共查询到20条相似文献,搜索用时 15 毫秒
1.
Mirela Colleoni‐Sirghie Jean‐Luc Jannink Igor V. Kovalenko Jenni L. Briggs Pamela J. White 《Cereal Chemistry》2004,81(4):434-443
Rheological properties of raw oat flour slurries were determined in experimental high β‐glucan (≤7.8%) and traditional oat lines (4–5% β‐glucan) grown in two consecutive years. Three different media were used to disperse oat flours: deionized water, silver nitrate solution (to inactivate endogenous enzymes), and alkali solution (to solubilize both water‐soluble and water‐insoluble β‐glucans). Significant correlations (P < 0.05) between viscosity of slurries and β‐glucan concentration obtained in either deionized water (r = 0.833), silver nitrate (r = 0.940), or alkali (r = 0.896) solutions showed that β‐glucans were the main contributor to oat extract viscosity. The highest correlation was obtained in silver nitrate solution, suggesting that inactivating endogenous enzymes is important to obtain high correlations. Predictive models of oat β‐glucan concentration based on the viscosity profile were developed using partial least squares (PLS) regression. Prediction of β‐glucan concentration based on viscosity was most effective in the silver nitrate solution (r = 0.949, correlation coefficient of predicted vs. analyzed β‐glucans) and least effective in the alkali solution (r = 0.870). These findings demonstrate that the β‐glucan in oat could be predicted by measuring the viscosity of raw flours in silver nitrate solution, and this method could be used as a screening tool for selective breeding. 相似文献
2.
Susan M. Tosh Yolanda Brummer Thomas M. S. Wolever Peter J. Wood 《Cereal Chemistry》2008,85(2):211-217
Oat bran muffins, containing 4 or 8 g of β‐glucan per two‐muffin serving, were prepared with or without β‐glucanase treatment to produce a range of β‐glucan molecular weights from 130,000 to just over 2 million. Following an overnight fast, the glycemic responses elicited by the untreated and treated muffins was measured in 10 healthy subjects and compared with a control whole wheat muffin. Taken all together, the 4‐g β‐glucan/serving muffins reduced blood glucose peak rise (PBGR) by 15 ± 6% compared with the control. The 8‐g β‐glucan/serving muffins had a significantly greater effect (44 ± 5% reduction compared with the control, P < 0.05). The efficacy of the muffins decreased as the molecular weight was reduced from a 45 ± 6% reduction in PBGR (P < 0.05) for the untreated muffins (averaged of both serving sizes) to 15 ± 6% (P < 0.05) for muffins with the lowest molecular weight. As the molecular weight was reduced from 2,200,000 to 400,000, the solubility of the β‐glucan increased from a mean of 44 to 57%, but as the molecular weight was further decreased to 120,000, solubility fell to 26%. There was a significant correlation (r2 = 0.729, P < 0.001) between the peak blood glucose and the product of the extractable β‐glucan content and the molecular weight of the β‐glucan extracted. 相似文献
3.
Oats, different oat fractions as well as experimental and commercial oat‐based foods, were extracted with hot water containing thermostable α‐amylase. Average molecular weight and molecular weight distributions of β‐glucan in extracts were analyzed with a calibrated high‐performance size‐exclusion chromatography system with Calcofluor detection, specific for the β‐glucan. Oats, rolled oats, oat bran, and oat bran concentrates all had high Calcofluor average molecular weights (206 × 104 to 230 × 104 g/mol) and essentially monomodal distributions. Of the oat‐containing experimental foods, extruded flakes, macaroni, and muffins all had high average molecular weights. Pasteurized apple juice, fresh pasta, and teacake, on the other hand, contained degraded β‐glucan. Calcofluor average molecular weights varied from 24 × 104 to 167 × 104 g/mol in different types of oat bran‐based breads baked with almost the same ingredients. Large particle size of the bran and short fermentation time limited the β‐glucan degradation during baking. The polymodal distributions of β‐glucan in these breads indicated that this degradation was enzymatic in nature. Commercial oat foods also showed large variation in Calcofluor average molecular weight (from 19 × 104 g/mol for pancake batter to 201 × 104 g/mol for porridge). Boiling porridge or frying pancakes did not result in any β‐glucan degradation. These large differences in molecular weight distribution for β‐glucan in different oat products are very likely to be of nutritional importance. 相似文献
4.
