首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Soil management practices are needed in the subarctic that stabilize the soil against the forces of wind and water as well as conserve soil water for crop production. There is a paucity of information, however, regarding the long-term effects of conservation tillage on soil hydraulic properties in subarctic Alaska. The objective of this study was therefore to characterize infiltration, water retention, and saturated hydraulic conductivity of a soil 20 years after establishing tillage and straw management treatments in interior Alaska. The strip plot experimental design, established on a silt loam and maintained in continuous barley (Hordeum vulgare L.), included tillage as the main treatment and straw management as the secondary treatment. Tillage treatments included no tillage, autumn chisel plow, spring disk, and intensive tillage (autumn and spring disk) while straw treatments included retaining or removing stubble and loose straw from the soil surface after harvest. Soil properties were measured after sowing in spring 2004; saturated hydraulic conductivity was measured by the falling-head method, infiltration was measured using a double-ring infiltrometer, and water retention was assessed by measuring the temporal variation in in-situ soil water content. No tillage resulted in greater saturated hydraulic conductivity and generally retained more water against gravitational and matric forces than other tillage treatments. Infiltration was greater in autumn chisel plow than other tillage treatments and was presumably suppressed in no tillage by an organic layer overlying mineral soil. Infiltration was also enhanced by retaining straw on rather than removing straw from the soil surface after harvest. No tillage is not yet a sustainable management practice in this region due to lack of weed control strategies. In addition, the formation of an organic layer in no tillage has important ramifications for the soil hydrological and thermal environment. Therefore, minimum tillage (i.e., autumn chisel plow or spring disk) appears to be a viable management option for maximizing infiltration in interior Alaska.  相似文献   

2.
Conservation tillage practices are intended to minimize soil erosion. Yet little is known concerning changes in physical properties of subarctic soils subject to tillage practices. This study ascertained whether physical properties of a newly cleared subarctic soil are altered after 7 years of continuous barley (Hordeum vulgare L.) using different tillage and straw management strategies. Tillage and straw treatments were established in 1983 near Delta Junction, Alaska, and consisted of conventional fall and spring disk, fall chisel plow, spring disk, and no-tillage. Tillage plots were split by straw management practices, which included straw and stubble, stubble only, and no straw or stubble. Soil samples were collected from the upper 0.15 m of the profile in the spring of 1990 to assess water content, bulk density, saturated hydraulic conductivity, dry aggregate and mechanical stability, penetration resistance, water retention, and particle size distribution. Percent non-erodible aggregates, mechanical stability, and penetration resistance were greater for no-tillage compared to conventional tillage, chisel plow, and spring disk. No-tillage soils were also typically wetter, denser, and had a greater hydraulic conductivity. The spring disk treatment was least susceptible to erosion and also conserved soil water compared with chisel plow. Straw maintained on the surface conserved water and promoted soil stability.  相似文献   

3.
Soil properties and surface characteristics affecting wind erosion can be manipulated through tillage and crop residue management. Little information exists, however, that describes the impact of long term tillage and residue management on soil properties in the subarctic region of the United States. This study examines the impact of 20 years of tillage and residue management on a broad range of physical properties that govern wind erosion processes on a silt loam in interior Alaska. A strip plot experimental design was established in 1983 and included intensive tillage (autumn and spring disk), spring disk, autumn chisel plow, and no tillage with straw either retained on or removed from the soil surface. Soil and residue properties measured after sowing barley (Hordeum vulgare L.) in May 2004 included penetration resistance, soil water content, shear stress, bulk density, random roughness, aggregate size distribution, and residue cover and biomass. No tillage was characterized by larger aggregates, greater soil strength (penetration resistance and shear stress), wetter soil, and greater residue cover compared to all other tillage treatments. Despite crop failures the previous 2 years, crop residue management influenced residue biomass and cover, but not soil properties. Autumn chisel and spring disk appeared to be viable minimum tillage options to intensive tillage in controlling erosion. Autumn chisel and spring disk promoted greater roughness, aggregation, and residue cover as compared with intensive tillage. Although no tillage appeared to be the most effective management strategy for mitigating wind erosion, no tillage was not a sustainable practice due to lack of weed control. No tillage also resulted in the formation of an organic layer on the soil surface over the past 20 years, which has important ramifications for long term crop production in the subarctic where the mean annual temperature is <0 °C.  相似文献   

