首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 493 毫秒
1.
Relatively little is known about the implications of atmospheric CO2 enrichment for tree responses to biotic disturbances such as folivory. We examined the combined effects of elevated CO2 concentration ([CO2]) and defoliation on growth and physiology of sugar maple (Acer saccharum Marsh.) and trembling aspen (Populus tremuloides Michx.). Seedlings were planted in the ground in eight open-top chambers. Four chambers were ventilated with CO2-enriched air (ambient + 283 micromol mol-1) and four chambers were supplied with ambient air. After 6 weeks of growth, half of the leaf area was removed on a subset of seedlings of each species in each CO2 treatment. We monitored subsequent biomass gain and allocation, along with leaf gas exchange and chemistry. Defoliation did not significantly affect final seedling biomass in either species or CO2 treatment. Growth recovery following defoliation was associated with increased allocation to leaf mass in maple and a slight enhancement of mean photosynthesis in aspen. Elevated [CO2] did not significantly affect aspen growth, and the observed stimulation of maple growth was significant only in mid-season. Correspondingly, simulated responses of whole-tree photosynthesis to elevated [CO2] were constrained by a decrease in photosynthetic capacity in maple, and were partially offset by reductions in specific leaf area and biomass allocation to foliage in aspen. There was a significant interaction between [CO2] and defoliation on only a few of the measured traits. Thus, the data do not support the hypothesis that atmospheric CO2 enrichment will substantially alter tree responses to folivory. However, our findings do provide further indication that regeneration-stage growth rates of certain temperate tree species may respond only moderately to a near doubling of atmospheric [CO2].  相似文献   

2.
During summer 1994, sugar maple (Acer saccharum Marsh.) seedlings were grown in open-top chambers supplied with air containing near ambient ozone concentration (control, low O(3)) or three times the ambient ozone concentration (high O(3)). The rate of CO(2) assimilation was significantly reduced by chronic exposure to a high concentration of ozone during the summer. During fall, seedlings were removed from the open-top chambers and acclimated to cold under natural conditions. In both species during cold acclimation, the starch concentration decreased, whereas the sucrose concentration increased. There was no treatment effect on the freezing tolerance of roots, even though roots in the high-O(3) treatment accumulated higher concentrations of the cryoprotective oligosaccharides raffinose and stachyose than control roots. Cold acclimation occurred earlier and stachyose concentration of stems was higher in high-O(3)-treated seedlings than in low-O(3)-treated seedlings. Cold acclimation was associated with an earlier accumulation of ABA in the xylem sap of high-O(3)-treated seedlings compared with low-O(3)-treated seedlings.  相似文献   

3.
This study examined the role of ectomycorrhizal associations in nitrogen assimilation of Populus tremuloides seedlings. Seedlings were inoculated with Hebeloma crustuliniforme and compared with non-inoculated plants. Nitrogen-metabolizing enzymatic properties were also determined in H. crustuliniforme grown in sterile culture. The seedlings and fungal cultures were subjected to nitrogen treatments (including NO??, NH?? and a combination of NO???+?NH??) for 2 months to examine the effects on growth, nitrogen-assimilating enzyme activities and xylem sap concentrations of NH?? and NO??. Seedlings were also provided for 3 days with 1?N-labeled NH?? and NO??, and leaf and root 1?N content relative to total nitrogen was measured. Both NO?? and NH?? were effective in supporting seedling growth when either form was provided separately. When NO?? and NH?? were provided together, seedling growth decreased while enzymatic assimilation of NH?? increased. Additionally, nitrogen assimilation in inoculated seedlings was less affected by the form of nitrogen compared with non-inoculated plants. Fungal ability to enzymatically respond to and assimilate NH?? combined with aspen's enzymatic responsiveness to NO?? was likely the reason for efficient assimilation of both nitrogen forms by mycorrhizal plants.  相似文献   

