首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Consensus phytase is a new biosynthetic, heat-stable enzyme derived from the sequences of multiple homologous phytases. Two experiments were conducted to determine its effectiveness, relative to inorganic P and a mutant enzyme of Escherichia coli phytase (Mutant-EP), in improving dietary phytate-P availability to pigs. In Exp. 1, 36 pigs (3 wk old, 7.00 +/- 0.24 kg of BW) were fed a low-P corn-soybean meal basal diet plus consensus phytase at 0, 250, 500, 750, 1,000, or 1,250 U/kg of feed for 5 wk. Plasma inorganic P concentration, plasma alkaline phosphatase activity, bone strength, and overall ADG and gain:feed ratio of pigs were improved (P < 0.05) by consensus phytase in both linear (R2 = 0.20 to 0.70) and quadratic (R2 = 0.30 to 0.70) dose-dependent fashions. In Exp. 2, 36 pigs (4 wk old, 9.61 +/- 0.52 kg BW) were fed the basal diet + inorganic P at 0.1 or 0.2%, consensus phytase at 750 or 450 U/kg of feed, Mutant-EP at 450 U/kg of feed, or 225 U consensus + 225 U Mutant-EP/kg of feed. Pigs fed 750 U of consensus phytase or 450 U of Mutant-EP/kg feed had plasma inorganic concentrations and bone strength that fell between those of pigs fed 0.1 or 0.2% inorganic P. These two measures were 16 to 29% lower (P < 0.05) in pigs fed 450 U of consensus phytase/kg of feed than those of pigs fed 0.2% inorganic P. Plasma inorganic P concentrations were 14 to 29% higher (P < 0.05) in pigs fed Mutant-EP vs. consensus phytase at 450 U/kg at wk 2 and 3. In conclusion, the experimental consensus phytase effectively releases phytate P from the corn-soy diet for weanling pigs. The inorganic P equivalent of 750 U of consensus phytase/kg of feed may fall between 0.1 and 0.2%, but this requires further determination.  相似文献   

2.
Two experiments were conducted to evaluate the efficacy of low doses of Aspergillus niger (AN) phytase for growing and finishing pigs fed corn-soybean meal (SBM) diets with narrow Ca:P ratios that were about 0.9 g/kg deficient in available P and Ca. Experiment 1 utilized 120 pigs with an early finisher period from 51.5 +/- 0.2 to 89.7 +/- 0.9 kg of BW and a late finisher period that ended at 122.5 +/- 2.0 kg of BW. During each period, treatments were the low-P diets with 0, 150, 300, or 450 units (U) of AN phytase added/kg of diet, and a positive control (PC) diet. There were linear increases (P < or = 0.001) in bone strength and ash weight, the absorption of P (g/d and %) and Ca (%), and overall ADG (P = 0.01) with increasing concentration of AN phytase. Pigs fed the diets with 150, 300, or 450 U of AN phytase/kg did not differ from pigs fed the PC diet in growth performance overall, and pigs fed the diets with 300 or 450 U of AN phytase did not differ in P and Ca absorption (g/d) or bone ash weight from pigs fed the PC diet. However, only pigs fed the diet with 450 U of AN phytase/kg had bone strength similar to that of pigs fed the PC diet. Experiment 2 utilized 120 pigs in a grower phase from 25.3 +/- 0.1 to 57.8 +/- 0.8 kg of BW and a finisher phase that ended at 107.6 +/- 1.0 kg of BW. Treatments were the low-P diet with AN phytase added at 300, 500, or 700 U/kg of grower diet, and 150, 250, or 350 U/kg of finisher diet, respectively, resulting in treatments AN300/150, AN500/250, and AN700/350. Growth performance and the absorption (g/d) of P and Ca for the grower and finisher phases were not different for pigs fed the diets containing AN phytase and pigs fed the PC diets. However, pigs fed the PC diets excreted more fecal P (g/d, P < or = 0.01) during the grower and more P and Ca (g/d, P < 0.001) during the finisher phases than the pigs fed the diets with phytase. There were linear increases (P < or = 0.05) in bone strength and bone ash weight with increasing concentration of AN phytase. However, pigs fed the PC diets had a greater bone strength and bone ash weight than pigs fed diets AN300/150, AN500/250 (P < or = 0.02), or AN700/350 (P < or = 0.08). There were no treatment responses for N or DM digestibility in either experiment. Phytase supplementation reduced fecal P excretion from 16 to 38% and fecal Ca excretion from 21 to 42% in these experiments. In conclusion, 450 U of AN phytase/kg was effective in replacing 0.9 g of the inorganic P/kg of corn-SBM diet for finishing swine based on bone strength, whereas 300 or 150 U of AN phytase/kg of diet maintained growth performance of grower or finisher pigs, respectively.  相似文献   