4.
《Soil & Tillage Research》2007,92(1-2):75-81
Soil properties and surface characteristics affecting wind erosion can be manipulated through tillage and crop residue management. Little information exists, however, that describes the impact of long term tillage and residue management on soil properties in the subarctic region of the United States. This study examines the impact of 20 years of tillage and residue management on a broad range of physical properties that govern wind erosion processes on a silt loam in interior Alaska. A strip plot experimental design was established in 1983 and included intensive tillage (autumn and spring disk), spring disk, autumn chisel plow, and no tillage with straw either retained on or removed from the soil surface. Soil and residue properties measured after sowing barley (Hordeum vulgare L.) in May 2004 included penetration resistance, soil water content, shear stress, bulk density, random roughness, aggregate size distribution, and residue cover and biomass. No tillage was characterized by larger aggregates, greater soil strength (penetration resistance and shear stress), wetter soil, and greater residue cover compared to all other tillage treatments. Despite crop failures the previous 2 years, crop residue management influenced residue biomass and cover, but not soil properties. Autumn chisel and spring disk appeared to be viable minimum tillage options to intensive tillage in controlling erosion. Autumn chisel and spring disk promoted greater roughness, aggregation, and residue cover as compared with intensive tillage. Although no tillage appeared to be the most effective management strategy for mitigating wind erosion, no tillage was not a sustainable practice due to lack of weed control. No tillage also resulted in the formation of an organic layer on the soil surface over the past 20 years, which has important ramifications for long term crop production in the subarctic where the mean annual temperature is <0 °C.  相似文献   

5.
Tillage and residue management practices are sought in the subarctic where small grain production is often curtailed by the lack of soil water. Barley (Hordeum vulgare L.) grain yield and evapotranspiration were compared among four tillage and three residue management practices near Delta Junction, Alaska, USA from 1988 through 1991. Barley was hand-harvested in the fall whereas soil water content was determined biweekly during the growing season by neutron attenuation. Grain yield was similar for spring disk, fall chisel, and conventional (fall and spring disk) tillage across years. No tillage, however, resulted in a 260 kg ha−1 greater yield as compared with fall chisel and conventional tillage in 1990 when evaporative demand exceeded that in other years by nearly 10%. In 1990 and 1991, grain yield from plots devoid of stubble and loose straw was at least 200 kg ha−1 greater than from plots with stubble or stubble and loose straw. Barley consumed at least 15 mm more water to achieve the greater yield on no tillage or no stubble and loose straw plots. Water-use efficiency did not vary among tillage treatments, but was greatest in 1990 for plots devoid of stubble and loose straw. This study suggests that, in dry years with high evaporative demand, no tillage or removal of stubble and loose straw from the soil surface will enhance grain production and water-use efficiency of barley in the subarctic.  相似文献   

6.
The weed seed bank of a long-term tillage study in subarctic Alaska was studied at the end of 10 years of continuous spring barley (Hordeum vulgare L.). Tillage treatments were: no-till, disked once (spring), disked twice (spring and fall), and chisel plow (fall). Soil cores were obtained from each tillage treatment and seeds were manually separated from soil after washing through sieves. Tillage treatment had a significant effect on seed density of shepherds purse (Capsella bursa-pastoris (L.) Medic.), cinquefoil (Potentilla norvegica L.), foxtail barley (Hordeum jubatum L.), and on total seed density. Seed density was higher for these species and total seed density was greater under no-till than under other tillage treatments. Seed density was higher near the soil surface under no-till and chisel plow treatments than under disked treatments, which helps explain the greater difficulty of controlling weeds under reduced tillage.  相似文献   