4.
Longleaf pine (Pinus palustris Mill.) seedlings were exposed to two concentrations of atmospheric CO(2) (365 or 720 micro mol mol(-1)) in combination with two N treatments (40 or 400 kg N ha(-1) year(-1)) and two irrigation treatments (target values of -0.5 or -1.5 MPa xylem pressure potential) in open-top chambers from March 1993 through November 1994. Irrigation treatments were imposed after seedling establishment (i.e., 19 weeks after planting). Seedlings were harvested at 4, 8, 12, and 20 months. Elevated CO(2) increased biomass production only in the high-N treatment, and the relative growth enhancement was greater for the root system than for the shoot system. In water-stressed trees, elevated CO(2) increased root biomass only at the final harvest. Root:shoot ratios were usually increased by both the elevated CO(2) and low-N treatments. In the elevated CO(2) treatment, water-stressed trees had a higher root:shoot ratio than well-watered trees as a result of a drought-induced increase in the proportion of plant biomass in roots. Well-watered seedlings consistently grew larger than water-stressed seedlings only in the high-N treatment. We conclude that available soil N was the controlling resource for the growth response to elevated CO(2) in this study. Although some growth enhancement was observed in water-stressed trees in the elevated CO(2) treatment, this response was contingent on available soil N.  相似文献   

5.
We investigated the impacts of elevated temperature and carbon dioxide concentration ([CO2]) on diameter growth of Scots pine (Pinus sylvestris L.), aged about 20 years, grown with a low nitrogen supply in closed chambers at (i) ambient temperature and [CO2] (AT+AC), (ii) ambient temperature and elevated [CO2] (AT+EC), (iii) elevated temperature and ambient [CO2] (ET+AC), and (iv). elevated temperature and [CO2] (ET+EC). Each treatment was replicated four times. Diameter growth was monitored with a band dendrograph at 15-min intervals throughout the growing seasons of 1997, 1998 and 1999. Over the monitoring period, diameter growth began 2-3 weeks earlier in trees in the ET+EC and ET+AC chambers than in trees in the AT+AC and AT+EC chambers. However, the cessation of growth occurred about a week later in trees in the ET+EC, ET+AC and AT+EC chambers compared with the AT+AC chambers. The duration of the growing season was 115 and 108 days in the ET+EC and ET+AC chambers, respectively, and 95 and 84 days in the AT+EC and AT+AC chambers, respectively. The ET+AC and ET+EC treatments enhanced diameter growth most early in the growing season, whereas in trees in the AT+AC and AT+EC treatments diameter growth rate was highest in the middle of the growing season. Diameter growth rate leveled off more slowly in trees in the ET+EC and AT+EC treatments than in the other treatments. The growth response to elevated T, elevated [CO2] or both decreased with time and it was less than the maximum observed in other studies for small seedlings and under optimal growth conditions. Nevertheless, cumulative diameter growth for the 3-year period was 67% greater in trees in the ET+EC treatment, and 57 and 26% greater in trees in the AT+EC and ET+AC treatments, respectively, compared with trees in the AT+AC treatment. Over the 3 years, [CO2] had a statistically significant (P < 0.10) effect on both absolute and relative diameter growth, but the interaction between [CO2] and temperature was not significant.  相似文献   

6.
Concentrations of total soluble phenolics, catechin, proanthocyanidins (PA), lignin and nitrogen (N) were measured in loblolly pine (Pinus taeda L.) needles exposed to either ambient CO(2) concentration ([CO(2)]), ambient plus 175 or ambient plus 350 micromol CO(2) mol(-1) in branch chambers for 2 years. The CO(2) treatments were superimposed on a 2 x 2 factorial combination of irrigation and fertilization treatments. In addition, we compared the effects of branch chambers and open-top chambers on needle chemistry. Proanthocyanidin and N concentrations were measured in needles from branch chambers and from trees in open-top chambers exposed concurrently for two years to either ambient [CO(2)] or ambient plus 200 micromol CO(2) mol(-1) in combination with a fertilization treatment. In the branch chambers, concentrations of total soluble phenolics in needles generally increased with needle age. Concentrations of total soluble phenolics, catechin and PA in needle extracts increased about 11% in response to the elevated [CO(2)] treatments. There were no significant treatment effects on foliar lignin concentrations. Nitrogen concentrations were about 10% lower in needles from the elevated [CO(2)] treatments than in needles from the ambient [CO(2)] treatments. Soluble phenolic and PA concentrations were higher in the control and irrigated soil treatments in about half of the comparisons; otherwise, differences were not statistically significant. Needle N concentrations increased 23% in response to fertilization. Treatment effects on PA and N concentrations were similar between branch and open-top chambers, although in this part of the study N concentrations were not significantly affected by the CO(2) treatments in either the branch or open-top chambers. We conclude that elevated [CO(2)] and low N availability affected foliar chemical composition, which could in turn affect plant-pathogen interactions, decomposition rates and mineral nutrient cycling.  相似文献   

