首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
骨是镉毒性作用的主要靶器官之一,但其对鸡骨髓基质细胞(bone marrow stromal cells,BMSCs)增殖和成骨分化的毒性作用仍不清楚.本研究利用差速贴壁纯化法获得鸡BMSCs,加入不同浓度镉处理不同时间,采用CCK-8法检测细胞增殖,碱性磷酸酶(alkaline phosphatase,ALP)和茜素...  相似文献   

2.
We examined the proliferation capacity and neuronal differentiation potency of canine bone marrow stromal cells (BMSCs). In addition, the microstructures of neuron-like cells after neuronal differentiation were observed under a scanning electron microscope. Canine BMSCs grew to confluency at 10.0 ± 2.5 days, and 3.8 ± 2.1 × 10(6) BMSCs were collected in one passage. Approximately 65% of canine BMSCs changed to neuron-like morphology after neuronal differentiation, and nearly all neuron-like cells stained positive against neuron-specific enolase. In addition, microstructures such as the cellular organelles, filaments and growth cones of these cells bore a close resemblance to those of the original mature neurons. These results suggested that canine BMSCs might be capable of differentiating into neurons.  相似文献   

3.
4.
Regenerative therapy using bone marrow stromal cells (BMSCs) has begun to be clinically applied in humans and dogs for neurological disorders such as spinal cord injury. Under appropriate conditions in vitro, BMSCs differentiate into neuronal cells, which may improve the effects of regenerative therapy. In this study, we evaluated canine neuron-like cells (NLCs) derived from BMSCs. We speculated on their suitability for neuro-transplantation from the point of view of their morphological features, long-term viability, abundant availability, and ability to be subcultured. Canine NLCs were differentiated as follows: third-passage BMSCs were maintained in pre-induction medium containing 2-mercaptoethanol and dimethylsulfoxide for 5 h, and then cells were transferred to neuronal induction medium containing fetal bovine serum, basic fibroblast growth factor, epidermal growth factor, dibutyryl cyclic AMP, and isobutylmethylxanthine for 7 or 14 days. Canine NLCs fulfilled the transplantation criteria and expressed markers of both immature neurons (nestin, 84.7 %) and mature neuronal cells (microtubule-associated protein-2, 95.7 %; βIII-tubulin protein, 12.9 %; glial fibrillary acidic protein, 9.2 %). These results suggest that canine BMSCs can be induced to differentiate into neuronal cells and may be suitable for neuro-transplantation. This study may provide information for improving cellular therapy for neurological diseases.  相似文献   

5.
The aim of the study is to evaluate the clinical application in veterinary orthopedics of bone marrow mononuclear cells (BMMNCs) and cultured bone marrow stromal cells (cBMSCs) for the treatment of some orthopaedic lesions in the dog. The authors carried out a clinical study on 14 dogs of different breed, age and size with the following lesions: 1 bone cyst of the glenoid rime; 2 nonunion of the tibia; 3 nonunion of the femur; 2 lengthening of the radius; 1 large bone defect of the distal radius;1 nonunion with carpus valgus; 4 Legg-Calvé-Perthés disease. In 9 cases the BMMCNs were used in combination with a three dimensional resorbable osteogenic scaffold the chemical composition and size of which facilitates the ingrowth of bone. In these cases the BMMNCs were suspended in an adequate amount of fibrin glue and then distribuited uniformly on a Tricalcium-Phosphate (TCP) scaffold onto which were also added some drops of thrombin. In 1 case of nonunion of the tibia and in 3 cases of Legg-Calvè-Perthés (LCP) disease the cultured BMSCs were used instead because of the small size of the dogs and of the little amount of aspirated bone marrow. X-ray examinations were performed immediately after the surgery. Clinical, ultrasounds and X-ray examinations were performed after 20 days and then every month. Until now the treated dogs have shown very good clinical and X-ray results. One of the objectives of the study was to use the BMMNCs in clinical application in orthopaedic lesions in the dog. The advantages of using the cells immediately after the bone marrow is collected, are that the surgery can be performed the same day, the cells do not need to be expanded in vitro, they preserve their osteogenic potential to form bone and promote the proper integration of the implant with the bone and lastly, the technique is easier and the costs are lower.  相似文献   