7.
With the increasing use of conservation tillage, many questions about the long-term effects of tillage system on soil physical properties have been raised. Studies were conducted to evaluate saturated hydraulic conductivity (KSAT), macropore characteristics and air permeability of two silty soils as affected by long-term conservation tillage systems in the state of Indiana. Measurements were taken during the tenth year of a tillage study on a Chalmers silty clay loam (Typic Haplaquoll) and the fifth year of a study on a Clermont silt loam (Typic Ochraqualf). Tillage systems were moldboard plow, chisel, ridge till-plant, and no-till in a rotation of corn (Zea mays L.) and soya beans (Glycine max L.). Saturated hydraulic conductivity was measured on large soil columns (25 × 25 × 40 cm) before spring tillage, and macropore size and continuity were assessed with staining techniques. Intact soil cores (8 cm diam × 10 cm) were collected in early July in the row and non-trafficked interrow at three depths (10–20, 20–30, and 30–40 cm) and were analyzed for air permeability (Kair), air-filled porosity and bulk density. Saturated hydraulic conductivity values were in the order plow > chisel > ridge till > no-till for the Chalmers soil and were significantly greater in the plow treatment than in the other 3 tillage systems on the Clermont soil. Differences in KSAT between the 2 soils were generally greater than differences among tillage systems, and coefficients of variation were lower for treatments that did not include may fall tillage operations. At the 10-cm depth on the Chalmers soil, the chisel treatment had the greatest number of stained cylindrical channels, whereas for the Clermont soil the ridge till had the greatest number at this depth. Although the no-till treatment had similar or fewer total channels, it had the most continuous channels from the 10-cm depth to the 20- and 30-cm depths on both soils. Tillage system, row position and depth all affected Kair. On the Chalmers soil, plow, chisel and ridge systems had lower Kair between rows than in the row at the 10–20-cm depth, whereas no-till had constant Kair in the row and between the row. On the Clermont soil, ridge till had the highest Kair of all treatments at the 10–20-cm depth, and no-till had the highest Kair of all treatments at the 20–30-cm depth.  相似文献   

8.
Soil tillage can have a significant effect on soil porosity and water infiltration. This study reports field measurements of near saturated hydraulic conductivity in an undisturbed soil under two tillage treatments, conventional tillage (CT) and minimum tillage (MT). The objective was to determine effective macro and mesoporosities, porosity dynamics during the irrigation season, and their contribution to water flow. Field observations were performed during the 1998 maize (Zea mays L.) cropping season in an Eutric Fluvisol with a silty loam texture, located in the Sorraia River Watershed in the south of Portugal. Infiltration measurements were done with a tension infiltrometer. At each location an infiltration sequence was performed corresponding to water tensions (φ) of 0, 3, 6 and 15 cm. Five sets of infiltration measurements were taken in both treatments in the top soil layer between May and September. One set of measurements was done at the depth of 30 cm at the bottom of the plowed layer in the CT plot. After 5 years of continuous tillage treatments the results show that regardless of the tillage treatment, saturated conductivity values K(φ0) were several times larger than near saturation conductivity K(φ3). This indicates that subsurface networks of water conducting soil pores can exist in both CT and MT maize production systems. In CT, the moldboard plow created macro and mesoporosity in the top soil layer while breaking pore continuity at 30 cm depth. This porosity was partially disrupted by the first irrigation, resulting in a significant decrease of 45% in the macropore contribution to flow. Later in the season, the irrigation effect was overlaid by the root development effect creating new channels or continuity between existing pores. In MT macroporosity contribution to flow did not show significant differences in time, representing 85% of the total flow. In both the treatments, macropores were the main contributing pores to the total flow, in spite of the very low macroporosity volumes.  相似文献   

9.
Soil tillage may influence CO2 emissions in agricultural systems. Agricultural soils are managed in several ways in Brazil, ranging from no tillage to intensive land preparation. The objective of this study was to determine the effect of common soil tillage treatments (disk harrow, reversible disk plow, rotary tiller and chisel plow tillage systems) on the intermediate CO2 emissions of a dark red latosol, located in southern Brazil. Different tillage systems produced significant differences in the CO2 emissions, and the results indicate that the chisel plow produced the highest soil carbon loss during the 15 days period after tillage treatments were performed. Emissions to the atmosphere increased as much as 74 g CO2 m−2, at the end of a 2-week period, in the plot where the chisel plow treatment was applied, in comparison to the non-disturbed plot. The results indicate that the total increase on the intermediate term soil CO2 emissions due to tillage treatments in southern Brazil is comparable to that reported for the more humid and cooler regions.  相似文献   