7.
We examined the interactive effects of elevated CO2 concentration ([CO2]) and water stress on growth and physiology of 1-year-old peach (Prunus persica L.) seedlings grown in 10-dm3 pots in open-top chambers with ambient (350 micromol mol-1) or elevated (700 micromol mol-1) [CO2]. Seedlings were supplied weekly with a non-limiting nutrient solution. Water was withheld from half of the plants in each treatment for a 4-week drying cycle, to simulate a sudden and severe water stress during the phase of rapid plant growth. Throughout the growing season, seedlings in elevated [CO2] had higher assimilation rates, measured at the growth [CO2], than seedlings in ambient [CO2], and this caused an increase in total dry mass of about 33%. Stomatal conductance, total water uptake, leaf area and leaf number were unaffected by elevated [CO2]. Because seedlings in the two CO2 treatments had similar transpiration despite large differences in total dry mass, water-use efficiency (WUE) of well-watered and water-stressed seedlings grown in elevated [CO2] was an average of 51 and 63% higher, respectively, than WUE of comparable seedlings grown in ambient [CO2]. Elevated [CO2] enhanced total biomass of water-stressed seedlings by 31%, and thus ameliorated the effects of water limitation. However, the percentage increases in total dry mass between well-watered and water-stressed seedlings were similar in ambient (53%) and elevated (58%) [CO2], demonstrating that there was no interaction between elevated [CO2] and water stress. This finding should be considered when predicting responses of trees to global climate change in hot and dry environments, where predicted temperature increases will raise evaporative demands and exacerbate the effects of drought on tree growth.  相似文献   

8.
We assessed the effect of feeding damage by pear thrips, Taeniothrips inconsequens Uzel (Thysanoptera:Thripidae), on gas exchange and water relations of sugar maple (Acer saccharum Marsh.) seedlings. Compared to undamaged seedlings, feeding punctures in the leaf epidermis of thrips-damaged seedlings decreased water use efficiency, increased leaf conductance to water vapor, and decreased predawn water potential. Under conditions of high soil water and high light intensity, carbon dioxide exchange rate (CER) was greater for thrips-damaged than undamaged seedlings because of greater CO(2) conductance through feeding punctures. Under conditions of low soil water, CER was lower for thrips-damaged than undamaged seedlings as a result of water stress. Carbon dioxide exchange rate at low light and low soil water was limited by non-stomatal factors, but no difference in non-stomatal limitation to CER was detected between thrips-damaged and undamaged seedlings. Leaf tissue water relations differed between thrips-damaged and undamaged seedlings and under high and low soil water conditions. The results suggest that the reduction in leaf area of thrips-damaged seedlings can be partially compensated by elevated CER under conditions of high light intensity and high soil water. However, high gas exchange rates through feeding punctures predisposes thrips-damaged seedlings to water stress that can reduce CER under conditions of low soil water.  相似文献   

9.
We studied the effects of elevated concentrations of carbon dioxide ([CO2]) and ozone ([O3]) on growth, biomass allocation and leaf area of field-grown O3-tolerant (Clone 4) and O3-sensitive clones (Clone 80) of European silver birch (Betula pendula Roth) trees during 1999-2001. Seven-year-old trees of Clones 4 and 80 growing outside in open-top chambers were exposed for 3 years to the following treatments: outside control (OC); chamber control (CC); 2 x ambient [CO2] (EC); 2 x ambient [O3] (EO); and 2 x ambient [CO2] + 2 x ambient [O3] (EC+EO). When the results for the two clones were analyzed together, elevated [CO2] increased tree growth and biomass, but had no effect on biomass allocation. Total leaf area increased and leaf abscission was delayed in response to elevated [CO2]. Elevated [O3] decreased dry mass of roots and branches and mean leaf size and induced earlier leaf abscission in the autumn; otherwise, the effects of elevated [O3] were small across the clones. However, there were significant interactions between elevated [CO2] and elevated [O3]. When results for the clones were analyzed separately, stem diameter, volume growth and total biomass of Clone 80 were increased by elevated [CO2] and the stimulatory effects of elevated [CO2] on stem volume growth and total leaf area increased during the 3-year study. Clone 80 was unaffected by elevated [O3]. In Clone 4, elevated [O3] decreased root and branch biomass by 38 and 29%, respectively, whereas this clone showed few responses to elevated [CO2]. Elevated [CO2] significantly increased total leaf area in Clone 80 only, which may partly explain the smaller growth responses to elevated [CO2] of Clone 4 compared with Clone 80. Although we observed responses to elevated [O3], the responses to the EC+EO and EC treatments were similar, indicating that the trees only responded to elevated [O3] under ambient [CO2] conditions, perhaps reflecting a greater quantity of carbohydrates available for detoxification and repair in elevated [CO2].  相似文献   

