首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Wheat/Hordeum chilense disomic addition lines have been used to locate genes influencing resistance against greenbug (Schizaphis graminum Rond.) in specific chromosomes of H. chilense. H. chilense is a source of antixenosis, antibiosis and host tolerance to the greenbug, being resistant also to the Russian wheat aphid, the two key pests in wheat. For measuring antixenosis, the numbers of aphids per plant were recorded in a host free choice test; antibiotic resistance was determined by measuring the developmental time, the fecundity and the intrinsic rate of population increase of aphids reared on the different hosts, and host tolerance to aphids was evaluated by the leaf damage and the number of expanded leaves on the hosts after 3 weeks of infestation. The greenbugs belonged to a clone of biotype C. Plant genes with positive effects for antixenosis were located on chromosome 1Hch. Genes with positive effects for antibiosis were located on three different chromosomes and those that prolonged aphid developmental time were located on chromosomes 5Hch and 7Hch while those that reduced the total fecundity were on 4Hch. Chromosome 7Hch accounted for host tolerance to greenbug.  相似文献   

2.
A. M. Castro    A. Vasicek    S. Ramos    A. Martin    L. M. Martin  A. F. G. Dixon 《Plant Breeding》1998,117(6):515-522
A collection of tritordeum amphiploids (Hordeum chilense × Triticum turgadum) and their wheat parents were screened for resistance against the two main aphid pesis of cereals, the greenhug. Schizaphis graminum Rond. and ihe Russian wheat aphid (RWA) Diuraphis naxia Mord-vilko. Antixenosis. antibiosis and tolerance were evaluated in controlled environmental conditions using a. clone of greenbug biotypc C and a clone of RWA collected on pasta wheat. Tritordeum amphiploids pos-sess genetic resistance against greenbug and RWA; some of the lines tested were more resistant than the parental wheat line. Four principal components explained the resistance against both aphid species. The antixenosis shown against both pests was mainly contributed by their wheat parents. The antibiosis againsl both aphid species was obviously dependent on diflerent plant traits. The highest levels of antibiosis against the two aphids occurred in different amphiploids. Different genes are involved in the antibiotic reaction against the two aphids. The Tritordeum resistance to RWA is based on anlixenosis and ant-biosis since the tolerance trails were not independent of the other types of resistance. The level of tolerance shown to the greenbug was variable and appears to be controlled by differeni mechanisms. The tolerance to aphids shown by H. chilense is expressed in the amphiploids. but with some genomic interaction. Genes conferring resistance to aphids in H. chilensee could be incorporated into new cultivars of wheat to broaden their genetic base of resistance against greenbug and RWA.  相似文献   

3.
A. M. Castro    A. Vasicek    S. Ramos    A. Worland    E. Suárez    M. Muñoz    D. Giménez  A. A. Clúa 《Plant Breeding》1999,118(2):131-137
A collection of 26 cultivars of wheat Triticum aestivum were screened for resistance against the two main aphid pests of cereals, the greenbug Schizaphis graminum Rond. and the Russian wheat aphid (RWA) Diuraphis noxia Mordvilko. Since genetic variability has been found in Argentinean populations of both aphid species, this work was aimed at determining the response of different types of resistance in wheat cultivars when infested with aphids. Antixenosis, antibiosis and tolerance were evaluated with traditional tests in controlled environmental conditions using a clone of greenbug biotype C and a clone of RWA collected on wheat. Genetic resistance was found against one or both aphid species in several wheats. Most of the highest levels of antixenosis, antibiosis and tolerance against the two aphids occurred in different cultivars; as a consequence the resistance mechanisms for both pests appear to be partly independent. Antibiosis against greenbug or RWA appears to be determined by two different sets of genes, one affecting development time and the other reducing fecundity and longevity. The antibiosis against both aphid species in terms of their development time and the intrinsic rate of population increase resulted in a partial cross effect of these aphid traits against the alternative insect species. Nonetheless, the same cultivars affected the total fertility and the longevity of both aphids. Since the highest plant performance levels and the least plant damage were recorded in different wheats, different patterns of tolerance were displayed against the greenbug and the RWA. Consequently, different genes appear to be involved in several traits of the resistance mechanisms against the two aphids. The genes that independently conferred resistance to aphids could be combined in new cultivars of wheat to broaden their genetic base of resistance against the greenbug and the RWA.  相似文献   