10.
Data from a field experiment conducted in China's Loess Plateau (2013–2015) were used to determine the energy balance of winter wheat (Triticum aestivum L.) as affected by tillage and straw treatments. Tillage treatments included chisel plow, no tillage, and mouldboard plow. Crop straw levels included straw returning and straw removed. The energy balance was evaluated by comparing the following parameters: net energy, energy profitability, energy use efficiency, and energy intensity. The yield parameters were significantly influenced by the tillage treatments and revealed that the chisel plow entailed fewer field operations and lower energy requirements with a higher yield than mouldboard plowing tillage. The highest proportion of energy input came from a nitrogen fertiliser, followed by diesel fuel. The total energy input applied per hectare increased with an increase in the tillage intensity, and the lowest energy input was required for the no tillage case with the straw returning treatment, and the highest for the case of mouldboard plow with the straw returning treatment. The lowest average energy intensity was recorded for the no tillage case, followed by the case of chisel plow tillage in both cropping seasons. Moreover, in the case of mouldboard plough tillage, the maximum energy intensity was recorded in both cropping seasons. In the cases of the chisel plow tillage and the no tillage, we observed the maximum energy gain, while in the no tillage case, we observed the maximum energy use efficiency. The net return and the benefit/cost ratio were higher in the case of straw returning than those in the case of no straw treatment. We concluded that no tillage and chisel plow tillage with straw returning could improve the energy use efficiency and the benefit/cost ratio of winter wheat production systems.  相似文献   

11.
Tillage effects on near-surface soil hydraulic properties   总被引:1,自引:0,他引:1  
The processes for the formation of porosity are thought to differ between tilled and non-tilled cropping systems. The pores are created primarily by the tillage tool in the tilled systems and by biological processes in non-tilled systems. Because of the different methods of pore formation, the pore size distribution, pore continuity and hydraulic conductivity functions would be expected to differ among tillage systems. The objective of this study was to determine effects of three tillage systems — mold-board plow (MP), chisel plow (CP), and no-till (NT) — on hydraulic properties of soils from eight long-term tillage and rotation experiments. Tillage effects on saturated and unsaturated hydraulic conductivity, pore size distribution, and moisture retention characteristics were more apparent for soils with a continuous corn (CC) rotation than for either a corn-soybean (CS) rotation or a corn-oats-alfalfa (COA) rotation. Pore size distributions were similar among tillage systems for each soil except for three soils with a CC rotation. The MP system increased volume of pores >150 μm radius by 23% to 91% compared with the NT system on two of the soils, but the NT system increased the volume of the same radius pore by 50% on one other soil. The NT system had 30 to 180% greater saturated hydraulic conductivity than either the CP or MP systems. The NT system with a CC rotation showed a greater slope of the log unsaturated hydraulic conductivity; log volumetric water content relationship on two of the soils indicating greater water movement through a few relatively large pores for this system than for either the CP or MP systems.  相似文献   

12.
Soil water content during tillage can have a large impact on soil properties and tillage outcome. Measurement of soil relief in relation to fixed elevation points provides a non-destructive method of monitoring loosening/compacting processes during the year. The main objective of this study was to determine the effect of soil water content during primary tillage on soil physical properties.

The treatments included mouldboard and chisel ploughing of a clay soil on three occasions in the autumn, with gradually increasing water content (0.76, 0.91 and 1.01 × plastic limit). Soil surface height was measured by laser within a 0.64 m2 area from fixed steel plates after each tillage occasion, and before and after seedbed preparation in the following spring. The measurements of surface height were compared with measurements of other soil physical properties, such as bulk density, saturated hydraulic conductivity and seedbed properties.

Tillage at the lowest water content (0.76 × plastic limit) produced the greatest proportion of small aggregates, and generally the most favourable soil conditions for crop growth. Soil loosening, as measured by increase in soil height during primary tillage, was highest for mouldboard ploughing and for tillage at the lowest water content. Differences between tillage treatments decreased with time, but were still significant after sowing in the spring. Natural consolidation during winter was smaller than the compaction during seedbed preparation in the spring. No significant differences in bulk density were found between treatments, and thus soil surface height was a more sensitive parameter than bulk density determined by core sampling to detect differences between treatments.

Late tillage under wet conditions caused a greater roughness of the soil surface and the seedbed base, which was also found in the traditional seedbed investigation. The effect of tillage time on seedbed properties also resulted in a lower number of emerged plants in later tillage treatments.