The soluble fiber, β‐glucan, in oat products is an active hypolipidemic component that is responsible for lowering plasma lipids. Quantitative analysis of β‐glucan in oat hydrocolloids such as Oatrim, Nutrim, and C‐Trim was performed to measure the total β‐glucan content and molecular weight distribution. For the measurement of total β‐glucan content, both modified flow‐injection analysis (FIA) method and the standard AACC enzymatic method were employed. FIA method uses the enhanced fluorescence produced when β‐glucan forms complexes with Calcofluor. Experimental results of both the modified FIA method and the standard AACC enzymatic method revealed very good coincidence with each other. This result confirms the applicability of either technique for the quantitative evaluation of β‐glucan in hydrocolloids. Molecular weight (MW) distribution of β‐glucan was determined by size‐exclusion chromatography with postcolumn detection. Experimental results revealed that the molecular weight of β‐glucan in the Trim products was decreased during the manufacturing process. This result was ascribed to the rigorous processing condition of jet‐cooking. 相似文献
5.
The beneficial role of soluble dietary fiber in human nutrition is well documented and has lead to a growing demand for the incorporation of β‐glucan, particularly from oats and barley, into foods. β‐Glucan with high solubility and high molecular weight distribution results in increased viscosity in the human intestine, which is desirable for increased physiological activity. Molecular weight, level, and solubility of β‐glucan are affected by genotype, environment, agronomic input, and the interactions of these factors and food processing methods. Available literature reveals that the level of β‐glucan in a finished product (e.g. bread, cake, muffins) depends upon several factors in the production chain, whereas food processing operations are major factors affecting molecular weight and solubility of β‐glucans. Therefore, to avail themselves of the natural bioactive compounds, food manufacturers must pay attention not only to ensure sufficient concentration of β‐glucan in the raw material but also to the processing methods and functional properties of β‐glucan, minimizing enzymatic or mechanical breakdown of the β‐glucans in end‐product and optimizing processing conditions. This review discusses the different sources of β‐glucan for use in human functional foods and factors affecting the levels and the molecular weight of β‐glucan at various pre‐ and postharvest operations. 相似文献
6.
The content and molecular weight (MW) of β-glucan in extracts from a selection of oat and barley cultivars were compared using flow-injection analysis and high-performance size-exclusion chromatography. From 60 to 75% of the β-glucan was extracted from oat and waxy barley by hot water (90°C) containing heat-stable α-amylase, whereas just 50–55% was extracted from nonwaxy barley. Consecutive extractions with hot water and dimethylsulfoxide (DMSO) extracted 65% (nonwaxy barley) or 75–80% (oat and waxy barley) of the total β-glucan. An extraction with sodium hydroxide and sodium borohydride (NaOH/NaBH4) increased the percentage of β-glucan extracted to 86–100% but decreased the MW. The MW of β-glucan in the oat cultivars selected was significantly higher than those in the barley cultivars. The β-glucan extracted from the nonwaxy barley cultivars showed significantly higher peak MW than that from the waxy barley cultivars. 相似文献
7.
Tina Immerstrand Bjrn Bergensthl Christian Trgrdh Margareta Nyman Steve Cui Rickard
ste 《Cereal Chemistry》2009,86(6):601-608
Effects of various enzymes and extraction conditions on yield and molecular weight of β‐glucans extracted from two batches of commercial oat bran produced in Sweden are reported. Hot‐water extraction with a thermostable α‐amylase resulted in an extraction yield of ≈76% of the β‐glucans, while the high peak molecular weight was maintained (1.6 × 106). A subsequent protein hydrolysis significantly reduced the peak molecular weight of β‐glucans (by pancreatin to 908 × 103 and by papain to 56 × 103). These results suggest that the protein hydrolyzing enzymes may not be pure enough for purifying β‐glucans. The isolation scheme consisted of removal of lipids with ethanol extraction, enzymatic digestion of starch with α‐amylase, enzymatic digestion of protein using protease, centrifugation to remove insoluble material, removal of low molecular weight components using dialysis, precipitation of β‐glucans with ethanol, and air‐drying. 相似文献
8.