3.
We have recently expressed a new phytase enzyme in a yeast system. Three experiments with a total of 140 weanling crossbred pigs were conducted to examine the efficacy of this enzyme in improving the bioavailability of phytate-P in corn-soybean meal diets to young pigs. Experiment 1 compared the efficacy of this new phytase with a commercially available phytase (Natuphos, BASF) for 4 wk at an inclusion level of 1,200 U/kg of diet. Experiment 2 compared the responses of pigs to four doses of the new phytase supplementation (300, 600, 900, and 1,200 U/kg of diet) for 4 wk. Experiment 3 compared the efficacy of this new phytase and Natuphos at a marginally optimal dose (700 U/kg of diet) for 5 wk. A group of pigs were fed the P-deficient basal diet as a negative control in Exp. 1, and a group of pigs were fed the basal diet plus .17 or .22% inorganic P as a positive control in all experiments. In Exp. 1, pigs fed the two sources of phytase had similar ADG (564 vs 567 g), gain/feed (.597 vs .589), plasma inorganic P concentrations (8.9 vs 8.4 mg/dL), and mobility scores (4.25 vs 4.46) that were higher (P < .05) than those of the negative control. In Exp. 2, plasma inorganic P concentration was a fairly linear response to the phytase dose (r > .83) at wk 1 and 2. Overall ADG of pigs also tended to increase with the phytase dose (P = .15). In Exp. 3, pigs fed the two sources of phytase had ADG (483 vs 506 g) similar to that of the positive control (508 g). These two groups also had similar plasma inorganic P concentrations (7.7 vs 7.4 mg/dL) that were lower (P < .05) than those of the positive control group (9.7 mg/dL). There was no significant effect of dietary treatments on ADFI in all three experiments. In conclusion, our new phytase was as effective as Natuphos, at the inclusion level of 700 or 1,200 U/kg of a P-deficient, corn-soybean meal diet, in improving phytate-P utilization by young pigs.  相似文献   

4.
Two experiments were conducted to investigate the concept that the addition of corn expressing an Escherichia coli-derived gene (corn-based phytase; CBP) to a P-deficient diet would improve growth performance and P utilization in pigs. An E. coli-derived microbial phytase (expressed in Pichia pastoris) sprayed onto a wheat carrier (Quantum) was included for comparison. In Exp. 1, forty-eight 10-kg pigs were blocked by BW into 6 blocks and allotted to 8 dietary treatments such that the BW among dietary treatments was similar and given free access to feed for 28 d. The dietary treatments were a negative control (NC) with no inorganic P supplementation; NC + 2, 4, or 6 g of monosodium phosphate/kg; NC + 16,500, 33,000, or 49,500 phytase units (FTU) of CBP/kg; and NC + 16,500 FTU of Quantum/kg. In Exp. 2, twenty-four 13-kg barrows were assigned to the NC, NC + 16,500 or 33,000 FTU of CBP/kg, or NC + 16,500 FTU of Quantum/kg, in a nutrient- and energy-balance study consisting of 5 d of adjustment and 5-d collection periods. The total collection method was used to determine nutrient and energy balance. Addition of CBP to the low-P NC diet linearly increased (P < 0.01) ADG, G:F, and plasma P concentration of pigs during the 28-d study. There was no difference in ADG, G:F, or plasma P concentration between pigs fed the CBP or Quantum phytase at 16,500 FTU/kg. Weight gain, G:F, and plasma P concentration of pigs increased (P < 0.01) with monosodium phosphate supplementation, confirming P deficiency of the NC diet. Linear improvements (P < 0.05) in DM digestibility and energy retention were observed with CBP supplementation of the NC diet. Although there were linear (P < 0.01) and quadratic (P < 0.05) increases in N digestibility, N retention was unaffected by CBP supplementation of the NC diet in growing pigs. Phosphorus and Ca digestibilities and retentions improved linearly and quadratically (P < 0.01) with the addition of CBP to the NC diet. There was no difference in digestive utilization of P or Ca between pigs fed CBP and Quantum phytase at 16,500 FTU/kg. The data showed that the addition of a corn expressing an E. coli-derived gene to a P-deficient diet improved growth performance and indices of P utilization in pigs, and corn expressing phytase was as efficacious as Quantum phytase when supplemented in P-deficient diets for weanling pigs.  相似文献   

5.
The effect of body weight on P digestibility and on efficacy of supplemental Aspergillus niger phytase was studied in two experiments with young growing pigs. Excreta were collected quantitatively. All diets contained 2.0 g digestible P per kg dry matter at a maximum and renal P excretion never exceeded 15 mg/d. When dietary P mainly originated from monocalcium-phosphate, both P digestibility and Ca net absorption linearly increased by 3.6 and 5.6 percentage units, respectively, when BW increased from 15 to 35 kg. With a similar range in BW, P digestibility and Ca net absorption were unaffected by BW when P mainly originated from maize, barley and soybean meal. In both types of diet, crude protein digestibility increased with increasing body weight, whereas organic matter digestibility was effected by BW only in the diet containing maize, barley and soybean meal. Phytase (400 U/kg) almost doubled P digestibility when supplemented to a diet with P mainly originating from maize, soybean meal and barley. This effect of phytase supplementation was equal in pigs at 15.7 kg BW (33 vs. 55%) and at 39.1 kg BW (32 vs. 56%). Digestibility of any organic fraction was unaffected by supplemental phytase. With regard to on-farm conditions, it appears eligible from this results to apply digestibility coefficients for P determined in growing-finishing pigs for piglets as well.  相似文献   