The laser measurements were effective for studying changes in soil structure over time. The results emphasize the need to determine changes in soil physical properties for different tillage systems over time in order to model soil processes.  相似文献   


13.
Soil Hydraulic Properties: Influence of Tillage and Cover Crops   总被引:1,自引:0,他引:1  
Understanding the effects of cover crops and tillage on soil physical properties is important for determining soil productivity. This study was conducted at Lincoln University's Freeman Center, USA to evaluate the effects of tillage and cover crop management on soil hydraulic properties. The field site included three replicate blocks in a randomized complete block design with each plot measuring 21.3 m in length and 12.2 m in width. Treatment factors were tillage at two levels(moldboard plow tillage vs. no tillage) and cover crop at two levels(cereal rye(Secale cereal) cover crop vs. no cover crop). Soil samples were collected in late spring/early summer from each treatment at 10-cm depth increments from the soil surface to a depth of 40 cm using cores(76.2-mm diameter and 76.2-mm length). Soil bulk density was 13% lower with tillage compared with no-tillage. Volumetric water content was significantly higher at 0.0 and -0.4 k Pa pressures with tillage compared with no tillage. Tillage increased the proportion of coarse mesopores by 32% compared with no tillage, resulting in 87% higher saturated hydraulic conductivity(K_(sat)). Cover crop increased the proportion of macropores by 24% compared with no cover crop; this can potentially increase water infiltration and reduce runoff. As a result of higher macroporosity, Ksat was higher under cover crop compared with no cover crop. This study demonstrated that tillage can benefit soil hydraulic properties in the short term, but these effects may not persist over time. Cover crops may slightly improve soil hydraulic properties, but longer term studies are needed to evaluate the long-term effects.  相似文献   

14.
Tillage action associated with liquid slurry application systems/management practices can modify soil infiltration properties. The degree or nature of such modification will depend largely on the type of tillage implement used, and the soil conditions at time of tillage activity. The specific objective of this study is to evaluate differences in soil infiltration properties, as measured using pressure infiltrometers and Guelph permeameters, resulting from the immediate tine action of two commonly used slurry application tillage implements (Kongskilde Vibro-Flex (S-tine) and the AerWay SSD (rolling aerator-type tine)) over a variety of silt–clay loam soil water content conditions. The results indicated that there were consistent negative correlations between field saturated hydraulic conductivity and soil water content for all tine-disturbed and undisturbed soil treatments. For Kongskilde, field-saturated hydraulic conductivity was, on average, lower in tine-influenced furrow bottoms, relative to those measured in undisturbed conditions at similar depths for most water content conditions. Generally, the Kongskilde tine-action reduced macropore-based infiltration in the bottom of the furrow for most soil conditions, albeit, this effect was most pronounced at the higher soil water contents. For AerWay, the tine-disturbed soils had generally higher field saturated hydraulic conductivities than undisturbed soil treatments over the observed water content range. This effect was manifested to a greater degree at higher, relative to lower observed water contents.  相似文献   

15.
Conventional tillage creates soil physical conditions that may restrict earthworm movement and accelerate crop residue decomposition, thus reducing the food supply for earthworms. These negative impacts may be alleviated by retaining crop residues in agroecosystems. The objective of this study was to determine the effects of various tillage and crop residue management practices on earthworm populations in the field and earthworm growth under controlled conditions. Population assessments were conducted at two long-term (15+ years) experimental sites in Québec, Canada with three tillage systems: moldboard plow/disk harrow (CT), chisel plow or disk harrow (RT) and no tillage (NT), as well as two levels of crop residue inputs (high and low). Earthworm growth was assessed in intact soil cores from both sites. In the field, earthworm populations and biomass were greater with long-term NT than CT and RT practices, but not affected by crop residue management. Laboratory growth rates of Aporrectodea turgida (Eisen) in intact soil cores were affected by tillage and residue inputs, and were positively correlated with the soil organic C pool, suggesting that tillage and residue management practices that increase the soil organic C pool provide more organic substrates for earthworm growth. The highest earthworm growth rates were in soils from RT plots with high residue input, which differed from the response of earthworm populations to tillage and residue management treatments in the field. Our results suggest that tillage-induced disturbance probably has a greater impact than food availability on earthworm populations in cool, humid agroecosystems.  相似文献   