4.
Summary A wide range of cultivated brassica accessions including broccoli, Brussels sprouts, Chinese cabbage, cauliflower, collard, kale and swede material was tested against the cabbage aphid, Brevicoryne brassicae, at HRI, Wellesbourne in the field and laboratory in both 1992 and 1993. In the field, B. brassicae attack was assessed as the proportion of infested plants and the numbers of aphid colonies present. In the laboratory, aphid performance was measured in terms of the pre-reproductive and reproductive period, population increase, and insect mortality. Interpretation of the data was facilitated by plotting sorted accession means against normal order statistics. This statistical approach indicated the spread of variation amongst the accessions and permitted identification of extremes. Partial levels of antixenosis resistance were discovered in red brassicas. Glossy accessions of cabbage and cauliflower possessed antixenosis and antibiosis resistance that lasted throughout the season of crop growth in the field. Other accessions were shown to withstand aphid attack and therefore possessed tolerance. The laboratory studies provided information on mechanisms of antibiosis resistance. The potential value of the different sources of resistance is discussed.  相似文献   

5.
The greenbug, Schizaphis graminum(Rondani), the Russian wheat aphid, Diuraphis noxia (Mordvilko), and the bird cherry oat aphid, Rhopalosiphum padi(L.), annually cause several million dollars worth of wheat production losses in Europe and the United States. In this study, Triticum and Aegilops accessions from the Czech Research Institute of Crop Production and the Kansas State University Wheat Genetic Resources Center were evaluated for resistance to these aphids. Accessions with aphid cross-resistance were examined for expression of the antibiosis, antixenosis, and tolerance categories of resistance. Aegilops neglecta accession 8052 exhibited antibiotic effects toward all three aphids in the form of reduced intrinsic rate of increase (rm). The rm of greenbug (biotype I) on Ae. neglecta 8052 was significantly lower than that of greenbugs on plants of the susceptible U. S. variety Thunder bird. The rm of Russian wheat aphids was significantly lower on foliage of both Ae. neglecta 8052 and T. araraticum accession 168 compared to Thunderbird. The rm values of bird cherry oat aphids fed both Ae. neglecta 8052 and T. araraticum 168 were also significantly lower than those fed the susceptible accession T. dicoccoides 62. Neither Ae. neglecta 8052 or T. araraticum 168 exhibited tolerance to either greenbug biotype I or Russian wheat aphid. Preliminary data suggest that T. araraticum 168 may also possess tolerance to bird cherry oat aphid. New genes from Ae. neglecta 8052 and T. araraticum 168 expressing aphid antibiosis can be used to develop multiple aphid resistant wheat in the U. S. and Central Europe. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
Antibiosis and antixenosis to Rhopalosiphum padi among triticale accessions   总被引:1,自引:0,他引:1  
L. S. Hesler  C. I. Tharp 《Euphytica》2005,143(1-2):153-160
Tests for antibiosis and antixenosis resistance to Rhopalosiphum padi L., the bird cherry-oat aphid, were conducted among four wheat (Triticum aestivum L.) and eight triticale (XTriticosecale Wittmack) accessions. Tests for antibiosis included measuring R. padi-population growth over 13 days, number of days to reproduction of individual R. padi, and number of aphid progeny produced in the first 7 days of adulthood. Antixenosis was measured in no-choice nymphiposition tests and in choice tests of host selection by winged R. padi. Three of seven triticale accessions limited R. padi populations relative to control accessions. Lower R. padi-population growth on N1185 and Okto Derzhavina could be explained partially by increased developmental times. Lower R. padi-population growth on triticale accessions N1185, N1186 and Okto Derzhavina could be explained at least partially by fewer aphid progeny on these accessions. Developmental time of R. padi on N1185 and Okto Derzhavina was greater than that on Stniism 3 triticale, identified previously as resistant to R. padi. There were less R. padi progeny on N1185 than on Stniism 3, and comparable numbers of R. padi progeny among N1186, Okto Derzhavina, and Stniism 3. None of the accessions limited nymphiposition by R. padi. Choice tests revealed heterogeneity in host selection by R. padi but an overall trend that triticale accessions Okto Derzhavina, N1185, N1186 and Stniism 3 were less preferred hosts than Arapahoe wheat. Relatively strong resistance in these triticale accessions warrant consideration of their future use in breeding programs for cereal-aphid resistance.  相似文献   