6.
Two experiments determined the efficacy of an Escherichia coli phytase (ECP) added to P-deficient, corn-soybean meal diets fed to finishing pigs and second-cycle laying hens. Sixty finishing pigs (49 +/- 0.9 kg) were formed into blocks within sex based on weight and ancestry and allotted to a P-deficient diet unsupplemented or supplemented with 0.10% inorganic P (iP) from KH2PO4 or ECP at 250, 500, 1,000, or 10,000 phytase units (FTU)/kg. Individually fed pigs were allowed ad libitum access to the experimental diets until a BW of 120 +/- 3 kg was achieved, at which time the pigs were euthanized and the left fibula and fourth metatarsal were excised for determination of bone ash. Pigs were fed a 2-phase diet program for early- and late-finishing pigs; available P in the basal diets was set 0.10% below the requirement. Dietary supplementation of iP or ECP increased weight gain (P < 0.10) and G:F (P < 0.01); performance was not different (P > 0.13) among the phytase-supplemented groups. Fibula ash was greatest (P < 0.01) for pigs fed diets containing 10,000 FTU of ECP/kg. Two hundred forty second-cycle hens were allotted to a P-deficient diet or a P-deficient diet supplemented with 0.10% iP or ECP at 150, 300, or 10,000 FTU/kg for a 12-wk experiment. The basal diet was a corn-soybean meal diet with no added iP (17% CP, 3.8% Ca, 0.10% available P). Hens fed the P-deficient diet were removed from the experiment after 4 wk due to poor egg production. Supplementation of iP or ECP resulted in increased (P < 0.01) feed intake, egg weight, and egg production during the first 4 wk. During the entire 12-wk period, there were no differences (P > 0.28) between the iP- and ECP-supplemented groups in feed intake, egg weight, or egg production. These experiments reveal that ECP was as efficacious as supplemental iP and that supplementation of an excess dose of ECP was efficacious and without negative effects in finishing pigs and laying hens.  相似文献   

7.
Dietary phytase supplementation improves bioavailabilities of phytate-bound minerals such as P, Ca, and Zn to pigs, but its effect on Fe utilization is not clear. The efficacy of phytase in releasing phytate-bound Fe and P from soybean meal in vitro and in improving dietary Fe bioavailability for hemoglobin repletion in young, anemic pigs was examined. In Exp. 1, soybean meal was incubated at 37 degrees C for 4 h with either 0, 400, 800, or 1,200 units (U) of phytase/kg, and the released Fe and P concentrations were determined. In Exp. 2, 12 anemic, 21-d-old pigs were fed either a strict vegetarian, high-phytate (1.34%) basal diet alone, or the diet supplemented with 50 mg Fe/kg diet (ferrous sulfate) or phytase at 1,200 U/kg diet (Natuphos, BASF, Mt. Olive, NJ) for 4 wk. In Exp. 3, 20 anemic, 28-d-old pigs were fed either a basal diet with a moderately high phytate concentration (1.18%) and some animal protein or the diet supplemented with 70 mg Fe/kg diet, or with one of two types of phytase (Natuphos or a new phytase developed in our laboratory, 1,200 U/kg diet) for 5 wk. In Exp. 2 and 3, diets supplemented with phytase contained no inorganic P. In Exp. 1, free P concentrations in the supernatant increased in a phytase dose-dependent fashion (P<.05), whereas free Fe concentrations only increased at the dose of 1,200 U/kg (P<.10). In Exp. 2 and 3, dietary phytase increased hemoglobin concentrations and packed cell volumes over the unsupplemented group; these two measures, including growth performance, were not significantly different than those obtained with dietary supplemental Fe. In conclusion, both sources of phytase effectively degraded phytate in corn-soy diets and subsequently released phytate-bound Fe from the diets for hemoglobin repletion in young, anemic pigs.  相似文献   