10.
Impacts of elevated temperature and carbon dioxide concentration ([CO2]) on wood properties of 15-year-old Scots pines (Pinus sylvestris L.) grown under conditions of low nitrogen supply were investigated in open-top chambers. The treatments consisted of (i) ambient temperature and ambient [CO2] (AT+AC), (ii) ambient temperature and elevated [CO2] (AT+EC), (iii) elevated temperature and ambient [CO2] (ET+AC) and (iv) elevated temperature and elevated [CO2] (ET+EC). Wood properties analyzed for the years 1992-1994 included ring width, early- and latewood width and their proportions, intra-ring wood density (minimum, maximum and mean, as well as early- and latewood densities), mean fiber length and chemical composition of the wood (cellulose, hemicellulose, lignin and acetone extractive concentration). Absolute radial growth over the 3-year period was 54% greater in AT+EC trees and 30 and 25% greater in ET+AC and ET+EC trees, respectively, than in AT+AC trees. Neither elevated temperature nor elevated [CO2] had a statistically significant effect on ring width, early- and latewood widths or their proportions. Both latewood density and maximum intra-ring density were increased by elevated [CO2], whereas fiber length was increased by elevated temperature. Hemicellulose concentration decreased and lignin concentration increased significantly in response to elevated temperature. There were no statistically significant interaction effects of elevated temperature and elevated [CO2] on the wood properties, except on earlywood density.  相似文献   

11.
Anthropogenic factors such as elevated deer populations, invasive earthworms or climate change may alter old-growth forests of the Upper Midwest region of the United States. We examined demographic trends of woody species across all size classes over 35 years in a late-successional forest dominated by hemlock (Tsuga canadensis), sugar maple (Acer saccharum) and yellow birch (Betula alleghaniensis) in Michigan's Upper Peninsula using two sets of permanent plots. For the duration of the study period, species that were less-preferred white-tailed deer (Odocoileus virginianus) forage, especially sugar maple, comprised a much higher fraction of all seedlings and saplings compared to overstory trees. The density of small sugar maple declined across the study period, but no other species became more abundant, creating a more open forest understory. By the most recent census, preferred species for deer browse had been nearly eliminated from the understory, and declines in unpreferred species such as sugar maple were also apparent. We found small changes in temperature (<0.5-1 °C rise in minimum and maximum temperatures depending on season) and precipitation (±28 mm depending on season) and little evidence of invasive earthworms impacts. Our results suggest that the sustained elevated deer density is shifting the structure and composition of this old-growth forest. A demographic model showed that if current recruitment, growth and mortality rates were to continue for 500 years the forest would eventually reach a new equilibrium with virtually no hemlock or yellow birch remaining.  相似文献   

12.
lntroductionAtmosphericconcentrationofCo2isrisingdra-maticaIIyandadoubIingofthepresentconcentrationwouIdoccurinmidnextcentury,duetoburnoffossilfuelanddestroyofforest(Gates1983,Tauszetal.1996).EIevatedatmosphericCO2willchangeitsgradientdistributioninforestecoboundary,andwillproduceagreateffectontreesandthewholeforestecosystem.Atpresent,studiesoneffectsofelevatedCozonplantshavebeenapopuIartopic,especiallyoncropsrice(BateretaI.199o).HaveIkaetal.(1984)hasgainedmanyachievementsonsoybean.How-e…  相似文献   