7.
G. S. Deol    G. E. Wilde  B. S. Gill 《Plant Breeding》1995,114(6):545-546
A total of 259 accessions of wild Triticum species originating from different countries, along with 91 triticale (6×)× bread wheat true-breeding derivatives, two bread wheat, and three triticale cultivars were screened for resistance to the Russian wheat aphid, a serious insect pest of the wheat crop. Twenty-four entries with low damage ratings on the basis of amount of leaf rolling and leaf chlorosis were retested along with resistant and susceptible controls. On the basis of leaf roll damage ratings, eight entries including four Triticum monococcum var. boeoticum (T. boeoticum), one T. monococcum var. monococcum (T. monococcum), two T. timopheevii var. araraticum (T. araraticum), and one triticale cultivar were significantly superior to ‘Karl’ (susceptible control) wheat. Among these, four accessions — three T. boeoticum and one T. araraticum— were significantly superior to all other entries and were equal to the resistant control (PI 372129) in resistance rating based on leaf rolling and leaf chlorosis (except T. boeoticum TA 202). The leaf chlorosis damage rating of all accessions were significantly lower than that of the susceptible check.  相似文献   

8.
The Russian wheat aphid Diuraphis noxia (Kurdjumov) is a serious pest of wheat in South Africa. The use of D. noxia-resistant cultivars may reduce the impact of this pest on wheat production and at the same time reduce environmental risks and control costs. The mechanisms of resistance in two new sources of resistance were compared by using various methods, in order to establish a rapid and relatively accurate screening protocol. The resistant lines OSU ID 2808 and Aus 22498 were compared to the susceptible cultivars Betta and Tugela. The predominant mechanism of resistance in OSU ID 2808 was antibiosis, although a low level of antixenosis may also be present. The line Aus 22498 was primarily a tolerant type, with a moderate level of antibiosis and a low level of antixenosis. A six week screening procedure is described using the colony count technique for antibiosis, a completely random free choice experiment for antixenosis and a three week test measuring initial and final plant height, initial and final D. noxia infestation, damage rating, leaf area and dry plant mass for tolerance. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
The reaction of tritordeum and its Hordeum chilense and Triticum spp. parents to common bunt incited by Tilletia tritici were determined in field experiments. H. chilense accessions were very resistant, and durum wheats exhibited high to moderate levels of resistance. Conversely, bread wheats were highly susceptible. Resistance from H. chilense was expressed in the amphiploids, although the level of resistance was partially diluted at higher ploidy levels. Hexaploid tritordeums were immune to the disease; some infection was observed among the octo-ploids but at much lower levels than in their respective wheat parents.  相似文献   

10.
Two sets of intervarietal chromosome substitution lines in the recipient,susceptible cultivar ‘Chinese Spring’ were screened to identify the wheat chromosomes involved with antixenosis, antibiosis and tolerance resistance to greenbug and Russian wheat aphid. The amphiploid ‘Synthetic’ and the cultivar ‘Hope’ were the donor parents. Antixenosis, antibiosis and tolerance were evaluated with conventional tests in controlled environmental conditions using a clone of greenbug biotype C and a clone of RWA collected on wheat. Antixenosis against greenbug was accounted for by several chromosomes in both sets of substitution lines with chromosome 2B contributing the highest level of this type of resistance. The highest levels of antixenosis against RWA were associated with the group of chromosomes 7 of the substitutions CS/Syn set and the chromosome substitutions 2B, 6A and 7D of the CS/Hope set. Antibiosis against both aphids species was accounted for by several different chromosomes. The highest levels of antibiosis for most of RWA resistance traits were recorded from the 1B substitution line of the CS/Hope set. More than one gene appears to determine antibiosis. Tolerance to both greenbug and the RWA was significantly associated with chromosomes 1A,1D, and 6D in the CS/Syn set of substitutions. These lines showed enhanced plant growth under aphid infestation. The highest levels of antixenosis, antibiosis and tolerance against the two aphid species occurred mostly in different substitution lines. Consequently, the different types of resistance for both pests seem to be partially independent. Since different genes seem to be involved in at least several traits of the resistance categories against the two aphid species, such genes could be combined in new cultivars of wheat to broaden their genetic base of resistance against the greenbug and the RWA. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
Hexaploid tritordeum, the amphiploid Hordeum chilense x Triticum turgidum conv. durum has a higher grain carotene content than durum wheat. In order to decide strategies for introgressing this character into durum wheat, the effect on the carotene content of tritordeum synthesized with H. chilense and durum wheat differing in carotene content was analysed. Carotene content was evaluated in 35 primary tritordeum lines and their parents, 27 H. chilense accessions and 19 durum wheat cultivars. Some amphiploids have either one barley or wheat parent in common. In general, the influence of H. chilense is more important than that of wheat in the amphiploid carotene content. Nevertheless, the interactions between both parents on the amphiploid carotene content are also important.  相似文献   