8.
The objective of this study was to determine the functional location and disappearance of activity of a supplemental Escherichia coli AppA2 phytase and its impact on digesta P and Ca concentrations in the gastrointestinal tract of pigs. In Exp. 1, 18 pigs (8.3 +/- 0.2 kg of BW) were allotted to 3 groups (n = 6 each) and fed a low-P (0.4%) corn-soybean meal, basal diet (BD), BD + phytase [500 units (U)/kg of feed], or BD + inorganic P (iP, 0.1%) for 4 wk. In Exp. 2, 30 pigs (14.5 +/- 0.2 kg of BW) were allotted to 3 groups (n = 10 each) and fed BD, BD + 500 U of phytase/kg of feed, or BD + 2,000 U of phytase/kg of feed for 2 wk. Five or six pigs from each treatment group were killed at the end of both experiments to assay for digesta phytase activity and soluble P concentration in 6 segments of the digestive tract and digesta total P and Ca concentrations in stomach and colon. Compared with pigs fed BD, pigs fed BD + 500 U of phytase/kg of feed in Exp. 1 and BD + 2,000 U of phytase/kg of feed in Exp. 2 had greater (P < 0.05) phytase activities in the digesta of the stomach and upper jejunum (2 m aborally from the duodenum). No phytase activity was detected in the digesta of the lower jejunum (2.12 m cranial to the ileocecal junction) or ileum from any of the treatment groups in either trial. Concentrations of digesta-soluble P peaked in the upper jejunum of pigs fed BD in Exp. 1 and 2, but showed gradual decreases between the stomach and the upper jejunum of pigs fed BD + phytase or BD + iP. In both experiments, pigs fed only BD had greater (P < 0.05) colonic digesta phytase activity and soluble P concentrations than those fed phytase. In Exp. 2, total colonic digesta P or Ca concentrations, or both, of pigs displayed a phytase-dose-dependent reduction (P < 0.05). In conclusion, supplemental dietary AppA2 mainly functioned in the stomach and was associated with a reduced phytase activity in colonic digesta of weanling pigs.  相似文献   

9.
The objective of this study was to determine possible synergistic effects of supplementing one of three fungal phytases: Aspergillus fumitagus PhyA (AFP),A. niger PhyA (ANP), or Peniophora lyci phytase (PLP) with an Escherichia coli AppA phytase (EP) in diets for pigs. Three experiments, each lasting for 4 wk, were conducted with a total of 106 weanling pigs (5 wk old). The corn-soybean meal basal diet (BD) contained no supplemental inorganic P. In Exp. 1, 35 pigs (8.6 +/- 1.0 kg BW) were fed (as-fed basis) BD + AFP at 750 U/ kg of feed, BD + inorganic P (0.2% P), or BD + PLP at 500, 750, or 1,000 U/kg feed. Pigs fed BD + AFP or BD + 0.2% P had higher (P < 0.05) plasma inorganic P concentrations than those fed BD + PLP at the end of the trial (wk 4). In Exp. 2, 35 pigs (8.1 +/- 0.9 kg BW) were fed BD + AFP, EP, PLP, a 1:1 mix of AFP:EP, or a 1:1 mix of PLP:EP at 500 U/kg. Pigs fed the AFP:EP mixture had growth performance and plasma measures similar to those fed either enzyme alone. Pigs fed the PLP:EP mixture had lower (P < 0.05) plasma alkaline phosphatase activity than those fed BD + PLP. Pigs fed BD + PLP had lower (P < 0.05) plasma inorganic P concentrations than pigs fed BD + EP, and higher (P < 0.05) plasma alkaline phosphatase activity than all other groups at wk 4. In Exp. 3, 36 pigs (9.1 +/- 1.2 kg BW) were fed BD + ANP, EP, or a 1:1 mix of ANP:EP at 500 U/kg feed. Pigs fed the two enzymes together had lower (P < 0.05) plasma inorganic P concentration than those fed BD + EP and lower (P < 0.05) plasma alkaline phosphatase activity than pigs fed BD + ANP at wk 4. In conclusion, although the four phytases showed different effects on plasma P status of weanling pigs, there was no synergistic effect between any of the three fungal phytases and the bacterial phytase on the plasma measures or growth performance under the conditions of the present study.  相似文献   

10.
Three experiments were conducted to evaluate P bioavailability, growth performance, and nutrient balance in pigs fed high available P (HAP) corn with or without phytase. The bioavailability of P in normal and HAP corn relative to monosodiumphosphate (MSP) for pigs was assessed in Exp. 1. In a randomized complete block design, 96 pigs (average initial BW 9.75 kg) were fed eight diets for 28 d. The reference and test diets were formulated by adding P as MSP, HAP, or normal corn at 0, 0.75, or 1.5 g/kg to a corn-starch-soybean meal basal diet (2.5 g/kg P) at the expense of cornstarch. Plasma inorganic P concentration responded linearly (P < 0.05) to supplemental P intake. Estimates of P bioavailability from HAP andnormal corn when plasma P was regressed on supplemental P intake were 46 and 33%, respectively. In Exp. 2 and 3, pigs were fed corn-soybean meal-based diets containing HAP corn or normal corn and 0 or 600 units of phytase per kilogram in a 2 x 2 factorial arrangement (two corn sources and two levels of phytase). In Exp. 2, 48 crossbred pigs (barrow:gilt, 1:1) averaging 9.25 kg were used to evaluate growth performance. There were no detectable interactions between corn source and phytase for any of the performance criteria measured. Pigs receiving normal corn had the lowest (P < 0.05) BW and rate of gain. Feed efficiency was lower (P < 0.05) in pigs fed normal compared with those fed the HAP corn phytase-supplemented diet. In Exp. 3, 24 crossbred barrows averaging 14.0 kg were used to evaluate nutrient digestibility. There were no detectable interactions between corn and phytase for any of the N and Ca balance criteria. Nitrogen and Ca retention were improved in pigs receiving HAP corn with phytase (P < 0.05). Retention and digestibility of P was lowest (P < 0.01) for pigs on normal corn diet without phytase. The percentage of P digested and retained was improved and fecal P excretion lowered (P < 0.05) by feeding HAP corn.The results of this study indicate that the bioavailability and balance of P in HAP corn is superior to that of normal corn. The addition of 600 phytase units (Natuphos 600, BASF) to HAP corn-based diets further improved P digestibility and reduced P excretion in pigs.  相似文献   

