐glucan bound more bile acid than did those with low‐ and medium‐MW β‐glucan. Muffin treatment affected the formation of gas and total short‐chain fatty acids (SCFA) compared with the blank without substrate during in vitro fermentation. There were no differences in pH changes and total gas production among muffin treatments. The high‐MW β‐glucan wheat flour muffins produced greater amounts of SCFA than did the wheat flour muffin without β‐glucan and the oat flour muffins; however, there were no differences in SCFA production among muffins with different MW. In general, the β‐glucan MW affected the physical qualities of muffins and some potential biological functions in humans.  相似文献   

10.
11.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号