6.
We investigated the influence of autologous serum (AS)-supplemented medium on the proliferation and differentiation into neurons of canine bone marrow stromal cells (BMSCs). Canine BMSCs were cultured using α-MEM only, α-MEM with 10% fetal bovine serum (FBS), and 5, 10 and 20% AS-supplemented α-MEM. Growth of canine BMSCs was observed in all AS groups. The proliferation capacity of canine BMSCs in the AS groups was similar to that in the FBS group. No significant differences between the FBS and AS groups were observed in the percentage of the cells that changed to the neuron-like morphology and neuron-specific enolase-positive ratio after neuronal differentiation. Canine BMSCs cultured using AS-supplemented medium were able to proliferate and showed neuronal differentiation potency.  相似文献   

7.
The aim of the study is to evaluate the clinical application in veterinary orthopedics of bone marrow mononuclear cells (BMMNCs) and cultured bone marrow stromal cells (cBMSCs) for the treatment of some orthopaedic lesions in the dog. The authors carried out a clinical study on 14 dogs of different breed, age and size with the following lesions: 1 bone cyst of the glenoid rime; 2 nonunion of the tibia; 3 nonunion of the femur; 2 lengthening of the radius; 1 large bone defect of the distal radius;1 nonunion with carpus valgus; 4 Legg-Calvé-Perthés disease. In 9 cases the BMMCNs were used in combination with a three dimensional resorbable osteogenic scaffold the chemical composition and size of which facilitates the ingrowth of bone. In these cases the BMMNCs were suspended in an adequate amount of fibrin glue and then distribuited uniformly on a Tricalcium-Phosphate (TCP) scaffold onto which were also added some drops of thrombin. In 1 case of nonunion of the tibia and in 3 cases of Legg-Calvè-Perthés (LCP) disease the cultured BMSCs were used instead because of the small size of the dogs and of the little amount of aspirated bone marrow. X-ray examinations were performed immediately after the surgery. Clinical, ultrasounds and X-ray examinations were performed after 20 days and then every month. Until now the treated dogs have shown very good clinical and X-ray results. One of the objectives of the study was to use the BMMNCs in clinical application in orthopaedic lesions in the dog. The advantages of using the cells immediately after the bone marrow is collected, are that the surgery can be performed the same day, the cells do not need to be expanded in vitro, they preserve their osteogenic potential to form bone and promote the proper integration of the implant with the bone and lastly, the technique is easier and the costs are lower.  相似文献   

8.
The objective of this study was to determine the tissue density, in vitro expansion and differentiation of canine adipose tissue-derived (ASC) and bone marrow-derived (BMSC) stromal cells. Primary (P0) and cell passages 1-6 (P1-6) cell doubling numbers (CD) and doubling times (DT) were determined in fresh cells. The P0, P3, and P6 adipogenic (CFU-Ad), osteogenic (CFU-Ob), and fibroblastic (CFU-F) colony forming unit frequencies, lineage specific mRNA levels in differentiated P3 cells and composition of P3 and P6 chondrogenic pellets were assessed in cryogenically preserved cells. Cell yields from bone marrow were significantly higher than adipose tissue. Overall ASC and BMSC CDs and DTs and P3 and P6 CFU-F, CFU-Ad, and CFU-Ob were comparable. The P0 BMSC CFU-Ob was significantly higher than ASC. Lineage specific mRNA levels were higher in differentiated versus control cells, but similar between cell types. Protein was significantly greater in P3 versus P6 ASC chondrogenic pellets. Based on these findings, fresh and revitalized canine ASCs are viable alternatives to BMSCs for stromal cell applications.  相似文献   

9.
The aim of this study was to compare the osteogenic and proliferative potential of canine mesenchymal stromal cells (cMSCs) derived from bone marrow (BM-cMSCs) and adipose tissue (AT-cMSCs). Proliferation potential was determined under varying oxygen tensions (1%, 5%, and 21% O(2)). Effects of reduced oxygen levels on the osteogenic differentiation of AT-cMSCs were also investigated. AT-cMSCs proliferated at a significantly faster rate than BM-cMSCs, although both cell types showed robust osteogenic differentiation. Culture in 5% and 1% O(2) impaired proliferation in cMSC from both sources and osteogenic differentiation in AT-cMSCs. Our data suggests that AT-cMSCs might be more suitable for use in a clinical situation, where large cell numbers are required for bone repair, due to their rapid proliferation combined with robust osteogenic potential. Our data also suggests that the inhibitory effects of hypoxia on both cell proliferation and differentiation should be considered when using MSCs in a potentially hypoxic environment such as a fracture site.  相似文献   