16.
In irrigated grain-growing soils on Canada's prairies, straw management can affect nitrogen (N) fertility and long-term soil organic matter reserves. We conducted a 2-year field experiment in southern Alberta, on a Dark Brown Chernozemic Lethbridge loam (Typic Boroll), to determine the effects of straw removal, tillage, and fertilizer timing on crop uptake of soil and fertilizer N. During the study (1991 and 1992), the crop was oat (Avena sativa L.) and wheat (Triticum aestivum L.), respectively, in an experiment that had been in a wheat-wheat-oat-wheat rotation since 1986. Five straw-tillage treatments were: straw-fall plow, straw-pring plow, no straw-fall plow, no straw-spring plow and no straw-direct seeding. Fertilizer N was applied in fall or spring. Ammonium nitrate (5 at.% 15N) was added at 100 kg N ha−1 in fall 1990 or spring 1991. For oat (1991), plant N derived from soil was higher under fall plow than under spring plow, higher with tillage than direct seeding, and unaffected by straw removal. The plant N derived from fertilizer was not affected by straw removal in fall plow treatments, but under spring plow, it was higher with straw removal. The plant N derived from fertilizer showed a significant straw-tillage × fertilizer timing interaction; with fall incorporated straw, plant N derived from fertilizer was 44.0 kg N ha−1 for spring-applied, and 30.6 kg N ha−1 for fall-applied N, but in other straw-tillage treatments there was no effect of fertilizer timing. Cumulative fertilizer N recovery (plant + soil) over the 2 years averaged 64.2%, and was unaffected by straw-tillage treatment. Fertilizer N recovery, however, was less with fall-applied N (61.3%) than spring applied N (66.8%). At mid-season, fall plow treatments had higher soil inorganic N and inorganic N derived from fertilizer than spring plow treatments, apparently because of less immobilization. The fall plow treatments also retained higher inorganic N after harvest. Straw removal and fertilizer timing did not influence soil inorganic N and soil inorganic N derived from fertilizer. N removal in straw (16 kg N ha−1 yr−1) could deplete soil N in the long-term. Long-term effects of tillage timing on soil N will depend on the relative amount of N lost by leaching with fall plowing and that lost by denitrification under spring plowing. With direct seeding, crop yield and uptake of soil N was less, and N losses by denitrification could be greater. Application of N in spring, rather than fall, should enhance crop N uptake, reducing N losses and enhancing long-term soil organic N.  相似文献   

17.
The current cropping system of excessive tillage and stubble removal in the northwestern Loess Plateau of China is clearly unsustainable. A better understanding of tillage and surface cover management on surface soil structure is vital for the development of effective soil conservation practices in the long term. Changes in surface soil structure and hydraulic properties were measured after 4 years of straw and plastic film management under contrasting tillage practices (no tillage vs. conventional tillage) in a silt loam soil (Los Orthic Entisol) which had been under conventional management for hundred of years in the northwestern Loess Plateau, China. Surface soil (0–10 cm) under no tillage with straw cover had the highest water stability of macro-aggregates (>250 μm) and the highest saturated hydraulic conductivity. Compared with straw cover, plastic film cover did not change macro-aggregate stability and the soil had the lowest saturated hydraulic conductivity (Ksat) but the highest % <50 μm soil particles. Significant correlation was found between water stable macro-aggregates and soil organic carbon content, indication the importance of the latter on soil structural development. No tillage on its own (without straw cover) was not sufficient to improve structural stability probably due to lack of organic carbon input. While use of plastic film cover might lead to short term yield increases, results indicated that it did little to improve soil physical fertility. On the other hand, no tillage with straw cover management should lead to long-term improvement of physical quality of this structurally fragile soil.  相似文献   

18.
After 37 years of different soil‐tillage treatments in a long‐term field experiment in Germany, a number of biological soil characteristics was measured. The field trial comprised six major treatments with different implements and various depths. In this paper, results from a comparison of long‐term use of a plow (to 25 cm depth), a chisel plow (to 15 cm depth), and no‐tillage are presented. The biological soil characteristics measured include the soil‐organic‐carbon (SOC) content, microbial biomass, enzyme activities, and the abundance and biomass of earthworms. Long‐term use of a chisel plow and no‐tillage increased the organic‐C content in the uppermost soil layer (0–10 cm) compared with the plow treatment. The microbial biomass and the enzyme activities arginine‐ammonification, β‐glucosidase, and catalase decreased with depth in all treatments. Arginine‐ammonification and catalase were higher in the plow treatment in soil layers 10 to 30 cm. Additionally, the chisel plow caused an increase in number and biomass of earthworms compared to both other tillage treatments. Differences in earthworm numbers and biomass between plowing and no‐tillage were not statistically significant.  相似文献   