13.
Physiological acclimation and genotypic adaptation to prevailing temperatures may influence forest responses to future climatic warming. We examined photosynthetic and respiratory responses of sugar maple (Acer saccharum Marsh.) from two portions of the species' range for evidence of both phenomena in a laboratory study with seedlings. A field study was also conducted to assess the impacts of temperature acclimation on saplings subjected to an imposed temperature manipulation (4 degrees C above ambient temperature). The two seedling populations exhibited more evidence of physiological acclimation to warming than of ecotypic adaptation, although respiration was less sensitive to short-term warming in the southern population than in the northern population. In both seedling populations, thermal compensation increased photosynthesis by 14% and decreased respiration by 10% in the warm-acclimated groups. Saplings growing in open-top field chambers at ambient temperature and 4 degrees C above ambient temperature showed evidence of temperature acclimation, but photosynthesis did not increase in response to the 4 degrees C warming. On the contrary, photosynthetic rates measured at the prevailing chamber temperature throughout three growing seasons were similar, or lower (12% lower on average) in saplings maintained at 4 degrees C above ambient temperature compared with saplings maintained at ambient temperature. However, the long-term photosynthetic temperature optimum for saplings in the field experiment was higher than it was for seedlings in either the 27 or the 31 degrees C growth chamber. Respiratory acclimation was also evident in the saplings in the field chambers. Saplings had similar rates of respiration in both temperature treatments, and respiration showed little dependence on prevailing temperature during the growing season. We conclude that photosynthesis and respiration in sugar maple have the potential for physiological acclimation to temperature, but exhibit a low degree of genetic adaptation. Some of the potential for acclimation to a 4 degrees C increase above a background of naturally fluctuating temperatures may be offset by differences in water relations, and, in the long term, may be obscured by the inherent variability in rates under field conditions. Nevertheless, physiologically based models should incorporate seasonal acclimation to temperature and permit ecotypic differences to influence model outcomes for those species with high genetic differentiation between regions.  相似文献   

14.
Five-year-old Scots pine (Pinus sylvestris L.) seedlings were grown in open-top chambers at ambient and elevated (ambient + 400 &mgr;mol mol(-1)) CO(2) concentrations. Net photosynthesis (A), specific leaf area (SLA) and concentrations of nitrogen (N), carbon (C), soluble sugars, starch and chlorophyll were measured in current-year and 1-year-old needles during the second year of CO(2) enrichment. The elevated CO(2) treatment stimulated photosynthetic rates when measured at the growth CO(2) concentration, but decreased photosynthetic capacity compared with the ambient CO(2) treatment. Acclimation to elevated CO(2) involved decreases in carboxylation efficiency and RuBP regeneration capacity. Compared with the ambient CO(2) treatment, elevated CO(2) reduced light-saturated photosynthesis (when measured at 350 &mgr;mol mol(-1) in both treatments) by 18 and 23% (averaged over the growing season) in current-year and 1-year-old needles, respectively. We observed significant interactive effects of CO(2) treatment, needle age and time during the growing season on photosynthesis. Large seasonal variations in photosynthetic parameters were attributed to changes in needle chemistry, needle structure and feedbacks governed by whole-plant growth dynamics. Down-regulation of photosynthesis was probably a result of reduced N concentration on an area basis, although a downward shift in the relationship between photosynthetic parameters and N was also observed.  相似文献   

15.
Clonal trees of Pinus radiata D. Don were grown in open-top chambers at a field site in New Zealand for 3 years at ambient (37 Pa) or elevated (65 Pa) carbon dioxide (CO2) partial pressure. Nitrogen (N) was supplied to half of the trees in each CO2 treatment, at 15 g N m-2 in the first year and 60 g N m-2 in the subsequent 2 years (high-N treatment). Trees in the low-N treatment were not supplied with N but received the same amount of other nutrients as trees in the high-N treatment. In the first year, stem basal area increased more in trees growing at elevated CO2 partial pressure and high-N supply than in control trees, suggesting a positive interaction between these resources. However, the relative rate of growth became the same across trees in all treatments after 450 days, resulting in trees growing at elevated CO2 partial pressure and high-N supply having larger basal areas than trees in the other treatments. Sapwood N content per unit dry mass was consistently about 0.09% in all treatments, indicating that N status was not suppressed by elevated CO2 partial pressure. Thus, during the first year of growth, an elevated CO2 partial pressure enhanced carbon (C) and N storage in woody stems, but there was no further stimulus to C and N deposition after the first year. The chemical composition of sapwood was unaffected by elevated CO2 partial pressure, indicating that no additional C was sequestered through lignification. However, independent of the treatments, early wood was 13% richer in lignin than late wood. Elevated CO2 partial pressure decreased the proportion of sapwood occupied by the lumina of tracheids by up to 12%, indicating increased sapwood density in response to CO2 enrichment. This effect was probably a result of thicker tracheid walls rather than narrower lumina.  相似文献   

