共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
基于图像识别的小麦腥黑穗病害诊断技术研究 总被引:1,自引:0,他引:1
传统的检疫小麦腥黑穗病害的方法效率较低影响检测的稳定性和客观性.提出一种基于图像识别的小麦腥黑穗病分类诊断技术.以显微镜下采集的小麦病害图像为研究对象,对其进行滤波增强及病害区域分割,再提取单个病害区域图像的颜色、形状和纹理等特征参数;最后利用归一化后的特征值,通过BP神经网络分类器实现了小麦腥黑穗病害的诊断.将计算机图像识别结果和实际小麦腥黑穗病类型进行对比,表明了该诊断技术的可行性和有效性 相似文献
3.
4.
为克服当前蔬菜病害诊断专家系统依靠文字提供信息的不准确性,提出一种基于颜色特征的茄子病害图像检索方法。详细分析茄子病害图像的颜色特征,在符合人眼视觉特征的HIS颜色空间上进行图像预处理。提取图像的均值、方差、偏度、峰度、能量作为检索特征值,构建图像特征矩阵。利用高斯归一化方法进行归一化处理后,采用欧式距离进行相似性度量。在Visual C+ +6.0开发环境下,采用C++编程开发了基于颜色特征的茄子病图像检索系统。结果表明,基于颜色特征的茄子病害图像检索方法的查准率为65%,查全率为83%,识别效果较好。将该算法应用于茄子病害诊断专家系统,将大大提高系统的鲁棒性,能够满足病害诊断的要求。 相似文献
5.
6.
计算机辅助小麦图像识别应用中颜色特征基本参量的表达 总被引:7,自引:0,他引:7
在计算机辅助图像处理中,运用颜色特征进行图像的分类和识别是简便而有效的一种方法。然而,颜色特征的表达和提取是否准确、合理直接决定着分类和识别的可靠性。本文在重点分析RGB、HIS和L*a*b*三种常用颜色模式基本参量含义及相互间关系的基础上,结合小麦图像自身的特点,通过对30幅小麦图像在三种颜色模式下的9个基本参量进行主成分分析,建立了应用于小麦图像识别的颜色特征基本参量表达式,并对这三种颜色模式的9个基本参量进行了分类,提出了确定而有意义的表征小麦颜色特征的主成分指标。结果如下:基于第一主成分的分类指标综合表达出小麦冠层的亮绿色特点,分类结果具有较高的准确性和可靠性;第二主成分指标主要表达小麦冠层黄绿颜色变化的特点,能够形成连续的量化指标空间。第三主成分指标主要表达小麦正常绿色的情况,在图像获取亮度差异较小时可以进行小麦正常绿色值的评价。 相似文献
7.
通过研究小麦叶部病害的症状特点及图像特点,应用K_means硬聚类算法对小麦叶部病害图像进行彩色图像分割,得到二值化分割和彩色分割,利用多重分形分析从二值化分割图像中提取病害形状特征参数,分别利用提升小波变换和脉冲耦合神经网络从彩色分割图像中提取颜色特征参数和纹理特征参数.根据提取的组合特征参数,利用学习向量量化神经网络进行小麦病害分类识别.结果表明,该算法对小麦病害的识别率可达到95%以上. 相似文献
8.
利用中值滤波结合k均值聚类的方法分割出小麦白粉病、条锈病和叶锈病叶部病斑,分别采用颜色矩和灰度共生矩阵的方法提取病斑的颜色特征和纹理特征参数,设计了一种基于Variance算法初选与序列浮动前向选择搜索算法(SFFS)相结合的特征选择方法,选择出优良的特征子集,实现对小麦3种叶部病害的识别。试验以SVM为分类器,利用特征选择方法获得的特征子集识别准确率为99%,与采用主成分分析(PCA)方法进行特征降维获得的子集的识别准确率比较,能有效降低特征维度,提高识别准确率。 相似文献
9.
首先对枸杞叶部图像的各类别病害图像的颜色特征进行分析,建立对应病害类别的颜色特征码本,最后利用稀疏表示理论建立病害图像颜色分布与病害类别的映射关系,进行基于颜色特征码本的病害图像分类。试验结果表明,该方法能有效建立病害图像的颜色特征与病害类别之间的关系。 相似文献
10.
11.
LI Shao-kun SUO Xing-mei BAI Zhong-ying QI Zhi-li Liu Xiao-hong GAO Shi-ju ZHAO Shuang-ning 《中国农业科学(英文版)》2002,1(8):885-889
Recognition and analysis of dynamic information about population images during wheat growth periods can be taken for the base of quantitative diagnosis for wheat growth. A recognition system based on self-learning BP neural network for feature data of wheat population images, such as total green areas and leaves areas was designed in this paper. In addition, some techniques to create favorable conditions for image recognition was discussed, which were as follows: (1) The method of collecting images by a digital camera and assistant equipment under natural conditions in fields. (2) An algorithm of pixei labeling was used to segment image and extract feature. (3)A high pass filter based on Laplacian was used to strengthen image information. The results showed that the ANN system was availability for image recognition of wheat population feature. 相似文献
12.
基于图像识别的玉米叶部病害诊断研究 总被引:7,自引:0,他引:7
【目的】探讨利用图像技术实现玉米叶部病害自动识别的方法。【方法】根据玉米叶部病害特点,综合应用阈值法、区域标记方法与Freeman链码法,对玉米叶部病害图片进行图像分割、统计病斑个数、去除冗余斑点、计算病斑形状特征,最后根据二叉检索法推断病害。【结果】研究提取了五种玉米叶部主要病斑的识别特征,确定了诊断流程,并开发了识别系统。经检验,该系统对玉米叶部的锈病斑、弯孢菌病斑、灰斑、褐斑、小斑等五种主要病害的诊断准确率达80%以上。【结论】研究结果表明,用图像技术进行玉米叶部病害诊断是可行的,本研究开发的诊断系统为玉米病害自动识别与诊断奠定了基础。 相似文献
13.
在图像分类和检索中,如何对图像进行特征提取及提取图像的哪些特征信息,影响着图像分类的准确性。提出了一种基于颜色的特征提取算法,同时利用最新的多层的深度学习算法对图像进行分类。结果表明,该研究提出的图像分类方法比传统图像分类算法准确度有较大的提高。 相似文献
14.
15.
提出了利用支持向量机(SVM)分类的方法对采集图像进行识别。采用计算机图像处理技术针对棉花苗期杂草图像进行分割,提取棉花与杂草的形状特征参数;选取最有效的特征数据组合输入SVM进行分类学习训练,实现杂草的有效识别。结果表明,使用该方法获得的图像识别效率较高,在同等条件下,速度优于人工神经网络。 相似文献
16.
17.
18.
19.
20.
温室蔬菜病害智能识别图像预处理及其特征提取方法的研究 总被引:2,自引:0,他引:2
采用计算机图像处理技术对温室蔬菜病害进行了智能化识别,并以黄瓜霜霉病为例研究了温室蔬菜病害智能识别图像预处理和特征提取的方法。试验选择白色作为病害叶片的背景,利用中值滤波法有效地去除了噪声的干扰,利用双峰法从背景中分离出病害图像,再对图像进行边缘检测,准确地提取了病斑的几何特征。该方法能够实现对病害图像的预处理,并且能够准确地提取病害特征。 相似文献