Several food regulatory agencies around the world have approved health claims for oat‐derived β‐glucan for cholesterol lowering and glycemic control. The biological efficacy of β‐glucan appears to depend both on daily intake and on physicochemical properties, such as molecular weight and viscosity. The objective of this study was to determine the effects of oat processing, genotype, and growing location on the physicochemical properties of β‐glucan. Five oat genotypes (HiFi, Leggett, CDC Dancer, Marion, and CDC Morrison) grown in two locations (Saskatoon and Kernen) were dehulled (untreated) and processed in a pilot facility through kilning (kilned, not flaked) and subsequent steaming and flaking (kilned, flaked). Untreated groats gave a relatively low Rapid Visco Analyzer (RVA) apparent viscosity (164 cP) and a low extractable β‐glucan molecular weight (332,440) but exhibited high β‐glucan solubility (90.49%). Compared with untreated groats, the kilned (not flaked) samples had significantly increased RVA apparent viscosity (314 cP) and extractable β‐glucan molecular weight (604,710). Additional processing into kilned and flaked products further increased RVA apparent viscosity (931 cP) and β‐glucan molecular weight (1,221,760), but β‐glucan solubility (63.83%) was significantly reduced. Genotype and growing environment also significantly affected β‐glucan viscosity and molecular weight, but no significant interaction effects between processing, genotype, and environment were found. Results indicate that there is potential for processors to improve the physicochemical and nutritional properties of oat end products through processing of specific oat genotypes from selected growing locations. 相似文献
9.
Peter J. Wood 《Cereal Chemistry》2010,87(4):315-330
Over the years, the β‐glucan of oats and barley has been the subject of study either because of the importance of the cholesterol‐lowering potential to health claims (FDA 1997, 2005) or, in the case of barley, because of the role of β‐glucan and β‐glucan‐rich endosperm cell walls in malting and brewing. β‐Glucan is also present in rye and in much lesser amounts in wheat. The most striking difference in these latter two sources is the difficulty in extractability; alkali rather than water is required for significant release from the cell walls. This review will discuss physicochemical properties of oat and rye β‐glucan and, where information allows, relate these to physiological effects. Viscosity, or more generally rheology, plays a central role in discussions of cereal β‐glucan functionality and physiological effects and will be the focus of this review. 相似文献
10.
Lena Rimsten Tove Stenberg Roger Andersson Annica Andersson Per man 《Cereal Chemistry》2003,80(4):485-490
A high‐performance size‐exclusion chromatography system (HPSEC) was set up with detection based on the specific binding of Calcofluor to β‐glucan for determination of amount and molecular weight of β‐glucan in different cereal extracts. To calibrate the HPSEC system, a purified β‐glucan was fractionated into narrow molecular weight ranges and the average molecular weight was determined before analysis on the HPSEC system. The detector response was similar for β‐glucans from oats and barley and appeared to be independent of molecular weight. Four different methods for extraction of β‐glucan from different cereal products were tested: two alkaline, one with hot water and added α‐amylase, and one with water and added xylanase. Inactivation of endogenous β‐glucanase was crucial for the stability of the extracts, even when extracting at high temperature or pH. Yields varied widely between the different extraction methods but average molecular weight and molecular weight distribution were similar. Extraction with sodium hydroxide generally gave a higher yield and molecular weight of β‐glucan in the extracts. 相似文献
11.
S. Tejinder 《Cereal Chemistry》2003,80(6):728-731
Films for potential food use were prepared from aqueous solutions of β‐glucan extracted from hulled barley, hull‐less barley, and oats. The extracts (75.2–79.3% β‐glucan) also contained proteins, fat, and ash. Glycerol was used as a plasticizer. The films were translucent, smooth, and homogeneous in structure on both sides. Water vapor permeability of films prepared from 4% solutions of β‐glucan extracts were higher than those from 2% solutions, despite similar values for water vapor transmission rate. Mechanical properties were influenced by both β‐glucan source and concentration. The oat β‐glucan films showed higher tensile strength and water solubility, and lower color, opacity, and deformation values than those of barley. Films prepared from hull‐less barley cv. HLB233 remained intact upon immersion in water for 24 hr. 相似文献
12.
Use of saturated Ba(OH)2 to extract rye β‐glucan led to a depolymerized product. Similar depolymerization of β‐glucan was observed when oat bran was extracted with this reagent. Isolated oat β‐glucan, detarium xyloglucan, guar galactomannan, and wheat and rye arabinoxylan were also depolymerized by treatment with the barium reagent. The degree of depolymerization was related to time of contact with, and concentration of, the barium. Rye β‐glucan of two different molecular weights (MW) were isolated and characterized. The structure of rye β‐glucan, as evaluated from the ratio of (1→3)‐linked cellotriosyl to (1→3)‐linked cellotetraosyl primary structural units, most closely resembles barley β‐glucan. Analytical variability of this ratio is discussed. A freshly prepared solution (2%) of the higher MW sample showed shear thinning behavior typical of cereal β‐glucans. The lower MW sample at 2% was not shear thinning, but on further purification, after storage for seven days, a 6% solution had gelled as shown by the mechanical spectrum. 相似文献
13.