16.
One-year-old seedlings of Pinus koraiensis, Pinus sylvestriformis, Phellodendron amurense were grown in open-top chambers (OTCs) with 700 and 500 mmol/mol CO2 concentrations, control chamber and on open site (ambient CO2, about 350 mmol/mol CO2) respectively at the Open Research Station of Changbai Mountain Forest Ecosystems, Chinese Academy of Sciences, and the growth course responses of three species to elevated CO2 and temperature during one growing season was studied from May to Oct. 1999. The results showed that increase in CO2 concentration enhanced the growth of seedlings and the effect of 700 mmol/mol CO2 was more remarkable than 500 mmol/mol CO2 on seedling growth. Under the condition of doubly elevated CO2 concentration, the biomass increased by 38% in average for coniferous seedlings and 60% for broad-leaved seedlings. With continuous treatment of high CO2 concentration, the monthly-accumulated biomass of shade-tolerant Pinus koraiensis seedlings was bigger in July than in August and September, while those of Pinus sylvestriformis and Phellodendron amurense seedlings showed an increase in July and August, or did not decrese until September. During the hot August, high CO2 concentration enhanced the growth of Pinus koraiensis seedlings by increasing temperature, but it did not show dominance in other two species.  相似文献   

17.
Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karst.) seedlings were grown for 50 days in growth chambers in an ambient or twice ambient carbon dioxide concentration ([CO2]) at a day/night temperature of 19/12 degrees C or 23/16 degrees C. Although elevated [CO2] (EC) had only slight effects on the growth parameters measured, elevated temperature (ET) increased above ground dry mass of both species. Among treatments, biomass accumulation of both species was greatest in the combined EC + ET treatment. The EC treatment induced thylakoid swelling and increased numbers of plastoglobuli observed in Scots pine needles. Although EC had little effect on Rubisco protein or N concentration of needles, ET had a large effect on N-containing compounds and enhanced N allocation from 1-year-old needles. Terpenoids were more responsive to EC and ET than total phenolics. Generally, terpene concentrations were reduced by EC and increased by ET. Increased terpenoid concentrations in response to ET might be associated with thermotolerance of photosynthesis. In Norway spruce, EC decreased total phenolic concentrations in needles, probably as a result of increased growth. We conclude that, in seedlings of these boreal species, the effects of elevated [CO2] on the studied parameters were small compared with the effects of elevated temperature.  相似文献   

18.
The effects of pre-storage CO(2) enrichment on growth, non-structural carbohydrates and post-storage root growth potential of Engelmann spruce (Picea engelmannii Parry) seedlings were studied. Seedlings were grown from seed for 202 days in growth chambers with ambient (340 micro l l(-1)) or CO(2) enriched (1000 micro l l(-1)) air. Some seedlings were transferred between CO(2) treatments at 60 and 120 days. Photoperiod was reduced at 100 days to induce bud set and temperature was reduced at 180 days to promote frost hardiness development for storage at -5 degrees C for 2 or 4 months. Stored seedlings were planted in a growth chamber after thawing for one week at +5 degrees C. At 80, 120, 140 and 202 days, and at each planting time after storage, seedlings were harvested for growth measurements and analysis of starch and soluble sugar concentrations. Planted seedlings were assessed for bud break every two days and new roots > 5 mm long were counted after four weeks. Carbon dioxide enrichment increased root collar diameter and almost doubled seedling biomass, with the most obvious effects occurring after bud set. Stem height was affected only slightly and shoot/root ratios were not affected at all. Carbon dioxide enrichment increased the rate of reserve carbohydrate accumulation, but did not influence the final concentration attained before storage (accounting for 32% of seedling dry weight). Needles were the major storage organ for soluble sugars, whereas roots were the major storage organ for starch. Soluble sugars were not strongly affected by two or four months of storage, but starch was reduced by more than 50% in all plant parts. None of the CO(2) treatments had an impact on bud break or root growth potential.  相似文献   