10.
The development of adipose tissue in skeletal muscle is important for improving meat quality. However, it is still unclear how adipocytes grow in the proximity of muscle fibers. We hypothesized that adipocytes would suppress muscle cell growth so as to grow dominantly within muscle. In this study, we investigated the effect of adipocytes on the differentiation of muscle cells in a co‐culture system. The fusion index of C2C12 myoblasts co‐cultured with 3T3‐L1 adipocytes was significantly lower than that of the control. The expression of myogenin and myosin heavy chain in C2C12 muscle cells co‐cultured with 3T3‐L1 adipocytes was significantly lower than in the control. Furthermore, the expression of Atrogin‐1 and MuRF‐1 was higher in C2C12 muscle cells co‐cultured with 3T3‐L1 adipocytes than the control. These results suggest that 3T3‐L1 adipocytes suppress the differentiation of C2C12 myoblasts. In addition, 3T3‐L1 adipocytes induced the expression and secretion of IL‐6 in C2C12 muscle cells. The fusion index and myotube diameter were higher in C2C12 muscle cells co‐cultured with 3T3‐L1 cells in medium containing IL‐6‐neutralizing antibody than the control. Taken together, there is a possibility that adipocyte‐induced IL‐6 expression in muscle cells could be involved in the inhibition of muscle cell differentiation via autocrine.  相似文献   

11.
为探讨成年鸡原代肝细胞的分离条件和长期培养过程中的形态学特征,本试验采用改进胶原酶二步原位灌流法分离高活性鸡原代肝细胞,并优化培养液,得到肝细胞长期培养的初步条件.结果显示,分离得到的活性肝细胞达94%,培养3 d细胞活性最强;贴壁培养时可见到肝细胞较为明显的分化过程.  相似文献   

12.
To investigate in vitro differentiation of canine adipose tissue-derived stromal cells (ATSCs) into neuronal cells, ATSCs from celiac adipose tissue in clinically healthy beagle dogs were treated with 100 muM dibutyryl cyclic adenosine monophosphate (dbcAMP) and 125 muM isobuthylmethylxanthine (IBMX). ATSCs were morphologically changed into differentiated ATSCs from spindle-shaped cells to neuron-like cells with numerous processes after the treatment. Expression of neuron-specific enolase (NSE) as an early neuron specific marker protein was detected in both ATSCs and differentiated ATSCs, however diachronic increase of NSE expression was observed in differentiated ATSCs after the treatment with dbcAMP/IBMX. In addition, neurofilament-68 (NF-68) as an early to mature neuron specific marker protein was weakly expressed in differentiated ATSCs. Neuron specific glutamate and glucose transporter (EAAC1 and GLUT-3, respectively) mRNAs were strongly expressed in differentiated ATSCs compared with those in ATSCs, although glia specific glutamate transporter mRNA (GLT-1) was also detected in differentiated ATSCs. ATSCs can differentiate into early to mature neuronal cells and are candidate cells for autologous nerve regeneration therapy, although additional research is needed to examine functional characteristics of differentiated ATSCs.  相似文献   

13.
14.
为培育转基因肉牛提供种子细胞以及进一步丰富牛骨髓间充质干细胞(bone marrow mesenchymal stem cell,BMSC)的多向分化潜能,利用细胞免疫荧光染色和分子生物学方法,初步探讨表皮生长因子和胰岛素体外诱导牛BMSC向上皮样细胞分化的可能性。利用含细胞因子的诱导液对纯化稳定的P4代牛BMSC进行体外诱导,并对诱导后的细胞进行细胞角蛋白18的细胞免疫荧光观察和细胞角蛋白19的RT-PCR鉴定。结果表明,诱导后细胞经细胞角蛋白18免疫荧光染色后出现明显的荧光。RT-PCR结果显示诱导分化后细胞角蛋白19基因在细胞中表达。因此,在体外,表皮生长因子和胰岛素可诱导牛BMSC初步分化为上皮样细胞。  相似文献   