11.
Two experiments were conducted to determine the effect of phytase on energy availability in pigs. In Exp. 1, barrows (initial and final BW of 26 and 52 kg) were allotted to four treatments in a 2 x 2 factorial arrangement. Corn-soybean meal (C-SBM) diets were fed at two energy levels (2.9 and 3.2 x maintenance [M]) with and without the addition of 500 phytase units/kg of diet. The diets contained 115% of the requirement for Ca, available P (aP), and total lysine, and Ca and aP were decreased by 0.10% in diets with added phytase. Pigs were penned individually and fed daily at 0600 and 1700, and water was available constantly. Eight pigs were killed and ground to determine initial body composition. At the end of Exp. 1, all 48 pigs were killed for determination of carcass traits and protein and fat content by total-body electrical conductivity (TOBEC) analysis. Six pigs per treatment were ground for chemical composition. In Exp. 2, 64 barrows and gilts (initial and final BW of 23 and 47 kg) were allotted to two treatments (C-SBM with 10% defatted rice bran or that diet with reduced Ca and aP and 500 phytase units/kg of diet), with five replicate pens of barrows and three replicate pens of gilts (four pigs per pen). In Exp. 1, ADG was increased (P < 0.01) in pigs fed at 3.2 x M. Based on chemical analyses, fat deposition, kilograms of fat, retained energy (RE) in the carcass and in the carcass + viscera, fat deposition in the organs, and kilograms of protein in the carcass were increased (P < 0.10) in pigs fed the diets at 3.2 vs. 2.9 x M. Based on TOBEC analysis, fat deposition, percentage of fat increase, and RE were increased (P < 0.09) in pigs fed at 3.2 x M. Plasma urea N concentrations were increased in pigs fed at 3.2 x M with no added phytase but were not affected when phytase was added to the diet (phytase x energy, P < 0.06). Fasting plasma glucose measured on d 28, ultrasound longissimus muscle area (LMA), and 10th-rib fat depth were increased (P < 0.08) in pigs fed phytase, but many other response variables were numerically affected by phytase addition. In Exp. 2, phytase had no effect (P > 0.10) on ADG, ADFI, gain:feed, LMA, or 10th-rib fat depth. These results suggest that phytase had small, mostly nonsignificant effects on energy availability in diets for growing pigs; however, given that phytase increased most of the response variables measured, further research on its possible effects on energy availability seems warranted.  相似文献   

12.
Three experiments were conducted to evaluate the effect of supplementing phytase and xylanase on nutrient digestibility and performance of growing pigs fed wheat-based diets. In Exp. 1, 10 diets were fed to 60 pigs from 20 to 60 kg of BW to determine the effect of combining phytase and xylanase on apparent total tract digestibility (ATTD) of nutrients and growth performance. The 10 diets included a positive control diet (PC; 0.23% available P; 0.60% Ca) and a negative control diet (NC; 0.16% available P; 0.50% Ca) supplemented with phytase at 0, 250, and 500 fytase units (FTU)/kg and xylanase at 0, 2,000, and 4,000 xylanase units (XU)/kg in a 3 x 3 factorial arrangement. In Exp. 2, 6 ileally cannulated barrows (initial BW = 35.1 kg) were fed 4 wheat-based diets in a 4 x 4 Latin square design, with 2 added columns to determine the effect of combining phytase and xylanase on apparent ileal digestibility (AID) of nutrients. The 4 diets were NC (same as that used in Exp. 1) or NC supplemented with phytase at 500 FTU/kg, xylanase at 4,000 XU/kg, or phytase at 500 FTU/kg plus xylanase at 4,000 XU/kg. In Exp. 3, 36 barrows (initial BW = 55.5 kg) were fed 4 diets based on prepelleted (at 80 degrees C) and crumpled wheat for 2 wk to determine the effect of phytase supplementation on ATTD of nutrients. The 4 diets fed were a PC (0.22% available P; 0.54% Ca) and a NC (0.13% available P; 0.43% Ca) alone or with phytase at 500 or 1,000 FTU/kg. All diets in the 3 experiments contained Cr(2)O(3) as an indigestible marker. No synergistic interactions were detected between phytase and xylanase on any of the response criteria measured in Exp. 1 or 2. There were no dietary effects on growth performance in Exp. 1. In Exp. 1, phytase at 250 FTU/kg increased the ATTD of P and Ca by 51 and 11% at 20 kg of BW or by 54 and 10% at 60 kg of BW, respectively, but increasing the level of phytase to 500 FTU/kg only increased (P < 0.05) ATTD of P at 20 kg of BW. In Exp. 2, phytase at 500 FTU/kg increased (P < 0.05) the AID of P and Ca by 21 and 12%, respectively. In Exp. 3, phytase at 500 FTU/kg improved (P < 0.05) ATTD of P by 36%, but had no further effect at 1,000 FTU/kg. Xylanase at 4,000 XU/kg improved (P < 0.05) AID of Lys, Leu, Phe, Thr, Gly, and Ser in Exp. 2. In conclusion, phytase and xylanase improved P and AA digestibilities, respectively, but no interaction between the 2 enzymes was noted.  相似文献   