Water‐soluble β‐glucan (BG) extracted from a high‐BG oat line was treated with different amounts of lichenase (1→3)(1→4)‐β‐d ‐glucanase) enzyme to yield three different molecular weight (MW) BG extracts. Low (LMW‐BG, 157,000), medium (MMW‐BG, 277,000), and high (HMW‐BG, 560,000) MW BG extracts were added to plain muffin formulations at a level of 0.52% (0.42% in the batter, 0.52% in the resultant muffins) to investigate the effect of MW of BG on textural and bile acid (BA) binding properties of the muffins. In addition, treatments were prepared containing LMW‐BG, MMW‐BG, and HMW‐BG extracts in amounts providing equivalent batter firmness as determined on a texture analyzer. Resultant BG concentrations (and per serving amounts) of these muffins were 1.36% (0.81 g/60 g muffin), 1.05% (0.63 g/60 g muffin), and 0.52% (0.31 g/60 g muffin), respectively; thus, the LMW treatment complied with a U.S. Food and Drug Administration health claim requiring 0.75 g of BG per serving. The firmness, springiness, and BA‐binding capacity of the muffins were unaffected by the MW of BG. However, when added at the maximum limit for equivalent batter firmness, the LMW treatment was more firm and less springy than the HMW treatment. Furthermore, BA‐binding capacities of LMW and MMW fractions tended to be greater than that of the HMW fraction when added at the maximum limit. These results add further evidence to the importance of fine‐tuning BG structure to provide maximum health benefits while maintaining high product quality. 相似文献
14.
Mark A. Newell Hyun Jung Kim Franco G. Asoro Adrienne Moran Lauter Pamela J. White M. Paul Scott Jean‐Luc Jannink 《Cereal Chemistry》2014,91(2):183-188
Oats (Avena sativa L.) have received significant attention for their positive and consistent health benefits when consumed as a whole grain food, attributed in part to mixed‐linkage (1‐3,1‐4)‐β‐d ‐glucan (referred to as β‐glucan). Unfortunately, the standard enzymatic method of measurement for oat β‐glucan is costly and does not provide the high‐throughput capability needed for plant breeding in which thousands of samples are measured over a short period of time. The objective of this research was to test a microenzymatic approach for high‐throughput phenotyping of oat β‐glucan. Fifty North American elite lines were chosen to span the range of possible values encountered in elite oats. Pearson and Spearman correlations (r) ranged from 0.81 to 0.86 between the two methods. Although the microenzymatic method did contain bias compared with the results for the standard streamlined method, this bias did not substantially decrease its ability to determine β‐glucan content. In addition to a substantial decrease in cost, the microenzymatic approach took as little as 6% of the time compared with the streamlined method. Therefore, the microenzymatic method for β‐glucan evaluation is an alternative method that can enhance high‐throughput phenotyping in oat breeding programs. 相似文献
15.
The endosperm cell walls of barley are composed largely of a (1→3)(1→4)‐β‐d ‐glucan commonly known simply as β‐d ‐glucan (Wood 2001). There has been much research into the characteristics of barley β‐glucan because of the influence of this polysaccharide on performance of barley in malting and subsequent brewing of beer, and in feed value, especially for young chicks (MacGregor and Fincher 1993). The potential for β‐glucan to develop high viscosity is a problem in these uses, but from the perspective of human nutrition, this characteristic may be an advantage. The glycemic response to oat β‐glucan is inversely related to (log)viscosity (Wood et al 1994a) and there is evidence to suggest that the lowering of serum cholesterol levels associated with oat and barley products (Lupton et al 1994; Wood and Beer 1998) is at least in part due to the β‐glucan (Braaten et al 1994) and probably also its capacity to develop viscosity in the gastrointestinal tract (Haskell et al 1992). 相似文献
16.