19.
Long-term tillage effects on soil quality   总被引:6,自引:0,他引:6  
Public interest in soil quality is increasing, but assessment is difficult because soil quality evaluations are often purpose- and site-specific. Our objective was to use a systems engineering methodology to evaluate soil quality with data collected following a long-term tillage study on continuous corn (Zea mays L.). Aggregate characteristics, penetration resistance, bulk density, volumetric water content, earthworm populations, respiration, microbial biomass, ergosterol concentrations, and several soil-test parameters (pH, P, K, Ca, Mg, Total-N, Total-C, NH4-N, and NO3-N) were measured on Orthic Luvisol soil samples collected from Rozetta and Palsgrove silt loam (fine-silty, mixed, mesic Typic Hapludalfs) soils. Plots managed using no-till practices for 12 years before samples were collected for this study had surface soil aggregates that were more stable in water and had higher total carbon, microbial activity, ergosterol concentrations, and earthworm populations than either the chisel or plow treatments. Selected parameters were combined in the proposed soil quality index and gave ratings of 0.48, 0.49, or 0.68 for plow, chisel, or no-till treatments, respectively. This indicated that long-term no-till management had improved soil quality. The prediction was supported by using a sprinkler infiltration study to measure the amount of soil loss from plots that had been managed using no-till or mold-board plow tillage. We conclude that no-till practices on these soils can improve soil quality and that the systems engineering methodology may be useful for developing a more comprehensive soil quality index that includes factors such as pesticide and leaching potentials.  相似文献   

20.
耕作与覆盖措施对黄土塬区春玉米田土壤水气传输的影响   总被引:1,自引:1,他引:1  
  【目的】  良好的土壤物理和水力学性质是土壤肥力可持续的基础。研究黄土高原旱作农业区长期不同耕作、覆盖措施对土壤水气传输性质的影响,为黄土塬区可持续的农田管理提供参考。  【方法】  基于设在渭北旱塬始于2002年的田间定位试验,选取传统耕作 (CT)、传统耕作+秸秆覆盖 (TS)、传统耕作+地膜覆盖 (TP)、传统耕作+全膜覆盖 (TWP)、免耕 (NT)、免耕+秸秆覆盖 (NS)、免耕+地膜覆盖 (NP)、免耕+生草覆盖 (NG) 共8个处理。于2019年春玉米收获期采集剖面土样,对0—10、10—20、20—30和30—40 cm土层土壤质量含水量、容重、导气率、相对气体扩散率和饱和导水率进行测定与分析。  【结果】  与CT处理相比,TS处理显著增加了0—40 cm土壤平均质量含水量,降低了0—40 cm各层土壤导气率,增加了各层土壤相对气体扩散率,表层 (0—10 cm) 土壤饱和导水率显著降低了75.9%;TP处理收获期耕层 (0—20 cm) 土壤容重增加,土壤总孔隙度显著降低,在0—10 cm土层,土壤导气率显著提高了54.1%;TWP处理耕层土壤容重显著增加,土壤总孔隙度显著降低,剖面0—40 cm土壤导气率和饱和导水率分别平均增加了64.8%和111.2%,尤其是表层土壤导气率显著提高了99.5%。与NT处理相比,NS处理耕层土壤容重降低,总孔隙度增加,表层土壤质量含水量、相对气体扩散率和饱和导水率分别显著提高了14.8%、25.3%和446.4%;NP处理耕层土壤容重增加,总孔隙度降低,表层土壤质量含水量和饱和导水率分别显著增加3.5%和145.2%,土壤导气率显著降低33.7%;NG处理耕层土壤容重降低,总孔隙度增加,表层土壤质量含水量显著提高了11.3%,土壤相对气体扩散率显著降低了42.1%。相同覆盖条件下与传统耕作比较,免耕处理能够降低下层20—40 cm土壤容重,增加土壤总孔隙度,提高土壤持水性,虽然降低了表层0—10 cm土壤导气率,但提高了土壤相对气体扩散率和饱和导水率。  【结论】  免耕秸秆覆盖可降低耕层土壤容重,增加总孔隙度,并且显著提高耕层土壤相对气体扩散率和饱和导水率,增加下层土壤导气率,是免耕处理组中最佳处理。传统耕作全膜覆盖可提高耕层土壤导气率、相对气体扩散率和饱和导水率,是传统耕作组中最佳处理,可有效保持渭北旱塬良好的土壤水气传输能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号