13.
A 28-d experiment was conducted using 126 crossbred barrows to evaluate the addition of a genetically engineered Escherichia coli phytase to diets that were 0.15% deficient in available P. Growth performance, bone strength, ash weight, and the apparent absorption of P, Ca, Mg, N, energy, DM, Zn, Fe, and Cu were the response criteria. The pigs (2 pigs/pen) averaged 7.61 kg of BW and 30 d of age initially. The low-P basal diet was supplemented with 0, 100, 500, 2,500, or 12,500 units (U) of E. coli phytase/kg of diet, or 500 U of Peniophora lycii phytase/kg of diet. The positive control (PC) diet was adequate in available P. Pigs were fed the diets in meal form. Fecal samples were collected from each pig from d 22 to 27 of the experiment. There were linear and quadratic increases (P < 0.001) in 28-d growth performance (ADFI, ADG, and G:F), bone breaking strength and ash weight, and the apparent absorption (g/d and %) of P, Ca, and Mg (P < or = 0.01 for quadratic) with increasing concentrations of E. coli phytase. Pigs fed the low-P diets containing 2,500 or 12,500 U/kg of E. coli phytase had greater (P < or = 0.01 or P < 0.001, respectively) values for growth performance, bone breaking strength and ash weight, and the apparent absorption (g/d and %) of P, Ca, and Mg than pigs fed the PC diet. The addition of E. coli phytase did not increase the apparent percentage absorption of N, GE, DM, Zn, Fe, or Cu. There were no differences in the efficacy of the E. coli or P. lycii phytase enzymes at 500 U/kg of low-P diet for any criterion measured. In conclusion, there were linear increases in growth performance, bone breaking strength and ash weight, and the apparent absorption of P, Ca, and Mg with increasing addition of E. coli phytase up to 12,500 U/kg of diet. Also, all of these criteria were greater for pigs fed the low-P diets containing 2,500 or 12,500 U of E. coli phytase/kg than for pigs fed the PC diet. The addition of 500, 2,500, or 12,500 U of E. coli phytase/kg of low-P diet reduced P excretion (g/d) in manure by 35, 42, and 61%, respectively, compared with pigs fed the PC diet.  相似文献   

14.
We investigated the efficacy of genetically modified yeast (GMY) phytase on phosphorus (P) bioavailability in growing pigs fed a corn–soybean meal based diet. Crossbred barrows were fed a P-adequate, a low-P or a P-deficient diet containing 0.37, 0.27 and 0.14% non-phytate-P, respectively. The P-deficient diet was supplemented with wild-type yeast (WTY), Aspergillus (ASP) or GMY phytase at 750 PU per kilogram of food. Dietary ASP and GMY phytases increased plasma inorganic P (Pi) concentration and the apparent absorption of P, and decreased the concentration of a bone resorption marker, plasma type-I collagen C-terminal telopeptide (ICTP). Wild-type yeast phytase also increased the apparent absorption of P, but the changes in plasma Pi and ICTP concentrations were not significant. Although the dietary Pi-equivalencies based on plasma Pi and ICTP concentrations did not differ between WTY and ASP phytases, the equivalency of ASP phytase based on apparent absorption of P was higher than that of WTY phytase. The equivalency of GMY phytase calculated from each parameter was higher than that of WTY phytase, and did not differ from that of ASP phytase. These results suggest that efficacy of GMY phytase on P bioavailability was higher than WTY phytase, and as effective as ASP phytase in growing pigs.  相似文献   

15.
Some cereal by-products, such as bran, exhibit a high phytase activity that may enhance phytate P digestibility. This was studied in growing pigs fed a phytase-rich (1,200 IU/kg) diet containing 20% rye bran. The trial involved 12 animals; six were fed a control diet and six were fed a diet containing rye bran for 2 mo. Both diets contained the same levels of energy, protein, Ca (.7%) and total P (.4%). No inorganic P was added; thus, the dietary P was mainly phytic. Pigs fed the control diet, in contrast to those fed the diet containing rye bran, developed a P deficiency, as indicated by hypophosphatemia, hypophosphaturia, hyperhydroxyprolinuria, hypercalcemia, and hypercalciuria. Phosphorus from the rye bran diet was more completely absorbed (55 vs 36%) and retained (50 vs 36%) than that from the control diet. Calcium absorption was equal for the two diets, but Ca retention was higher in pigs fed rye bran than in controls. Pigs fed the rye bran diet showed greater bone density, ash content, and bending moments than controls. In conclusion, high dietary phytase levels or phytase-rich by-products increased phytate P availability and consequently improved bone scores.  相似文献   