15.
Uterine endometrial stromal cells differentiate into decidual cells during the late secretory phase of the menstrual cycle and pregnancy. However, the biochemical mechanisms of decidualization have yet to be definitively elucidated. In the present study, we transfected primary human endometrial stromal cell with a temperature-sensitive mutant of simian virus 40 large T antigen and thereby established an immortalized stromal cell line (EtsT) in order to examine the role of stathmin, a cytosolic phosphoprotein that regulates microtubule dynamics, in stromal cell differentiation. When treated with the decidual stimulus dibutyryl-cAMP (db-cAMP) or forskolin, the fibroblastic cell-shaped EtsT cells transformed into large- and round-shaped cells and secreted large amounts of the decidual markers prolactin (PRL) and insulin-like growth factor binding protein-1 (IGFBP-1). Analysis of the stathmin protein levels in the db-cAMP- and forskolin-treated EtsT cells revealed that the total and phosphorylated protein levels dropped as decidualization progressed. Suppression of stathmin expression by transfection with small interfering RNA (siRNA) suppressed EtsT cell proliferation. It also abolished db-cAMP-induced PRL and IGFBP-1 mRNA expression and protein secretion. Thus, stathmin expression can be considered an integral factor regulating the initial stage of the process of human endometrial stromal cell differentiation.  相似文献   

16.
Reasons for performing study: Mesenchymal stromal cells (MSCs) represent an attractive source for regenerative medicine. However, prior to their application, fundamental questions regarding molecular characterisation, growth and differentiation of MSCs must be resolved. Objectives: To compare and better understand the behaviour of equine MSCs obtained from bone marrow (BM) and adipose tissue (AT) in culture. Methods: Five horses were included in this study. Proliferation rate was measured using MTT assay and cell viability; apoptosis, necrosis and late apoptosis and necrosis were evaluated by flow cytometry. The mRNA expression levels of 7 surface marker genes were quantified using RT‐qPCR and CD90 was also analysed by flow cytometry. Differentiation was evaluated using specific staining, measurement of alkaline phosphatase activity and analysis of the mRNA expression. Results: High interindividual differences were observed in proliferation in both cell types, particularly during the final days. Statistically significant differences in viability and early apoptosis of cultured AT‐ and BM‐MSCs were found. The highest values of early apoptosis were observed during the first days of culture, while the highest percentage of necrosis and late apoptosis and lowest viability was observed in the last days. Surface marker expression pattern observed is in accordance to other studies in horse and other species. Osteogenic differentiation was evident after 7 days, with an increasing of ALP activity and mRNA expression of osteogenic markers. Adipogenic differentiation was achieved in BM‐MSCs from 2 donors with one of the 16 media tested. Chondrogenic differentiation was also observed. Conclusions: Proliferation ability is different in AT‐MSCs and BM‐MSCs. Differences in viability and early apoptosis were observed between both sources and CD34 was only found in AT‐MSCs. Differences in their osteogenic and adipogenic potential were detected by staining and quantification of specific tissue markers. Potential relevance: To provide data to better understand AT‐MSCs and BM‐MSCs behaviour in vitro.  相似文献   

17.
Although stem cell therapy is a promising alternative for treatment of degenerative diseases, there are just few reports on the use of stem cells therapy in horse's reproductive system. This study aims to evaluate the effect of intratesticular injection of bone marrow mesenchymal stromal/stem cells (MSCs) in healthy stallions, and its outcome on seminal parameters and fertility. In Experiment 1, 24 stallions were divided into treatment group (TG) and control group (CG). In the TG, an intratesticular application of MSC was performed, and in the CG, only PBS was used. Measurements of testicular volume, surface temperature and Doppler ultrasonography were performed 24 and 48 hr after treatments. Fifteen days after application, the testicles were removed and submitted to histological analysis. In Experiment 2, 3 fertile stallions received similarly treatment with MSCs. Physical examination and sperm analysis were performed weekly during 60 days after treatment, and at the end, semen from one of them was used for artificial inseminations of 6 healthy mares. In Experiment 1, clinical examinations showed no signals of acute inflammation on both groups according to the analysed variables (p > .05). Also, no signal of chronic inflammation was observed on histological evaluation. In Experiment 2, stallions presented no physical alterations or changes in sperm parameters, and a satisfactory fertility rate (83%; 5/6) was observed after AI. The results support the hypothesis that intratesticular application of bone marrow MSCs is a safe procedure, and this could be a promising alternative to treat testicular degenerative conditions.  相似文献   

18.
19.
20.
Complex odontoma from a female Sprague-Dawley rat is described histopathologically. Necropsy revealed a hard (bony), white mass (3.0 x 3.0 x 2.1 cm) on the left mandible. Microscopically, the mass consisted of islands or nests of epithelial and mesenchymal elements that formed abortive tooth structures. In other areas, tooth formation consisted of a pulp cavity lined by layers of odontoblasts, dentin, enamel, and ameloblasts. Concerning all features of normal tooth formation which was differentiated and mineralized yet completely disorganized, the diagnosis of complex odontoma was recommended.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号