Fermentation by human fecal bacteria of fractions of wheat bran prepared by preprocessing technology were examined and compared with a β‐glucan‐rich oat bran and a purified β‐glucan (OG). The wheat fractions were essentially a beeswing bran (WBA), mainly insoluble dietary fiber, and an aleurone‐rich fraction (WBB) containing more soluble fiber and some β‐glucan (2.7%). The oat bran (OB) had more endosperm and was very rich in β‐glucan (21.8%). Predigestion of WBB and OB to mimic the upper gastrointestinal (GI) tract gave digested wheat bran fraction B (WBBD) and digested oat bran (OBD), respectively. These predigested fractions were fermented in a batch technique using fresh human feces under anaerobic conditions. Changes in pH, total gas and hydrogen production, short chain fatty acids (SCFA), and both soluble and insoluble β‐glucan and other polysaccharide components, as determined from analysis of monosaccharide residues, were monitored. Fractions showed increasing fermentation in the order WBA < WBBD < OBD < OG. Variations in SCFA production indicated that microbial growth and metabolism were different for each substrate. Polysaccharide present in the supernatant of the digests had disappeared after 4 hr of fermentation. Fermentability of oat and wheat β‐glucan reflected solubility differences, and both sources of β‐glucan were completely fermented in 24 hr. Although the overall patterns of fermentation indicated the relative amounts of soluble and insoluble fiber, the anatomical origin of the tissues played a major role, presumably related to the degree of lignification and other association with noncarbohydrate components. 相似文献
17.
18.
β‐Glucan shows great potential for incorporation into bread due to its cholesterol lowering and blood glucose regulating effects, which are related to its viscosity. The effects of β‐glucan concentration, gluten addition, premixing, yeast addition, fermentation time, and inactivation of the flour enzymes on the viscosity of extractable β‐glucan following incorporation into a white bread dough were studied under physiological conditions, as well as, β‐glucan solubility in fermented and unfermented dough. β‐Glucan was extracted using an in vitro protocol designed to approximate human digestion and hot water extraction. The viscosity of extractable β‐glucan was not affected by gluten addition, the presence of yeast, or premixing. Fermentation produced lower (P ≤ 0.05) extract viscosity for the doughs with added β‐glucan, while inactivating the flour enzymes and increasing β‐glucan concentration in the absence of fermentation increased (P ≤ 0.05) viscosity. The physiological solubility of the β‐glucan concentrate (18.1%) and the β‐glucan in the unfermented dough (20.5%) were similar (P > 0.05), while fermentation substantially decreased (P ≤ 0.05) solubility to 8.7%, indicating that the reduction in viscosity due to fermentation may be highly dependent on solubility in addition to β‐glucan degradation. The results emphasize the importance of analyzing β‐glucan fortified foods under physiological conditions to identify the conditions in the dough system that decrease β‐glucan viscosity so that products with maximum functionality can be developed. 相似文献
19.
Food processing conditions may affect the extractability and molecular weight of β‐glucans and arabinoxylans in cereal products. This can dramatically affect the functional and physiological properties of the final products. Therefore, the purpose of this research was to explore the effects of jet cooking on the content, extractability, and molecular weights of these polymers in barley flour from a high β‐glucan, waxy barley genotype, Prowashonupana. Barley flours were jet cooked without pH adjustment or after adjusting to pH 7, 9, or 11. Jet cooking without pH adjustment increased the extractability of β‐glucans from 15.4 to 38.0% when extracted with water at 30°C. As pH during jet cooking increased, the extractability further increased to 63.5% at pH 11. Arabinoxylan extractability was only substantially affected when the pH of jet cooking was alkaline (extractability increased from 11.4 to 48.5% when jet cooked at pH 11). Jet cooking without pH adjustment resulted in slight increases in peak molecular weights for both polymers (β‐glucan increased from 420,000 to 443,000; arabinoxylan increased from 119,000 to 125,000); higher pH values during jet cooking resulted in minor decrease in molecular weights. 相似文献
20.
Oat and barley (1→3)(1→4)‐β‐d ‐glucans (β‐glucan) are readily extracted by hot water but rye β‐glucan is resistant to such extraction. This poor extractability might be due to entrapment within a matrix of arabinoxylan (AX) cross‐linked through phenolic constituents. AX are the major nonstarch polysaccharides of the rye kernel. In this study, several approaches were compared in an effort to determine optimum conditions for extraction of high yields, high molecular weight (MW), and high purity of β‐glucan from Canadian rye whole meal. Variables investigated included sodium hydroxide concentrations, extraction time, sample prehydration, extraction under low temperature, and prior extraction of AX with barium hydroxide. There was a linear relationship between the strength of NaOH and amount of β‐glucan extracted and because MW was essentially the same up to 1.0N NaOH, this extraction agent, at room temperature for 90 min, was selected to isolate rye β‐glucan. The β‐glucan was then purified and structure and molecular weight distribution studied. 相似文献