16.
Two experiments were conducted to determine the interactive effects of phytase with and without a trace mineral premix (TMP) in diets for nursery, growing, and finishing pigs on growth performance, bone responses, and tissue mineral concentrations. Pigs (initial and final BW of 5.5 and 111.6 kg [Exp. 1] or 5.4 and 22.6 kg [Exp. 2]) were allotted to treatments on the basis of BW with eight (Exp. 1) or six (Exp. 2) replications of six or seven pigs per replicate pen. Pigs were started on the diets the day of weaning (average of 18 d). In both experiments, the treatments were with or without 500 phytase units/kg of diet and with or without the TMP in a 2 x 2 factorial arrangement. The Ca and available P concentrations were decreased by 0.10% in diets with phytase. The nursery phase consisted of Phase I (7 d), Phase II (14 d), and Phase III (13 d) periods. In Exp. 1, 26 of 52 pigs fed the diet without the TMP and without phytase had severe skin lesions and decreased growth performance; therefore, pigs fed this diet were switched to the positive control diet. In Exp. 2, the treatment without the TMP and without phytase had 12 replications instead of six. At the end of Phase III, half these replications were switched to the positive control diet and half were switched to the diet without the TMP but with phytase. In Exp. 1 during Phases II and III and in the overall data, pigs fed the diet without the TMP had decreased ADG and ADFI, but the addition of phytase prevented these responses (phytase x TMP; P < 0.02). Growth performance was not affected by diet during the growing-finishing period. Coccygeal bone Zn and Na concentrations were decreased (P < 0.09) in pigs fed the diet without the TMP, and adding phytase increased (P < 0.03) Zn and Fe concentrations. In Exp. 2 during Phases I and II, pigs fed the diet without the TMP had decreased ADG, but the addition of phytase prevented this response (phytase x TMP; P < 0.10). Pigs fed the diet without the TMP had decreased (P < 0.10) ADG (Phase II and overall), ADFI (Phases II and III and in the overall data), and G:F (Phase III). Coccygeal bone Zn and Cu concentrations were decreased (P < 0.09) in pigs fed the diet without the TMP, and adding phytase increased (P < 0.03) Zn concentration in the bones. These data indicate that removing the TMP in diets for nursery pigs decreases growth performance and bone mineral content, and that phytase addition to the diet without the TMP prevented the decreased growth performance.  相似文献   

17.
Hydrolysis of phytate in the stomach and the small intestine as influenced by intrinsic plant (wheat) and supplemented microbial phytase (A. niger) were investigated with six minipigs (40-50 kg initial BW) fitted with re-entrant-cannulas in the duodenum, 30 cm posterior to the pylorus (animals 1, 4, 5, and 6) and ileocecal re-entrant cannulas, 5 cm prior the ileocecal junction (animals 1, 2, and 3), respectively. Dietary treatments were as follows: (1) diet 1, a corn-based diet (43 U Phytase/kg DM); (2) diet 2, diet 1 supplemented with microbial phytase (818 U/kg DM) and (3) diet 3, a wheat-based diet (1192 U/kg DM). At 0730 and 1930 per animal 350 g diet mixed with 1050 ml de-ionized water were fed. Digesta were collected continuously and completely during 12 h after feeding. Duodenal recovery of dry matter and total phosphorus were 100% in the period between two feedings, irrespective of dietary treatment. In animals fed the wheat-based diet, dry matter left the stomach faster (p < 0.05) during the first hour after feeding than in animals fed the corn-based diets (41.3 vs. 31.0 and 25.8% of intake, respectively). Supplemented microbial phytase did not affect ileal dry matter digestibility of the corn-based diet. In the first hour after feeding, phosphorus concentration of the duodenal digesta of animals fed corn-based diets with or without supplemented microbial phytase (5.86, 6.19 mg total P/g DM) exceeded the dietary level considerably (4.30 and 4.21 mg total P/g DM) indicating a higher solubility of corn than wheat phosphorus in the stomach. Apparent ileal P absorption was higher (p < 0.05) in the wheat-based diet (37.6%) and corn-based diet supplemented with microbial phytase (34.3%) than in the unsupplemented corn-based diet (17.6%).  相似文献   