12.
We tested three different consensus chloroplast simple sequence repeat (ccSSR) primers to identify amplified polymorphic products in Hordeum chilense, Hordeum vulgare and other Triticeae species with a double aim. First, to use chloroplast‐specific primers as an indirect method for the assessment of wheat cytoplasmic male sterile purity in seedlings during multiplication and in the development of alloplasmic lines. Second, to analyse cytoplasmic relationships among H. chilense accessions and between H. chilense and other members of the Triticeae tribe. The products from primer ccSSR‐4 were easily discriminated using agarose gel electrophoresis. Based on the lengths of amplification products, three groups were identified: the first included almost exclusively H. chilense accessions, the second contained H. vulgare accessions and the third comprised the wheat and the rest of the analysed accessions. Sequencing of PCR products revealed point mutations and insertions/deletions in addition to the expansion/contraction of the microsatellite repeat length. Data analyses of sequenced fragments revealed six groups of accessions among the material studied. No significant differences were found among H. chilense accessions.  相似文献   

13.
The cabbage root fly Delia radicum L. (Diptera: Anthomyiidae) is one of the major pests of many Brassica crops in the temperate areas of Europe and North America. At present, turnip (B. rapa ssp. rapa L.) varieties resistant to the pest does not exist. With the aim to fill this gap, a no-choice tolerance test of 56 accessions among turnips, turnip tops and turnip greens was performed under controlled conditions by introducing D. radicum eggs. Plant survival, leaf and root conditions, pupae number and weight significantly varied among plant accessions. Ten putatively resistant and ten susceptible accessions (control group) were selected from this first screening, transplanted in the field and exposed to natural infestation to detect antibiosis and antixenosis mechanisms. Both in the laboratory and in the field, pupae number significantly varied within accessions and between resistant and susceptible group, although pupal weight did not, indicating the absence of antibiosis effect on this early stage. In the field, the number of galleries was significantly lower in the resistant group in comparison with the control. Resistant accessions had smaller size, and a smaller, white and mostly buried root. Within the resistant and susceptible accessions, larger plants harboured more pupae, however purple roots were those most preferred, and the hosted pupae weighed most. Three accessions from the resistant group (MBGBR0178, MBGBR0570 and MBGBR0371) stand out for resistance to D. radicum possibly through antixenosis mechanisms.  相似文献   

14.
×Tritordeum sp. (Ascherson et Graebner) is the amphiploid obtained after chromosome doubling of hybrids between Hordeum chilense (Roem. et Schult.) and diploid, tetraploid or hexaploid wheats. Tritordeums have consistently higher carotenoid pigment contents than durum or bread wheat. Two distinct H. chilense accessions (used for the synthesis of tritordeum) were analysed for this trait. The chromosomal localization of the genes coding the ability of H. chilense to increase the carotene content of wheat were carried out using two sets of wheat- H. chilense addition lines. The a arm of chromosome 7Hch is proposed to be responsible for the high carotene content in tritordeum. The implication of this finding in wheat breeding is discussed.  相似文献   

15.
Summary Hordeum chilense is a wild barley with high crossability with Triticum, Hordeum and Secale. Its amphiploid with wheat, tritordeum, has potential as a new crop. H. chilense is highly resistant to the powdery mildew diseases of both wheat and barley. Whereas tritordeum is resistant to barley powdery mildew, its reaction to wheat powdery mildew is similar to that of its wheat parent. However H. chilense contributes to a reduced density of mildew colonies. This quantitative resistance of tritordeum is diluted at higher ploidy levels.  相似文献   

16.
Hordeum chilense (Roem. et Schult), a native grass of South America, is a source of antixenotic and antibiotic resistance to the greenbug Schizaphis graminum Rondani. The genetic and environmental components of the variability in antibiotic resistance shown by H. chilense were determined by measuring the developmental time, the length of adult life, fecundity and intrinsic rate of population increase of green-bugs reared on this host. The aphids belonged to a clone of biotype C. Plants were cloned to reduce the incidence of environmental variability. Different plant characters appeared to prolong aphid developmental time and reduce the length of adult life and total fecundity. The broad sense heritability and the genetic variability of these plant characters were different. The plant character that affected aphid development appears to differ from that affecting fecundity.  相似文献   