19.
Sitka spruce (Picea sitchensis (Bong.) Carr.) seedlings were supplied with solutions containing nitrogen (N) at 0.1 x or 2 x the optimum rate (low-N and high-N supply, respectively) and grown either outside in a control plot or inside open-top chambers and exposed to ambient (355 &mgr;mol mol(-1)) or elevated (700 &mgr;mol mol(-1)) CO(2) concentration ([CO(2)]). Gas exchange measurements, chlorophyll determinations and nutrient analysis were made on current-year (< 1-year-old) shoots of the upper whorl after the seedlings had been growing in the [CO(2)] treatments for 17 months and the nutrient treatments for 6 months. Total seedling biomass and biomass allocation were assessed at the end of the experiment. Nutrient treatment had a significant effect on the light response curves, irrespective of [CO(2)] or chamber treatment; seedlings supplied with high-N rates had higher net photosynthetic rates than seedlings supplied with low-N rates. The degree of photosynthetic stimulation in response to elevated [CO(2)] was larger in seedlings receiving high-N rates than in seedlings receiving low-N rates. Light-saturated net photosynthesis of seedlings grown and measured in elevated [CO(2)] was 26% higher than that of seedlings grown and measured in ambient [CO(2)]. There was no significant effect of [CO(2)] or chamber treatment on the CO(2) response curves of seedlings receiving High-N supply rates. In contrast, analysis of the CO(2) response curves of seedlings receiving Low-N supply rates showed acclimation to elevated [CO(2)]. Both maximum rate of carboxylation (V(cmax)) and maximum electron transport capacity (J(max)) were lower and J(max)/V(cmax) higher in seedlings in the elevated [CO(2)] treatment. There was no effect of elevated [CO(2)] on stomatal conductance, although it was highly dependent on foliar [N], ranging from ~60 mmol m(-2) s(-1) at ~1.5 g N m(-2) to 200 mmol m(-2) s(-1) at ~5 g N m(-2). In the high-N and low-N treatments, foliar N concentration was 10 and 28% lower in seedlings grown in elevated [CO(2)] than in seedlings grown in ambient [CO(2)], respectively. There was no [CO(2)] effect on foliar phosphorus concentration ([P]). Chlorophyll concentration increased with increasing N supply in all treatments. There was no significant effect of elevated [CO(2)] on specific leaf area. Chlorophyll concentration expressed either on an area or dry mass basis for a given foliar [N] was higher in seedlings grown in elevated [CO(2)] than in seedings grown in ambient [CO(2)]. Elevated [CO(2)] increased total biomass accumulation by 37% in seedlings in the high-N treatment but had no effect in seedlings in the low-N treatment. There was a proportionally bigger allocation of biomass to roots of seedlings in the elevated [CO(2)] + low-N supply rate treatment compared with seedlings in other treatments. This resulted in a reduction in aboveground biomass compared with corresponding seedlings grown in ambient [CO(2)].  相似文献   

20.
We exposed Populus tremuloides Michx. and Acer saccharum Marsh. to a factorial combination of ambient and elevated atmospheric CO2 concentrations ([CO2]) and high-nitrogen (N) and low-N soil treatments in open-top chambers for 3 years. Our objective was to compare photosynthetic acclimation to elevated [CO2] between species of contrasting shade tolerance, and to determine if soil N or shading modify the acclimation response. Sun and shade leaf responses to elevated [CO2] and soil N were compared between upper and lower canopy leaves of P. tremuloides and between A. saccharum seedlings grown with and without shading by P. tremuloides. Both species had higher leaf N concentrations and photosynthetic rates in high-N soil than in low-N soil, and these characteristics were higher for P. tremuloides than for A. saccharum. Electron transport capacity (Jmax) and carboxylation capacity (Vcmax) generally decreased with atmospheric CO2 enrichment in all 3 years of the experiment, but there was no evidence that elevated [CO2] altered the relationship between them. On a leaf area basis, both Jmax and Vcmax acclimated to elevated [CO2] more strongly in shade leaves than in sun leaves of P. tremuloides. However, the apparent [CO2] x shade interaction was largely driven by differences in specific leaf area (m2 g-1) between sun and shade leaves. In A. saccharum, photosynthesis acclimated more strongly to elevated [CO2] in sun leaves than in shade leaves on both leaf area and mass bases. We conclude that trees rooted freely in the ground can exhibit photosynthetic acclimation to elevated [CO2], and the response may be modified by light environment. The hypothesis that photosynthesis acclimates more completely to elevated [CO2] in shade-tolerant species than in shade-intolerant species was not supported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号