18.
Phytate is an antinutrient in animal feeds, reducing the availability and increasing the excretion of nutrients. Phytases are widely used to mitigate the negative influences of phytate. This trial was designed to compare the efficacy of 2 Escherichia coli-derived phytases on broiler performance and bone ash as influenced by dietary phytate level. A total of 1,024 Arbor Acres male broilers were used with 8 replicate pens of 16 birds/pen. Experimental diets were based on low available phosphorus (avP; 1.8 g/kg) with low (6.40 g/kg) or high (10.65 g/kg) phytate. The low-avP diets were then supplemented with mono-dicalcium phosphate to increase the avP level to 4.5 g/kg, 500 phytase units/kg of phytase A, or 500 phytase units/kg of phytase B to create 8 experimental diets. Feed intake, BW gain, FCR, and livability were influenced by a P source × phytase interaction. Feed intake, BW gain, and livability were reduced and FCR was higher in broilers fed low-avP diets, particularly in the presence of high phytate. Phytase A or phytase B improved feed intake, BW gain, and FCR, particularly in the high-phytate diet. However, broilers fed phytase A ate more and were heavier than broilers fed phytase B. Tibia ash was lowest in broilers fed the low-avP diet and highest in broilers fed the diet supplemented with mono-dicalcium phosphate. Phytase increased tibia ash, and broilers fed phytase A had an increase in tibia ash compared with broilers fed phytase B. In conclusion, high dietary phytate reduced broiler performance. Phytase A and phytase B improved bone ash and growth performance, especially in the high-phytate diets. However, phytase A was more efficacious than phytase B, regardless of the level of phytate.  相似文献   

19.
Ileally cannulated pigs were used to assess the effects of four dietary levels of microbial phytase (Natuphos) on the apparent and true digestibility of Ca, P, CP, and AA in dehulled soybean meal. Fourteen pigs (25 kg initial BW) were surgically fitted with T-cannulas at the terminal ileum and assigned to diets in a replicated 7 x 7 Latin square design. Following a 14-d recovery, four diets consisting of 30.5% soybean meal with 0, 500, 1,000, or 1,500 units of phytase/kg of diet were fed. Diets 5 (1.05% lysine, 0.90% Ca, and 0.75% P) and 6 (1.05% lysine, 0.90% Ca, and 0.75% P) contained 35.25% soybean meal and 27.0% soy protein concentrate, respectively. Diet 7 (0.37% lysine, 0.03% Ca, and 0.05% P) was a low-CP, casein-based diet used to estimate the nonspecific endogenous losses of Ca, P, CP, and AA in order to estimate the true digestibility of these nutrients. All diets contained cornstarch and dextrose and were fortified with vitamins and minerals. Chromic oxide was used as an indigestible indicator. The diets were fed daily at 9% of metabolic BW (BW0.75). Apparent and true ileal digestibility of P increased quadratically (P < 0.01) and true digestibility of Ca increased linearly (P < 0.07) with increasing levels of phytase. Apparent digestibility of Ca was unaffected (P = 0.15) by phytase level. Apparent and true ileal digestibility of CP and most AA increased slightly with the addition of 500 units of phytase/kg of diet, but not at higher levels of phytase supplementation (in most cases, cubic effect, P < 0.05). Apparent and true ileal nutrient digestibility coefficients were unaffected by soybean meal source (Diet 1 vs Diet 5), except for arginine and Ca. The apparent and true digestibility coefficients for most of the AA tended (P < 0.10) to be lower in diets containing soy protein concentrate vs the common source of soybean meal used in Diet 5, but ileal digestibilities of Ca and P were unaffected (P = 0.15). In this study, supplemental microbial phytase did not improve the utilization of AA provided by soybean meal but was an effective means of improving Ca and P utilization by growing swine fed soybean meal-based diets.  相似文献   

20.
Crossbred barrows (n = 66; 6 wk old) were used in a 6-wk experiment to evaluate the efficacy of phytase from yeast or Aspergillus niger on performance, tibial characteristics, and serum inorganic P concentration. We also investigated the stability of these phytases in acidic solutions with pepsin, which simulated gastric conditions. Pigs were fed a P-adequate diet containing .34% nonphytate-P or a low-P diet containing .20% nonphytate-P. The low-P diet was supplemented with 0, 1,000, 2,000, or 4,000 phytase units (PU; the activity at optimal pH, i.e., pH 4.2 for yeast phytase and pH 5.5 for phytase from Aspergillus niger)/kg of yeast phytase, or 1,000 PU/kg phytase from Aspergillus niger. The graded level of yeast phytase linearly increased ADG (P = .047), tibial weight (P = .091), tibial density (P < .001), and P concentration in tibial cortex (P = .018). Aspergillus niger phytase also increased ADG (P = .022), serum inorganic P concentration (P < .001), tibial density (P = .007), and tibial P concentration (P = .025). The pigs given 1,000 PU/kg Aspergillus niger phytase showed greater ADG (P = .091), tibial density (P= .001), and tibial P concentration (P = .062) than those given 1,000 PU/kg yeast phytase. No measurements differed (P > .31) between the pigs given 1,000 PU/kg Aspergillus niger phytase and those given 4,000 PU/kg yeast phytase. These results suggested that yeast phytase improves bioavailability of P in the diet for growing pigs but the efficacy of yeast phytase is less than that of Aspergillus niger phytase. During incubation in acidic solutions with pepsin, yeast phytase (P < .001) lost more of its activity than Aspergillus niger phytase. This lesser stability of yeast phytase may be responsible for the poorer efficacy of yeast phytase than that of Aspergillus niger. In summary, supplementation of swine diets with yeast phytase is beneficial, but its efficacy is less than that of Aspergillus niger phytase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号