17.
The soybean aphid, Aphis glycines Matsumura, is a pest of soybean [Glycine max L. (Merrill)] in Asia, and its recent establishment in North America has led to large, recurring outbreaks that have challenged pest management practitioners there to seek environmentally responsible means for its control. Growth-chamber experiments were conducted to determine and characterize host-plant resistance among several soybean accessions. Soybean plants were first screened for resistance by rating the population growth of A. glycines in two tests. All plants of PI 230977 and 25% of PI 71506 plants were resistant (≤100 aphids per plant) in the first screening test. All ‘Dowling’, PI 71506 and PI 230977 were resistant (≤150 aphids per plant), and 50% of plants of line ‘G93-9223’ were resistant in the second test. Follow-up experiments showed that antixenosis was a modality of resistance based on reduced nymphiposition by A. glycines on Dowling, PI 230977 and PI 71506 in no-choice tests and on fewer numbers of A. glycines on Dowling, PI 230977, PI 71506 and G93-5223 in distribution tests. Antixenosis in Dowling and PI 230977 was stronger in the unifoliolate leaves than in other shoot structures, whereas distribution of A. glycines within plants of PI 71506 and G93-5223 suggested comparable suitability between unifoliolate leaves and other shoot structures of these accessions. Antibiosis to A. glycines was evident as a lower proportion of aphids that reproduced on PI 230977 and from fewer progeny on PI 230977 and Dowling than on 91B91. The number of days from birth to reproduction by A. glycines did not differ among accessions. Results confirmed Dowling and PI 71506 as strong sources of resistance to A. glycines. The levels of antixenosis and antibiosis to A. glycines in PI 230977 and antixenosis to A. glycines in G93-9223 suggest that these accessions may also be valuable to soybean breeding programs as sources of resistance.  相似文献   

18.
RAPD markers were developed for octoploid X Tritordeum (amphiploid Hordeum chilense × Triticum aestivum) and its parents. Two bread wheats, two H. chilense accessions and the two tritordeums synthesized with them were used. A total of 41 arbitrary decamer primers were tested, yielding 190 products that could be assigned to wheat, 185 to H. chilense and 108 that were nonspecific (present in wheat and barley). A total of 44 products were specific to one H. chilense line and 33 to the other 16 of the former were located on the chromosomes using a set of H. chilense in T. aestivum addition lines. The potential of RAPDs for developing addition lines or the detection of introgressions of H. chilense in bread wheat is discussed.  相似文献   

19.
D. R. Porter    C. A. Baker    M. El-Bouhssini   《Plant Breeding》2005,124(6):603-604
The Russian wheat aphid (RWA), is a serious threat to wheat production worldwide. The identification of a new RWA biotype in the USA virulent to all commercially grown winter wheats poses new challenges to wheat breeders. Wheat germplasm was evaluated to identify accessions resistant to the new virulent RWA isolate (biotype 2). Eleven biotype 1‐resistant wheats and one susceptible check were challenged with RWA biotype 2. Two resistant wheat entries were identified (one highly resistant and one moderately resistant). This information is useful to wheat breeders searching for sources of resistance to the new RWA biotype to incorporate into their breeding programmes.  相似文献   

20.
A. M. Castro    A. Vasicek    C. Ellerbrook    D. O. Giménez    E. Tocho    M. S. Tacaliti    A. Clúa    J. W. Snape 《Plant Breeding》2004,123(4):361-365
Breeding for genetic resistance against greenbug and Russian wheat aphid (RWA) is the most effective way of controlling these widespread pests in wheat. Earlier work had shown that chromosome 7D of a synthetic hexaploid wheat, ‘Synthetic’ (T. dicoccoides × Ae. squarrosa) (AABB × DD) gave resistance when transferred into the genetic background of an aphid‐susceptible cultivar, ‘Chinese Spring’, as the recipient. To map the genes involved, a set of 103 doubled haploid recombinant substitution lines was obtained from crossing the 7D substitution line with the recipient, and used to determine the number and chromosomal location of quantitative trait loci (QTL) controlling antixenosis and antibiosis types of resistance. Antixenosis to RWA was significantly associated with marker loci Xpsr687 on 7DS, and Xgwm437 on 7DL. Antibiosis to greenbug was associated with marker loci Xpsr490, Rc3 (on 7DS), Xgwm44, Xgwm111, Xgwm437, Xgwm121 and D67 (on 7DL). Similarly, antibiosis to RWA was linked to loci Xpsr490, Rc3, Xgwm44, Xgwm437 and Xgwm121. At least two QTL in repulsion phase, one close to the centromere either on the 7DS or 7DL arms, and a second distal on 7DL could explain antibiosis to RWA and, partially, this mechanism against greenbug.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号